第一篇:成数教学反思
《成数》教学反思
本节课教学的“成数”,大多数同学在日常生活中通过新闻媒体、交往等多少都有所接触、了解。但学生的这种认识还只是凭借生活经验产生的感性认识,对成数知识概念学生并未真正理解。另外,学生很少会将这种生活中的农业成数与数学、与课本上的百分数数学知识相联系,欠缺知识间沟通互化的意识。
所以,我在本节课的教学中注重紧密联系学生的生活实际,利用学生在日常生活中触手可及的新闻消息,创设教学氛围,让学生既体会到数学源于生活,又认识到所学数学可应用于生活。同时,教师引导学生大胆地猜测,积极地讨论,主动地探索,勇敢地尝试,将教学活动建立在学生已有的知识经验基础之上,所以课堂气氛活跃,学生学得起劲,学得主动。但在成数应用题的教学上,由于本册教材先前涉及百分数利用题的知识较少,在本课新授之前没有适当增加百分数利用题的练习,因此对学困生来说,顺利解决稍微灵活的实际问题有些困难。由此看来,应在讲授新课前,适当增加对百分数应用题的复习。本节课最大的失误就是忽视了板书设计,总觉得课件上把主要和重要内容都体现了,电子白板代替了一切,脱离课件后根本体现不出自己本节课的教学内容。
第二篇:成数教学反思
成数教学反思
篇一:成数>教学反思
相比于“折扣”,“成数”对学生来说是个陌生的词语。但有了“折扣”的铺垫,学生理解起“成数”也不算太难。教学时,我多训练了几个将“成数”化成百分数的练习,学生很快就理解了“成数”的具体含义。试一试的问题和两个例题类型不一样,学生解答中出现了或多或少的问题,有的是不注意认真审题,有的是照猫画虎当然结果是不对的。出了问题是正常的,正好培养他们认真审题的习惯,借此机会进行一番思想教育。
本节课由旧知引入知,让学生通过复习从而很自然过渡到新知,自己探究百分数和小数的互化。但在复习的创设过程中时间稍长,如果能再压缩一点效果会更好!在百分数和小数的互化教学中教师加以引导,放手让学生自己去探究,效果好。练习的设计形式多样,从不同角度巩固了百分数和小数的互化,它是本节课的一个亮点。同时又遵循了由易到难,由直观到抽象的原则。在选择练习中潜意识渗透了百分数、小数、分数比大小,通过比较,学生能加深它们之间的互化。在最后开放题的练习中,让学生切身体会百分数和小数互化在数学中的应用,同时又进一步了巩固了百分数和小数的互化,使学生的新知重新跃上了一个新台阶。本节课采用了合作学习法,学生在小组里做到了互动学习、互动思考、互动操作、互动总结。在整个学习过程中,每个学生在小组里大胆地开放了自己的思维,互相取长补短,拓宽了思路,学得扎实灵活,达成了教学目标,完成了教学任务。
篇二:成数教学反思
1、“成数”与“折数”这两个概念对于学生来说并不陌生,成数在农业收成、平时的口头语中经常听到,折数在商场购物常常见到,只是对于表示多少学生不是很理解。因此 本节课的 教学 注重紧密联系学生的生活实际,如导入创设了生活中粮食专业户李丰收和农业技术员老王的对话情境,教学过程中利用学生在日常生活中触手可及的商场购物打折的信息等,通过 大量生活中的实例,使学生体会到数学就在我们身边,学好数学,能解决大量实际问题,从而提高了学生学习百分数应用题的兴趣。
2、导入环节不仅引发了新知的学习,更激起了学生求知的欲望,学生感到,看似简单的对话,却蕴涵了几个数学问题,为研究成数、折数应用题作了铺垫。
3、学习成数概念时采用直接告诉,学生仿照现成的成数的意思,说一说所给成数的意思,再强化练习,使学生明白它与十分数与百分数之间的关系,而学习折数概念时,通过学生猜一猜一枝花打五折、八折、三折、一折后的价格,然后讨论得出折数的意义,并得到求商品内现价的方法,因为学生对于商品打折平时已经有所了解,这样的教学符合学情,也达到了水到渠成的效果。
