第一篇:英威腾CHH100高压变频器在煤矿主通风机上的应用
英威腾CHH100高压变频器在煤矿主通风机上的应用
Application of INVT CHH100 High-voltage Transducer into Main Fanning Machine for Coal Mines
英威腾电气股份有限公司
Shenzhen INVT Electric Co., Ltd
摘要:为了实现节能降耗,山西某大型煤矿企业针对高压主通风机进行技术改造。根据设备的具体工艺情况,并且分析比较各种可能的技术方案,确定采用高压变频技术的最佳解决方案。通过对改造前后主通风机运行情况的对比分析,得出改造后电能大幅度降低、提高主通风机的控制水平的结论。
关键词:煤矿主通风机 节能 高压变频器 功率单元串联 多电平
Abstract: A large-sized coal miner starts the technical alteration for its high-voltage main fanning machine to reduce the power consumption.Following all kinds of possible solutions,optimized solution scheme which uses high-voltage frequency conversion technology is adopted, based on concrete technical conditions.Comparing the performance of main fanning machine before and after the alteration, it is concluded that the alteration can lower the use of electricity and improve the controllability of the main fanning machine.Keywords: Main fanning machine of coal mine, Energy saving, High-voltage transducer, Power cells in series, Multi-level
[中图分类号]TN773
[文献标识码] A
文章编号:1561-0349(2012)03-引言
节能降耗已成为我国的基本国策。煤矿企业既是产能大户,又是耗能大户,许多煤矿企业都非常重视高耗能用电设备的节能技改工作。特别是主通风机,设备功率大、24h不停运转。由于煤矿特殊的工艺要求,该设备存在很大的节能空间。在满足矿井通风需要的同时,又实现最大程度的节能。本文通过阐述对山西某大型煤矿企业矿井主通风机采用高压变频技术改造,选用功率单元串联多电平高压变频器,实现了主通风机的电能节约和风量无级自动调节。设备的工况和节能要求 2.1 设备参数
煤矿企业主通风机为南阳防爆集团生产的2台防爆对旋式轴流通风机。风机主要参数如下:
型号: BDK65—10一N026 电动机额定功率(kW)2x 800 负压(Pa)3077~120 风量(m·s)60~150 额定转速(r-min)990 额定电压(V)10000 额定电流(A)2x 56.3 绝缘等级 F级 2.2 运行情况
2台对旋风机互为备用,单台电机运行电流在43A左右,该风机月用电量在63万kWh以上。2.3 对设备节能的具体要求
根据矿井具体情况,确定了采用变频方式进行技术改造。对设备改造有以下要求。(1)在不影响通风量的前提下,变频设备应大幅度降低原用电设备(指煤矿主通风机)的电能,节电量要在20%以上。
(2)在不降低节能的基础上,能够提高原用电设备的安全性和稳定性。
(3)变频设备自身的使用寿命长,损耗低,日常维护量少。同时能够降低原用电设备的维护量。
(4)变频设备操作方便、不改变原用电设备操作工的操作习惯。操作工在简单培训后就可以熟练操作变频设备。
(5)为了满足未来煤矿的发展需要,变频设备容量留有一定的富裕。改造方案的确定
经过论证分析,确定采用功率单元串联多电平型高压变频器,根据井下负压值连续控制主通风机风量的节能方案,利用1台变频器同时拖动1台对旋风机的2台电机,2台对旋风机可以分时使用变频器。3.1 风量调节方式的选择