4、注重培养学生的问题意识和解决问题的能力,课始,学生听了对话后,并没有直接告诉学生对话中有数学问题,也没有直接告诉学生对话中有今天要学习的知识,而是让学生找一找,让他们自己去发现问题,发现新知。当解决了去年收稻谷多少吨后,根据 对话中“今年又比去年增产了半成”,让学生自己提数学问题,自己去解决。在解决问题时,又让学生 找到突破口,只需把成数与折数转化成百分数解决就行了,沟通了知识之间的联系,加深了学生对百分数应用题的理解和掌握,培养了学生分析能力。另外,善于培养学生求异思维的能力,不拘泥于一种解法,有不同解法的,总是舍得花时间让学生讲不同的思路,使学生能真正地理解、掌握。
5、因为本课的内容较多,容量较大,考虑到学生的计算不是本课的重点,因此计算采用计算器,这样使得教学内容能顺利完成。课上学生整体上思维敏捷,总是表现出较浓的兴趣,课堂反应与接受较快。他们能积极地讨论,主动地探索,勇敢地尝试,课堂气氛活跃,学生学得起劲,学得成功。
6、本课的练习有层次,形式新颖,很好地激发了学生的练习兴趣,如算一算小明和小刚同样的钢笔它们的原价各是多少,帮老师算一算手机的原价,算出自己喜欢的肯德基优惠后打了几折,帮张老师选择合适的商场购买电脑,最后用今天所学的知识策划一个广告。
题目结合学生的生活实际,学生很乐意去解决,教学效果好。可惜的是,由于内容多,40 分钟的时间还是不够,拖了几分钟课,如果时间有余的话,学生策划广告能在课上完成,那教学效果就更佳了。
第三篇:《成数》教学反思
《成数》教学反思
《成数》教学反思1
成数在农业收成、平时的口头语中经常听到,折数在商场购物常常见到,只是对于表示多少学生不是很理解。因此本节课的教学注重紧密联系学生的生活实际,如导入创设了生活中粮食专业户李丰收和农业技术员老王的对话情境,教学过程中利用学生在日常的实例,使学生体会到数学就在我们身边,学好数学,能解决大量实际问题,从而提高了学生学习百分数应用题的兴趣。
导入环节不仅引发了新知的学习,更激起了学生求知的欲望,学生感到,看似简单的对话,却蕴涵了几个数学问题,为研究成数、折数应用题作了铺垫。学习成数概念时采用直接告诉,学生仿照现成的成数的意思,说一说所给成数的意思,再强化练习,使学生明白它与十分数与百分数之间的关系,而学习折数概念时,通过学生猜一猜一枝花打五折、八折、三折、一折后的价格,然后讨论得出折数的意义,并得到求商品内现价的方法,因为学生对于商品打折平时已经有所了解,这样的教学符合学情,也达到了水到渠成的效果。
注重培养学生的问题意识和解决问题的能力,课始,学生听了对话后,并没有直接告诉学生对话中有数学问题,也没有直接告诉学生对话中有今天要学习的知识,而是让学生找一找,让他们自己去发现问题,发现新知。当解决了去年收稻谷多少吨后,根据对话中“今年又比去年增产了半成”,让学生自己提数学问题,自己去解决。在解决问题时,又让学生找到突破口,只需把成数与折数转化成百分数解决就行了,沟通了知识之间的联系,加深了学生对百分数应用题的理解和掌握,培养了学生分析能力。另外,善于培养学生求异求异思维的能力,不拘泥于一种解法,有不同解法的,总是舍得花时间让学生讲不同的思路,使学生能真正地理解、掌握。
本课的练习有层次,形式新颖,很好地激发了学生的练习兴趣。
《成数》教学反思2
这一节课,是100以内数的认识,是在20以内数的认识基础上进行教学的。本节课的教学目标是使学生能正确地数出数量在100以内的物体的个数,能正确数出100以内的数,知道这些数是由几个十和几个一组成的;能根据提供的素材,估计数量在100以内的物体的个数;通过对100以内数的认识,进一步培养学生的数感。教学重点是能正确数出数量在100以内物体的个数;知道这些数是由几个十和几个一组成.教学难点是数出几十九后面的一个数。在教学过程中根据教材重难点和新课标理念,主要有以下几个特点,并收到了较好的教学效果。