矿井生产过程中,井下对风量的需求和通风网络特性经常发生变化,需要经常调节风机的工况点以适应生产要求。《煤矿安全规程》对煤矿井下的通风量有具体规定,通风量小不能满足要求,通风量大会使采煤工作面粉尘加剧而且浪费能源。操作工人通过观察井下的负压值高低来判断风量是否适合。
原系统主通风机的风量调节,主要是改变叶片安装角度和节流调节,但是节流调节会造成能源浪费;改变叶轮叶片安装角度一方面需停机操作,另一方面也会使风机效率发生变化,通常需调节的幅度较大时才采用。只有根据负压值变化自动调节转速的方式不改变风机的效率,在各个工况点实现不停机调节风机的高效状态下运转。3.2 调速方式的选择(1)液力耦合器
在电机和负载之间串入一个液力耦合装置,通过液面的高低调节电机和负载之间耦合力的大小,实现负载的速度调节。这种调速方法实质上是转差功率消耗型的做法,其主要缺点是随着转速下降效率越来越低,并且维护工作量大。(2)串级调速
串级调速必须采用绕线式异步电动机,将转子绕组的一部分能量通过整流、逆变再送回到电网。而现在工业现场几乎都采用鼠笼式异步电动机,更换电机非常麻烦。这种调速方式的调速范围一般在70%~95%,调速范围窄;容易造成对电网的谐波污染,功率因数低;串级调速电机受转子滑环的影响,大功率无法实现;滑环维护工作量大;属于落后技术。(3)变频调速方式
通过高压变频器改变电源频率来调节三相异步电机的转速(根据公式n=60f(1一s)/P 调节)。这种调速方式调速范围宽、设备使用寿命长、自身能耗低、日常维护量少。缺点是设备造价比较高,但是随着高压变频器大规模的推广,其造价正在逐步降低。通过以上分析可见高压变频方式最为合适。3.3 高压变频器种类的选择
高压变频技术由于现有的电力电子器件耐压不足,所以每台产品均需要使用大量的电力电子器件。这些器件组合的多样性,使得高压变频电路组合也很多,当前常用的高压变频器主要有以下几类技术。(1)高低高方式
即变频器为低压变频器,采用输入降压变压器,先把电网电压降低,然后采用1台低压变频器实现变频。对于电机,则有2种办法:① 改用低压电机;② 仍采用原来的高压电机,需要在变频器和电机之间再增加1台升压变压器,即高一低一高变频方式。这种做法由于采用低压变频器,容量也比较小,在电网侧的谐波较大。(2)三电平电压型高压变频调速方式
三电平电压型高压变频技术通过独特的二极管钳位(或者其他的钳位)方法,可以使系统的输出电压增加一个电平,与两电平相比较,这种方式的相电压可以有3个电平输出,故称为三电平。同时每个电力电子器件所承受的耐压只有直流母线电压的一半,所以采用这种方式,可以使电力电子器件的耐压要求降低一半。当采用一些高压的全控型器件,如高压IGBrI1、IGCT、ⅢCI1、GTO晶闸管时,可以直接实现高压输出。由于控制上难度较大,这种方法目前应用比较少,技术尚不成熟,所以不采用。(3)功率单元串联式多电平高压变频方式
功率单元串联式多电平高压变频产品是在输入端设置1台输入隔离变压器,将输入高压交流电变成多组低压交流电,每组低压交流电分别输入到1个功率单元,经整流滤波为直流电后,再经逆变成为交流电,各功率单元的交流信号在逆变侧串联成为高压交流输出供给高压电动机。为了减少输入谐波,变压器的每个二次绕组的相位依次错开1个角度,形成多脉冲、多重化整流方式。其逆变输出采用多重PWM方式,输出谐波非常小。这种方式采用低压器件实现高压变频输出,器件无需串联,输入输出谐波非常小,是一种成熟稳定的高压变频技术。
本次改造选用的就是功率单元串联式多电平高压变频器产品。3.4 控制方式的选择
由于进行的是设备节能改造,所以在保证稳定性的前提下,成本是优先考虑的。一拖二方式在性能上基本与一对一方式相同,工程造价上降低50%以上的费用。以下是2种方式的介绍。
(1)一对一方式
一对一的方式即变频器与电机一对一配置。由于对旋风机为2台风机首尾相对放置,那么1台对旋风机就需要2台变频器。这种方式的优点是控制简单,系统稳定性高。由于4OOkW以下的高压变频器原材料成本几乎一样,所以这样的工程造价将非常大。如果把备用的对旋风机也全部配齐的话,整个工程造价将又翻一倍。(2)一拖二方式
一拖二方式就是1台变频同时拖动1台对旋风机的2台电机,2台对旋风机可以分时使用该变频器。这种方式的缺点是控制系统复杂,安装调试时间长。但是,优点是整个工程造价低(比一对一方式降低一半以上费用),设备使用率高。4 高压变频设备介绍