1、在做中学,通过充分动手操作,让学生体会数是数出来的。
2、师生合作,教和学渗透在一起,基于对学生课前的了解,上本节课之前,绝大部分学生都有口头数数的能力,但都是唱数,对准确地数出物体的个数还是有困难,学生对100以内数的数感还较低。因此,我采用了师生合作的方式来帮组学生对一百以内的数的认识。
3 动手操作,让学生自己动手数准备好的小棒,从而在数的过程中突破几十九后面一个是多少。还让学生明白了数数可以一个一个的数,也可以一十一十地数。一十一十地数会让我们的数数速度加快。 1
4 自主实践,教学完学生数数之后,让学生数百羊图,先一个一个的数,再一十一十的数。比较两种数数方法的优劣,也加强了学生的数数能力,所学知识得到了应用。
5 尊重学生的认知发展规律,先由实物到抽象的教学数的组成。
本节课当然也存在很多的不足之处:首先情景图没有充分发挥它的作用,它应该有激趣、铺垫、设疑三个方面的作用,我只用了它其中的一个作用。然后教学过程中还应让学生有更多的时间和空间去动手操作及思考。还有教学过程中给学生提要求 或任务时应说清楚,让每个学生都知道该怎么做,这点做得不够。这节课的练习设计不是非常好。等等。
总之,要上好一节课,不仅要专研教材,备好课,还应该多听取其他老师的意见。做到课堂中多关注学生。
《成数》教学反思3
这节课是在学生已经有百分数知识的基础上进行的,教材编排同时突出两个主要的知识点,第一个知识点是,认识生活中的百分率;第二个知识点是把分数,小数化成百分数。但是两个知识点的产生是相辅相成的,两者之间是即有联系,又有区别,同时教材在编排凸显这部分知识的同时,是要充分利用情境来体现知识产生的价值的。20xx年11月26日,郭波老师展示的这节课,有许多值得我借鉴的地方。结合郭老师的这节课,我也把自己的教学思路进行对比性的反思。
一、处理教材的灵活性。
数学情境问题与实际生活的紧密联系是我们一直注重的,也是不可或缺的环节,情境不仅仅是代表一小段的故事情节,更是蕴含数学知识价值的场景,运用得当,情节就有它出现的价值,运用不得当,情节只会是多余的片段。郭老师所运用的是班里学生的投球情况,这是学生身边的人物,也是学生生活中常做的事情,所以这一个情节一出现,学生的学习兴趣就非常高,对探究知识的欲望也就很浓。我在设计这一环节时,也对教材做了一个小小的处理,这一处理的目的是为了更能体现知识产生的价值,尽可能体现知识是价值,学生的学习才能更有意义。
二、尊重学生的独立思维。
1、在处理学生经历知识形成这一过程时,郭老师非常重视学生的个体思维,对学生的思考结果做到充分的肯定,并能善于利用,把不完善的思考结果进行再度引导并进行串联,使原本凌乱的知识点得到整合。教师的引导语言是非常有智慧的,她可以做到不打断学生,不重复学生的语言,不盲目给学生提示,关键的知识点也是学生自己重复。在这点上,我需要修炼的地方还很多。
2、在把分数、小数化成百分数这个过程中,她给学生充分的时间进行独立思考,能准确把握学生在转化过程中出现的不同情况。但是,我个人的想法是,这个环节是个重点,应该要更细化一些,比如请几个学生进行板演,并对比方法,再让学生讲解自己的思考过程,学生讲解别人的思考过程也许不会太完善,但是如果是讲解自己的思考过程是会很完整的,毕竟说的是自己心里的想法。所以我在设计这个过程时,不仅让学生板演分析自己的思路,还注重全班学生的整体掌握情况,再优化方法后,把完整的解题过程写下来,毕竟“好记性不如烂笔头”嘛。
3、在生活中的百分率这个知识点的巩固时,郭老师给出了很多有价值的例子。我在设计这个环节时,也借鉴了她的一些例子,但是在处理的方法上,我把难度降低了很多,我个人的想法是,知道某个事件的百分率,并不一定知道是谁占谁的百分之几,只有明确这样的关系,才可以为后面的应用题做铺垫。我们都知道数学知识的连贯非常强,每一个知识点的产生都不是孤立的,也不可能孤立存在。所以在这点上,我对百分率两者之间的关系更注重,也就是更注重一个数是另一个的百分之几的问题。包括比100%大的知识点也在这节课上做延伸,其目的不仅是为后面的学习做铺垫,更是让学生感受知识在生活中的广泛性。
三、知识反馈的多样性。
非常喜欢郭老师最后的环节,设计了三个思考问题来进行知识的反馈。反馈自我,反馈他人,反馈知识。这种反馈是对课堂学习情况的尊重,也是给自己的反思学习状态的过程。我们最常常看到的反馈情况是学到了什么?关注的点是片面的,也就是只对知识敢兴趣,不对态度敢兴趣。其实课堂上,态度比知识还要重要得多,没有好的态度,哪里有知识的收获。这点上我的设计还是没有办法突破郭老师设计。
《成数》教学反思4
相比于“折扣”,“成数”对学生来说是个陌生的词语。但有了“折扣”的铺垫,学生理解起“成数”也不算太难。教学时,我多训练了几个将“成数”化成百分数的练习,学生很快就理解了“成数”的具体含义。试一试的问题和两个例题类型不一样,学生解答中出现了或多或少的问题,有的是不注意认真审题,有的是照猫画虎当然结果是不对的。出了问题是正常的,正好培养他们认真审题的习惯,借此机会进行一番思想教育。
本节课由旧知引入知,让学生通过复习从而很自然过渡到新知,自己探究百分数和小数的互化。但在复习的创设过程中时间稍长,如果能再压缩一点效果会更好!在百分数和小数的互化教学中教师加以引导,放手让学生自己去探究,效果好。练习的设计形式多样,从不同角度巩固了百分数和小数的互化,它是本节课的一个亮点。同时又遵循了由易到难,由直观到抽象的原则。在选择练习中潜意识渗透了百分数、小数、分数比大小,通过比较,学生能加深它们之间的互化。在最后开放题的练习中,让学生切身体会百分数和小数互化在数学中的应用,同时又进一步了巩固了百分数和小数的互化,使学生的新知重新跃上了一个新台阶。本节课采用了合作学习法,学生在小组里做到了互动学习、互动思考、互动操作、互动总结。在整个学习过程中,每个学生在小组里大胆地开放了自己的思维,互相取长补短,拓宽了思路,学得扎实灵活,达成了教学目标,完成了教学任务。
《成数》教学反思5
1、“成数”与“折数”这两个概念对于学生来说并不陌生,成数在农业收成、平时的口头语中经常听到,折数在商场购物常常见到,只是对于表示多少学生不是很理解。因此 本节课的 教学 注重紧密联系学生的生活实际,如导入创设了生活中粮食专业户李丰收和农业技术员老王的对话情境,教学过程中利用学生在日常生活中触手可及的商场购物打折的信息等,通过 大量生活中的实例,使学生体会到数学就在我们身边,学好数学,能解决大量实际问题,从而提高了学生学习百分数应用题的兴趣。
2、导入环节不仅引发了新知的学习,更激起了学生求知的欲望,学生感到,看似简单的对话,却蕴涵了几个数学问题,为研究成数、折数应用题作了铺垫。
3、学习成数概念时采用直接告诉,学生仿照现成的成数的意思,说一说所给成数的意思,再强化练习,使学生明白它与十分数与百分数之间的关系,而学习折数概念时,通过学生猜一猜一枝花打五折、八折、三折、一折后的价格,然后讨论得出折数的意义,并得到求商品内现价的方法,因为学生对于商品打折平时已经有所了解,这样的教学符合学情,也达到了水到渠成的效果。