通过对各方面比较,决定采用高压变频器对主通风机进行改造。选用了深圳市英威腾电气股份有限公司生产的CHH100-1600-10高压变频器。(1)高压变频器的主要性能指标 变频器容量(kVA)1900 输入频率(Hz)0~50 额定输入电压(kV)10.0(±10%)输出频率范围(Hz)一50~+50 过载能力(%)120(1 min);150立即保护
性能指标满足相关标准:IEEE519—1992《电源系统谐波控制推荐规程和要求》;GB/T14549—1993《电能质量公用电网谐波》。(2)性能主要特点
① 高压变频调速系统采用直接“高一高”变换形式,为单元串联多电平拓扑结构,主体结构有多组功率模块并联而成;采用单元串联叠波技术、空间矢量控制的正弦波PWM调制方法。
② 变频装置控制采用LED键盘控制和人机界面控制2种控制方式,2种方式互为备用,2种方式从现场界面上可以进行增、减负荷,开停机等操作。装置保留至少一个月的故障记录。③ 在20%~100%的调速范围内,变频系统在不加任何功率因数补偿的情况下,本机输入端功率因数达到0.97以上,减少无功输入,降低了供电容量。
④ 变频装置对电网电压的波动有较强的适应能力,在一10%~+10%电网电压波动时能满载输出。可以承受35%的电网电压下降而正常继续运行,能适应煤矿电压大幅波动的电网环境。
⑤ 变频装置设以下保护:过电压、过电流、欠电压、缺相保护,短路保护,失速保护,变频器过载、电机过载保护,半导体器件过热保护,瞬时停电保护等,联跳至输入侧10kV开关。保护的性能符合国家有关标准规定,并提供故障、断电、停机等报警。(3)具体控制方案
如图1所示,此系统由QF、QF1~QF4,高压变频器、自动切换柜(QS1~QS4,KM1~KM4组成)、电动机M1~M4组成。高压开关柜向变频器馈电,并为其提供保护,保护主要有速断保护、过载保护、过电压保护,其整定值根据变频器额定值计算。变频器与高压柜之间的联锁关系有: ① 合闸闭锁
将变频器“合闸允许”信号串联于高压开关合闸回路。变频器故障或不能就绪时,高压开关(断路器QF)合闸不允许。②故障分闸
将变频器“高压分断”信号并联于高压开关分闸回路。当变频器出现故障时,分断变频器高压输入。
③隔离开关、真空接触器以及高压断路器之间的闭锁关系
KM1与KM4电气互锁;KM1与KM3,电气互锁;KM2与KM3电气互锁;KM2与KM4,电气互锁;控制同一台电机的高压断路器和真空接触器同时只允许一个闭合,如QF闭合,则KM1不允许合闸,KM1合闸,则QF不允许合闸。
④当M1正转M2同时反转时,即拖动一台对旋通风机变频运行时,断开QF1、QF2,分别合上QS1、QS2、KM1、KM2、QF;当变频器出现故障时,由另一台对旋式风机运行,即断开QF、KM1、KM2、QS1、QS2,合上QF3、QF4、KM3、KM4。
⑤ 当变频器出现故障或需要检修时,只要断开QF和QS1~QS4即可。变频器具有反风功能。柜门上有1~4风机运行指示,KM1~KM4,分闸和合闸指示。
高压变频器
图1 电气控制电路图 变频设备运行情况
变频器于2011年6月30日安装完成,7月3日投入运行。变频器显示采用中文图形界面,触摸屏操作,生动直观,变频器的运行状态一目了然,各种运行数据可在触摸屏上查询,便于操作人员及时了解变频器的运行情况。变频器操作简单,两级风机可以同时起动,可在3min之内起动至高速,短时间内达到所需风量。缩短的起动时间确保了生产安全。反风操作比以前简单可靠,完全可满足1Omin内实现反风的要求。根据实测累计节约电能50586kWh/d。变频器投入运行以来一直运行稳定,输出频率、电压和电流符合要求,变频器网侧实测功率因数为0.976,效率均高于96%,满载时网侧电流谐波总容量小于3%。
第二篇:变频器在提升机上的应用
河南远航工控设备有限公司 竭诚为您服务 矿井提升机的变频调速改造
一、概况
矿井提升机是煤矿,有色金属矿生产过程中的重要设备。提升机的安全、可靠运行,直接关系到企业的生产状况和经济效益。某煤矿井下采煤,采好的煤通过斜井用提升机将煤车拖到地面上来。煤车厢与火车的运货车厢类似,只不过高度和体积小一些。在井口有一绞车提升机,由电机经减速器带动卷筒旋转,钢丝绳在卷筒上缠绕数周,其两端分别挂上一列煤车车厢,在电机的驱动下将装满煤的一列车从斜井拖上来,同时把一列空车从斜井放下去,空车起着平衡负载的作用,任何时候总有一列重车上行,不会出现空行程,电机总是处于电动状态。这种拖动系统要求电机频繁的正、反转起动,减速制动,而且电机的转速一定规律变化。斜井提升机的机械结构示意如图1所示。斜井提升机的动力由绕线式电机提供,采用转子串电阻调速。提升机的基本参数是:电机功率55kW,卷筒直径1200mm,减速器减速比24︰1,最高运行速度2.5m/s,钢丝绳长度为120m。
目前,大多数中、小型矿井采用斜井绞车提升,传统斜井提升机普遍采用交流绕线式电机串电阻调速系统,电阻的投切用继电器—交流接触器控制。这种控制系统由于调速过程中交流接触器动作频繁,设备运行的时间较长,交流接触器主触头易氧化,引发设备故障。另外,提升机在减速和爬行阶段的速度控制性能较差,经常会造成停车位置不准确。提升机频繁的起动﹑调速和制动,在转子外电路所串电阻的上产生相当大的功耗。这种交流绕线式电机串电阻调速系统属于有级调速,调速的平滑性差;低速时机械特性较软,静差率较大;电阻上消耗的转差功率大,节能较差;起动过程和调速换挡过程中电流冲击大;中高速运行震动大,安全性较差。
携手远航 共创辉煌 电话:0371-67250191/192/193 传真:0371-67250102热线:*** 河南远航工控设备有限公司 竭诚为您服务
二、改造方案
为克服传统交流绕线式电机串电阻调速系统的缺点,采用变频调速技术改造提升机,可以实现全频率(0~50Hz)范围内的恒转矩控制。对再生能量的处理,可采用价格低廉的能耗制动方案或节能更加显著的回馈制动方案。为安全性考虑,液压机械制动需要保留,并在设计过程中对液压机械制动和变频器的制动加以整合。矿井提升机变频调速方案如图2所示:
图2 矿井提升机变频调速方案
携手远航 共创辉煌 电话:0371-67250191/192/193 传真:0371-67250102热线:*** 河南远航工控设备有限公司 竭诚为您服务 考虑到绕线式电动机比鼠笼式电动机的力矩大,且过载能力强,所以仍用原来的4极160kW绕线式电机,在用变频器驱动时需将转子三根引出线短接。提升机在运行过程中,井下和井口必须用信号进行联络,信号未经确认,提升机不能运行。为显示运行时车厢的位置,使用E6C3-CS5C 40P旋转编码器,即电机旋转1圈旋转编码器产生40个脉冲,这样每两个脉冲对应车厢走过的距离为1200。则与实际距离的误差值为4-3.9=0.027mm,卷筒运行一圈误差为0.027,已知钢丝绳长度为120m,如果两个脉冲对应车厢走过的距离用近似值3.9mm计算,120m全程误差为120000。再考虑到实际检测过程中有一个脉冲的误差,则最大的误差在821mm~829mm之间,对于数十米长的车厢来说误差范围不到1米,精度足够。因此,用计数器实时统计旋转编码器发出的脉冲个数,则可计算出车厢的位置并用显示器显示。另外一个问题是计数过程中有无累计误差存在?实际检测时,在一个提升过程开始前,首先将计数器复位,第一个重车厢经过某个位置时,打开计数器计数,车厢在斜井中的位置以此点为基准计算,没有累计误差。在操作台上,用SWP-AC系列智能型交流电压/电流数字仪表显示交流电压和电机工作电流,用智能型数字仪表显示提升次数和车厢的位置。
三、方案实施
斜井提升负载是典型的摩檫性负载,即恒转矩特性负载。重车上行时,电机的电磁转矩必须克服负载阻转矩,起动时还要克服一定的静摩檫力矩,电机处于电动工作状态,且工作于第一象限。在重车减速时,虽然重车在斜井面上有一向下的分力,但重车的减速时间较短,电机仍会处于再生状态,工作于第二象限。当另一列重车上行时,电机处于反向电动状态,工作在第三象限和第四象限。另外,有占总运行时间10%的时候单独运送工具或器材到井下时,电机纯粹处于第二或第四象限,此时电机长时间处于再生发电状态,需要进行有效的制动。用能耗制动方式必将消耗大量的电能;用回馈制动方式,可节省这部分电能。但是,回馈制动单元的价格较高,考虑到单独运送工具或器材到井下仅占总运行时间的10%,为此选用价格低廉的能耗制动单元加能耗电阻的制动方案。