4、注重培养学生的问题意识和解决问题的能力,课始,学生听了对话后,并没有直接告诉学生对话中有数学问题,也没有直接告诉学生对话中有今天要学习的知识,而是让学生找一找,让他们自己去发现问题,发现新知。当解决了去年收稻谷多少吨后,根据 对话中“今年又比去年增产了半成”,让学生自己提数学问题,自己去解决。在解决问题时,又让学生 找到突破口,只需把成数与折数转化成百分数解决就行了,沟通了知识之间的联系,加深了学生对百分数应用题的理解和掌握,培养了学生分析能力。另外,善于培养学生求异思维的能力,不拘泥于一种解法,有不同解法的,总是舍得花时间让学生讲不同的思路,使学生能真正地理解、掌握。
5、因为本课的内容较多,容量较大,考虑到学生的计算不是本课的重点,因此计算采用计算器,这样使得教学内容能顺利完成。 课上学生整体上思维敏捷,总是表现出较浓的兴趣,课堂反应与接受较快。他们能积极地讨论,主动地探索,勇敢地尝试,课堂气氛活跃,学生学得起劲,学得成功。
6、本课的练习有层次,形式新颖,很好地激发了学生的练习兴趣,如算一算小明和小刚同样的钢笔它们的原价各是多少,帮老师算一算手机的'原价,算出自己喜欢的肯德基优惠后打了几折,帮张老师选择合适的商场购买电脑,最后用今天所学的知识策划一个广告。
题目结合学生的生活实际,学生很乐意去解决,教学效果好。可惜的是,由于内容多, 40 分钟的时间还是不够,拖了几分钟课,如果时间有余的话,学生策划广告能在课上完成,那教学效果就更佳了。采菱教学反思猜一猜教学反思猜谜游戏教学反思
《成数》教学反思6
本节课教学的“成数与折扣”,大多数同学在日常生活中通过新闻媒体、交往、购物等多少都有所接触、了解。但学生的这种认识还只是凭借生活经验产生的感性认识。如打折,学生都能想到是便宜了,比原价少了,但问其所以然,能解释清楚的并不多。所以对成数、折扣知识概念学生并未真正理解。另外,学生很少会将这种生活中的商业折扣、农业成数与数学、与课本上的百分数数学知识相联系,欠缺知识间沟通互化的意识。
所以,我在本节课的教学中注重紧密联系学生的生活实际,利用学生在日常生活中触手可及的商场购物、新闻消息等,创设教学氛围,让学生既体会到数学源于生活,又认识到所学数学可应用于生活。同时,教师引导学生大胆地猜测,积极地讨论,主动地探索,勇敢地尝试,将教学活动建立在学生已有的知识经验基础之上,所以课堂气氛活跃,学生学得起劲,学得主动。但在成数、折扣应用题的教学上,个别学困生还是有理解较慢的情况。由此看来,应在讲授新课前,适当增加对百分数应用题的复习。
《成数》教学反思7
折扣是指;成数是指()。
税率是指();利息=()。
折扣是指商业折扣和现金折扣成数是指一个数是另一个数的十分之几的数税率是指对征税对象的征收比例或征收额度
利息=本金x年利率x存入年限
折扣和成数与百分数的关系
举例来说,一件上衣原售价100元。
库存太多,流动资金无法周转,决定:
七折出售
这就是说:
100乘以0.7,70块钱就卖出去
0.7就是《七折》,也就是原价的百分之七十。
店家扣掉了《三成》。
看明白了吧
百分数,百分率,百分比和成数,折扣有什么区别和联系
区别:
(一)含义方面:
1、百分数也叫百分率和百分比。
把两个数量的比值写成分母是100的分数。
如某学校去年1000名学生中有150名加入了共青团,入团人数与学生总数的比是,百分比就是,记作15%。
2、折扣是买卖货物是,照标价减去一个数目,减到原标价的十分之几叫做几折或几扣。
3、成数指不带零头的整数,如五十、二百、三千等;一数为另一数的几成,泛指比率。
(二)生活应用方面:
1、百分数用于利息问题、折扣问题、盈利率问题。
2、折扣一般用于商品打折,可以是整数的八折,也可以是7.8折等。
3、成数农业收成经常用成数表示,也适用于应用于表达各行各业的发展情况。
不仅仅是用于商品打折。