携手远航 共创辉煌 电话:0371-67250191/192/193 传真:0371-67250102热线:*** 河南远航工控设备有限公司 竭诚为您服务 提升机的负载特性为恒转矩位能负载,起动力矩较大,选用变频器时适当地留有余量,因此,宝米勒MC200G1850T4 185KW变频器。由于提升机电机绝大部分时间都处于电动状态,仅在少数时间有再生能量产生,变频器接入一制动单元和制动电阻,就可以满足重车下行时的再生制动,实现平稳的下行。井口还有一个液压机械制动器,类似电磁抱闸,此制动器用于重车静止时的制动,特别是重车停在斜井的斜坡上,必须有液压机械制动器制动。液压机械制动器受PLC和变频器共同控制,机械制动是否制动受变频器频率到达端口的控制,起动时当变频器的输出频率达到设定值,例如0.2Hz,变频器KB、KA端口输出信号,表示电机转矩已足够大,打开液压机械制动器,重车可上行;减速过程中,当变频器的频率下降到0.2Hz时,表示电机转矩已较小,液压机械制动器制动停车。紧急情况时,按下紧急停车按钮,变频器能耗制动和液压机械制动器同时起作用,使提升机在尽量短的时间内停车。
提升机传统的操作方式为,操作工人坐在煤矿井口操作台前,手握操纵杆控制电机正﹑反转个三挡速度。为适应操作工人这种操作方式,变频器采用多段速度设置,X1、X2设为正反转,X3、X4、X5可设挡速度。变频调速原理图如图3所示:
变频器的设置详请参见MC200T系列变频器用户手册。
四、提升机工作过程
提升机经过变频调速改造后,系统的工作过程阿盛大的变化。操纵杆控制电机无极调速。不管电机正转还是反转,都是从矿井中将煤拖到地面上来,电机工作在正转和反转电动状态,只有在满载拖车快接近井口时,需要减速并制动,提升机工作时序图如图4所示:
携手远航 共创辉煌 电话:0371-67250191/192/193 传真:0371-67250102热线:*** 河南远航工控设备有限公司 竭诚为您服务
图4 提升机工作时序图
图4中,提升机无论正转、反转其工作过程是相同的,都有起动、加速、中速运行、稳定运行、减速、低速运行、制动停车等七个阶段。每提升一次运行的时间,与系统的运行速度,加速度及斜井的深度有关,各段加速度的大小,根据工艺情况确定,运行的时间由操作工人根据现场的状况自定。图中各个阶段的工作情况说明如下:
(1)第一阶段0~t1:串车车厢在井底工作面装满煤后,发一个联络信号给井口提升机操作工人,操作工人在回复一个信号到井底,然后开机提升。重车从井底开始上行,空车同时在井口车场位置开始下行。
(2)第二阶段 t1~t2:重车起动后,加速到变频器的频率为f2速度运行,中速运行的时间较短,只是一过渡段,加速时间内设备如果没有问题,立即再加速到正常运行速度。
(3)第三阶段 t2~t3:再加速段。
(4)第四阶段 t3~t4:重车以变频器频率为f3的最大速度稳定运行,一般,这段过程最长。(5)第五阶段 t4~t5:操作工人看到重车快到井口时立即减速,如减速时间设置较短时,变频器制动单元和制动电阻起作用,不致因减速过快跳闸。
(6)第六阶段 t5~t6:重车减速到低速以变频器频率为f1速度低速爬行,便于在规定的位置停车。
携手远航 共创辉煌 电话:0371-67250191/192/193 传真:0371-67250102热线:*** 河南远航工控设备有限公司 竭诚为您服务(7)第七阶段 t6~t7:快到停车位置时,变频器立即停车,重车减速到零,操作工人发一个联络信号到井下,整个提升过程结束。
以上为人工操作程序,也可按PLC自动操作程序工作。图中加速和减速段的时间均在变频器上设置。
五、结语
绕线式电机转子串电阻调速,电阻上消耗大量的转差功率,速度越低,消耗的转差功率越大。使用变频调速,是一种不耗能的高效的调速方式。提升机绝大部分时间都处在电动状态,节能十分显著,经测算节能30%以上、取得了很好的经济效益。另外,提升机变频调速后,系统运行的稳定性和安全性得到大大的提高,减少了运行故障和停工工时,节省了人力和物力,提高了运煤能力,间接的经济效益也很可观。
携手远航 共创辉煌 电话:0371-67250191/192/193 传真:0371-67250102热线:***
第三篇:变频器在油田抽油机磕头机上的应用
变频器在油田抽油机磕头机上的应用
一.抽油机的工作原理及组成当抽油机工作时,驴头悬点上作用的负载是变化的。工作分为两个冲程,抽油机上冲程时,驴头悬点需提起抽油杆柱和液柱,在抽油机未进行平衡的条件下,电动机就要付出很大的能量,这时电动处于电动状态。在下冲程时,抽油机杆柱转拉动对电动机做功,使电动机处于发电机的运行状态。抽油机未进行平衡时,上、下冲程的负载极度不均匀,这样将严重地影响抽油机的四连杆机构、减速箱和电动机的效率和寿命,恶化抽油杆的工作条件,增加它的断裂次数。为了消除这些缺点,一般在抽油机的游梁尾部或曲柄上或两处都加上了平衡重,如图一所示。这样一来,在悬点下冲程时,要把平衡重从低处抬到高处,增加平衡重的位能。为了抬高平衡配重,除了依靠抽油杆柱下落所释放的位能外,还要电动机付出部分能量。在上冲程时,平衡重由高处下落,把下冲程时储存的位能释放出来,帮助电动机提升抽油杆和液柱,减少了电动机在上冲程时所需给出的能量。目前使用较多的游梁式抽油机,都采用了加平衡配重的工作方式,因此在抽油机的一个工作循环中,有一个电动运行状态和一个发电机运行状态。当平衡配重调节较好时,其发电机运行状态的时间和产生的能量都较小。
1—底座;2—支架;3—悬绳器;4—驴头;5—游梁; 6—横梁轴承座;7—横梁;8—连杆;9—曲柄销装置; 10—曲柄装置;11—减速器;12—刹车保险装置; 13—刹车装置;14—电动机;15—配电箱
二.抽油控制器的系统图及控制特点
系统组成由人机界面,三菱PLC,KV2000系列变频器,制动单元,制动电阻。在整个系统中PLC和变频器,触摸屏均通过RS-485进行串行通讯。
整个控制系统特点:
1. 可实现对抽油机的多种控制:空抽控制,定时启停控制,负荷超限停机控制,连喷带抽控制,启停的远程控制。
2. 自动记录抽油机工作过程,保存工作状态信息。自动判断抽油机工作是否正常,给出报警信息。
3. KV2000系列变频器对电机参数有自动调谐功能,可自动测出电机特性并自动设定其相关的参数。
4. 变频器提供多组信号输入方式,包括温度检测信号,模拟信号,数字信号输入,以及脉冲信号的输入,包括故障继电器报警输出。
5. 通过人机界面可实对变频器的监控功能:频率设定,频率改写,输出电压,电流等。对变频器的控制功能:运行,停机,故障复位等。
6. 高效节能,增产。变频器的控制程序是根据油田实际情况,它能自主判断抽油机运行的上下冲程,根据油井的实际情况,实时调节上下冲程的速度,达到实际抽油时,不更改每分钟的抽油次数,但增加每次抽油时的采油量,提高抽油机的产量。(作者:科姆龙电气)
第四篇:ABB变频器在煤气加压机上的应用
ABB变频器在煤气加压机上的应用
摘要:在煤气加压机控制系统中运用变频调速技术对其进行改造,从而实现煤气加压机运转的自动调节,控制煤气流量,年节电效益12.91万元.关键词:煤气加压机
变频器节能 一 概述
炼铁厂竖炉车间煤气加压系统有220kW加压风机两台,一用一备,煤气的恒压供给是保证竖炉系统正常工作的重要条件,一般情况下要求出口压力为20KPa,原系统采用液力耦合器调速,电机以额定转速运行。
液力耦合器是通过控制工作腔内工作油液的动量矩变化,来传递电机能量并改变输出转速的,电动机通过液力耦合器的输入轴拖动其主动工作轮,对工作油进行加速,被加速的工作油再带动液力耦合器的从动工作涡轮,把能量传递到输出轴和负载,这样,可以通过控制工作腔内的油压来控制输出轴的力矩,达到控制负载的转速的目地。二 原系统工况及存在的问题
竖炉从投产以来,煤气加压机采用液力耦合器调速,存在诸多的问题如下:
1、电机直接启动时,冲击电流加大,影响电网的稳定性。
2、电机的效率低,损耗大,尤其低速运行时,效率极低。
3、采用液力耦合器时,在低速向高速运行过程中,延迟性较明显,不能快速响应,同时这时候的电流较大。
4、液力耦合器的附件——水冷却系统,长期运行,维护跟不上,冷却管内的水垢越积越多,易堵塞,导致冷却效果差,最终油温过高。
5、特别是进口压力过低,通过液力耦合器调速后,出口压力要求在20KPa左右,那么就会出现油温过高,结果转速没法调节到指定范围内,出口压力还是低,造成常常减料,球团产量相应降低。
6、液力耦合器运行时间稍长,就会严重漏油,对环境污染大,地面也被油严重污蚀。
从以上运行情况分析:要提高电动机的工作效率、节约电能,为满足生产工艺的要求,需要对其进行改造。在风机电动机上装设变频调速装置,取代液力偶合器调速,要求变频器有高可靠性,长期运行无故障。三 变频改造方案
电动机采用变频调速后,电动机转轴与负载直接相连,但电动机不再由电网直接供电,而是由变频器供电,变频器通过改变电动机的供电频率来改变电机转速,因此可以实现相当宽的频率范围内无级调速,而且在全范围内具有优异的效率和功率因素特性。
采用变频调速后,异步电动机转速n=60f(1-s)/p,其中f 为变频器输出频率,s 为异步电动机转差率,p 为电动机极对数。由式可见,交流电动机的同步转速n与电源频率f成正比,所以改变电源频率就能改变电机转速,从而实现调速的目的。
可以根据工艺状况需要而调节变频器的输出频率,以满足工艺要求。当工艺状况需要时,让电动机高速运行以达到工艺要求;当工艺
状况允许时,使电动机低速运转节约电能。
另外,用变频器对风机进行改造不必对原系统进行大的改动。取消液力耦合器,以及液力耦合器的水冷却系统,电机前移。
1、实际应用设备参数
加压风机型号为JLM—250D,其性能如表1所示
表1 风机参数
2、电机型号为YB315M1-2,其性能如表2所示
表2 电机参数
3、根据风机和电机的配置选择变频器的容量 型号:ACS800-04P-0320-3+P901 250KW 输入项目 U:3~380-415V I:501A f:48~ 63Hz
输出项目 U:3~uinput I:521A f:0~ 300Hz
4、变频改造方案:
在风机上装设变频系统,拆除液力耦合器(如图一);保留原工频系统。
图1
风机变频改造示意图
5、变频器调试:
首先将电机的额定功率、电压、电流及工作频率输入变频器,并确认它们与变频器的额定数据相匹配,其次是选择控制方式,命令源,最后设置速度设定值,斜坡上升/下降时间等一些必要的参数。
6、变频调速与液力耦合器调速的其他性能比较
变频调速与液力耦合器调速除了节能方面的差别外,还在功率因素、起动性能、运行可靠性、运行维护、调节及控制特性、投资及回报等方面有较大差异。6、1功率因素
变频调速可以在很宽的转速范围内保持高功率因素运行(例如20%以上转速时功率因素大于0.95%),而液力耦合器低速运行时功率
因素低于电动机额定功率因素,如果在70%以下转速时,功率因素将低于0.7。采用液力耦合器如果需要提高功率因素,则需另加功率因素补偿装置。6、2 起动性能
采用变频调速时,如电动机保持额定转矩起动,电网输入起动电流小于电动机额定电流的10%,对于风机泵类负载,其起动电流更小。而且起动的全过程可控,起动点和爬坡时间可设置。而液力偶合器不能直接改善起动性能,起动电流达到额定电流的5-7倍,即使是绕线型转子,采取转子串电阻方法需改善起动性能,需增加起动装置,但起动电流仍将是额定电流的2倍以上,是变频起动的20倍以上。起动对电动机和电网的冲击相当大,对电动机来说,造成转子鼠笼断条和定子绕组开焊,据统计,约15%的电动机故障由直接起动引起。对于电网来说,直接起动造成电网电压短时下降,干扰其它设备运行。6、3 运行可靠性、运行维护
液力耦合器机械结构和管路系统复杂,要长期可靠运行,系统维护工作量增大,如果出现故障,无法直接定速运行,必须停机检修。低压变频装置电子线路比较复杂,但目前技术已趋成熟,尤其是单元串联多电平方式的低压变频装置具有单元自动切换和冗余运行特性,在单元故障时可不停机连续运行,可靠性得以保证,而且检修维护相当容易,只需定期更换进风滤网即可。6.4 调节及控制特性
液力耦合器依靠调节工作腔油量大小改变输出转速,因此响应
慢,可能跟不上控制的需要,而变频调速的频率改变速度相当快,完全可以以系统允许的最高速度进行调节。液力耦合器的速度调节精度较低,而变频调速属于数字式控制,其稳频精度达到0.1%以上,因此可以实现精确控制。四 节能情况分析
液力偶合器从电动机输出轴取得机械能,通过液力变送后送人负载,其间存在功率损耗;变频器从电网取得电能,通过电动机变送后送人负载,其间同样存在功率损耗。在转速范围内,两种调速方式的效率—转速曲线如下:
两种调速方式的效率—转速对比曲线
1、理论上计算节能效果:
220kW风机的风量从100%降低到70%,由于流量与转速一次方成正比,因此转速可以降低70%,而负载功率与转速的立方成正比,所以负载功率理论上降为34.3%。
采用变频调速,其效率按0.95计算,再考虑电动机效率0.85,管道系统效率0.95,则电网总输人功率约为:
220(34.3%/0.95/0.85/0.95)=220×44.71%=98.36kW 采用液力偶合器,其效率按0.665计算,再考虑电动机效率0.85,管道系统效率0.95,则电网总输人功率约为:
220(34.3%/0.665/0.85/0.95)=220×63.87%=140.51kW 二者之差为节约的电能,即:140.51-98.36=42.15kW,全年按330日计算,年节电: 42.15×330×24=333828度
2、实际测量节约电能比较:出口压力达到20KPa为标准 2、1 改造前实测数据 u1=380V;i1=140A;cosφ1=0.92 P1=1.732ui =1.7321×380×140×0.92= 84.78kw 每年耗电量(全年运行330天计)为:84.78×24×330=671458度 2、2 改造后实测数据
u2=380V ;i2=50-70A ;cosφ2=1 取个中间值 i2=60A P2=1.732ui =1.7321×380×60×1=39.5kw 每年耗电量(全年运行330天计)为:39.5×24×330=312840度 2、3 每年节省的电量: 671458-312840=358618度 节电率:358618÷671458=53.4% 每年节约电费(按0.36元/度计):358618×0.36=12.91万元
3、节约循环新水比较
根据在水泵房的新水流量表的指示比较得知:(19-14.5)×24×330=35640吨
五 结束语
对煤气加压风机改造表明:采用变频器对风机进行节能改造具有结构简单、改造方便、节能效果明显、投资回收期短的特点;风机可软起软停、减少设备机械冲击、延长设备使用寿命、降低设备的维修费用;拖动系统应用变频调速技术,在大大节约电能的基础上,使长期轻载运行的引风机工作在低转速、低电压的状态下,这样就使电机发热少、温升低,延长了使用寿命。变频调速技术也提高了功率因数,使电网损耗减少,效率提高,同时降低了风机噪音,改善了生产环境。另外变频器自我检测、故障诊断、保护功能齐全,可有效地防止事故扩大化。
作者简介:王长林,男
第五篇:三晶S350矢量变频器在彩印机上的应用
三晶S350矢量变频器在水泥包装机上的应用
S350系列是新一代高性能矢量变频器,有如下特点:
■采用最新高速电机控制专用芯片DSP,确保矢量控制快速响应
■硬件电路模块化设计,确保电路稳定高效运行
■外观设计结合欧洲汽车设计理念,线条流畅,外形美观
■结构采用独立风道设计,风扇可自由拆卸,散热性好
■无PG矢量控制、有PG矢量控制、转矩控制、V/F控制均可选择
■强大的输入输出多功能可编程端子,调速脉冲输入,两路模拟量输出
■独特的“挖土机”自适应控制特性,对运行期间电机转矩上限自动限制,有效抑制过流频繁跳闸
■宽电压输入,输出电压自动稳压(AVR),瞬间掉电不停机,适应能力更强
■内置先进的 PID 算法,响应快、适应性强、调试简单 ; 16 段速控制,简易PLC 实现定时、定速、定向等多功能逻辑控制,多种灵活的控制方式以满足各种不同复杂工况要求
■内置国际标准的 MODBUS RTU ASCII 通讯协议,用户可通过PC/PLC控制上位机等实现变频器485通讯组网集中控制
水泥包装机
水泥包装机的分类
水泥包装机大都分为固定式和旋转式,固定式水泥包装机是指1-4嘴包装机,由人工移动插袋来完成水泥的灌装,旋转式水泥包装机是指6-14嘴,人工不动,包装机旋转来完成插袋灌装.旋转式水泥包装机的配套设备:
振动筛,螺旋闸门.给料机,溜槽,包装机主机,接包输送机,正包输送机,清包输送机,荷重传感器,料位控制仪等,有时也根据水泥厂不同要求做为配套
水泥包装机特点
1、适应面广,凡流动性能较好的粉状、颗粒物质都可使用本包装机进行包装。
2、基本实现自动化,灌装、计量、掉袋等动作均自动连续完成。
3、工作环境洁净环保,不插袋不灌装,袋重不到标定值不掉袋,袋子意外脱落闸板立刻关闭,停止灌装。
4、维修简单,易损件少,无液压、气动元件。
5、八嘴至十二嘴回转式水泥包装机配备水泥清包机、水泥接包机、水泥振动筛、给料机。水泥包装机的技术参数
水泥包装机工作运行流程
装—计量—掉袋
(一)启动运转步骤:通电—启动皮带机—启动包装机—启动给料机—插袋—灌
(二)停机步骤:关闭给料机—放空包装机中水泥—关掉总电源
全操作与日常维护保养
(一)开车前注意现场环境,清除影响作业的障碍物,除插袋外,禁止其他人员靠近旋转包装机。
(二)开车前认真检查电器部分,调速器旋钮位置于0位,顺时针转动旋钮逐渐加速到所需转速,每分停机务必将调速器旋钮回到0位。
(三)插袋时身体与机器要保持适当距离,防止碰伤。
(四)灌装时不准手按,脚踢水泥袋,以免影响计量精度。
(五)当运转中出现故障紧急停车检修时,须切断电源,挂牌警示或专人监护。
(六)包装机接地保护要安全可靠,并定期检测接地电阻。
(七)当皮带机突然停车时,应立即切断包装机旋转电源,以防刮包