联系:
1、折扣和百分比、百分数、百分率:比如商场打八折为折扣,可换算成百分数即百分之八十。
2、成数和百分比、百分数、百分率:比如我国进口车总量增加三成为成数,可换算百分数为百分之三十。
3、折扣和成数:打八折折扣即是八成成数。
扩展资料成数,表示一个数是另一个数的百分之几的数,相当于百分数。
例:一成就是10%,三成五就是35%,八成五就是85%。
方法:分数X10=成数成数/10=小数(成数除以10等于小数)成数X10=百分数折扣,指买卖货物时按原价的若干成计价,如按九成,叫九折或九扣。
如:以汇票的折扣动用银行的基金。
计算方法:单位货物折扣额=原价(或含折扣价)×折扣率。
卖方实际净收入=原价-单位货物折扣额。
百分数,表示一个数是另一个数的百分之几,也叫百分率或百分比。
百分数通常不会写成分数的形式,而采用符号“%”(百分号)来表示。
别名:百分率、百分数。
参考资料:百度百科-成数
百度百科-折扣
百度百科-百分比
税率问题也可以转化成百分数问题来解决
一、课题背景、意义及介绍
1、背景说明(怎么会想到本课题的):
“百分数”是六年级较为重要的教学内容,用“百分数解决问题”在日常生活中有着广泛的应用,如求各种百分率、成数与折扣、纳税等等,研究性学习既扩大了学生所学的知识范围,又能加深对百分数的认识,同时也渗透了概率统计思想。
正是由于这方面思考,促使我运用“研究性学习”来开展这部分的思考和教学,希望通过这一实践来贯彻探究性学习理念。
2、课题的意义(为什么要进行本课题的研究):
用“百分数解决问题”的实用性比较强,这一内容具有研究性和实践性,使学生的学习更具开放性,在学习中更能激发学生的积极性和探究欲望,培养学生综合能力。
教师更能通过实施研究性学习来贯彻新课标的理念,丰富我们的课堂教学。
3、课题介绍
用“百分数解决问题”教学通过学生亲身经历研究达标率、发芽率、增长率、税率、利率等问题,学习用百分数解决问题的方法,培养学生分析问题,解决问题和综合应用数学知识的能力。
二、研究性学习的教学目的和方法
知识目标:
1、让学生理解生活中的百分率的含义,掌握求达标率、发芽率、增长率、税率、利率等百分率的方法。
2、能用百分率解决生活中一些简单的实际问题,知道纳税人和负税人的区别联系,通过调查与研究,认识储蓄的意义和了解主要的存款方式,掌握利息的计算方法,会正确地计算存款利息。
构建用百分数计算的数学模型。
技能目标:
1、让学生在自主探索、合作交流的过程中理解百分率的意义,探求百分率的计算方法,提高学生应用数学知识解决问题的能力。
2、培养学生的探究意识、策略意识和运用数学知识解决实际问题的能力。
情感目标:
1、让学生在具体的情况中感受百分数来源于实际,培养学生用数学的眼光观察生活的意识,在应用中体验数学的价值。
培养学生初步的应用意识和实践能力。
2、培养学生积极探索的科学精神,使其体会到在合作中从事科学研究的魅力。
三、参与者特征分析
起点能力分析:
学生以前学过求一个数是另一个数的几分之几的分数应用题,引导学生发现百分数应用题与分数应用题分析过程一致的地方,即明确以谁作单位“1”,确定了谁和谁比,根据所学知识建立数学模型,找到计算方法,懂得计算结果用百分数表示。
认知结构分析:
学生原有的对用分数解决问题与当前所学用百分数解决问题的分析方法是相同的,具有可利用性、可分辨性的特点,有利于学生更好地学习新知。
学习态度分析:
在活动的安排上有调查研究、小组合作、动手操作(画图表)等学生所喜欢的学习方式,能增进学生的学校兴趣。
学习动机分析:
学习者是六年级的学生,具有一定的研究性学习经历,善于思考和同学交流,语言表达能力较强,对研究问题有着浓厚的兴趣。
四、研究过程
数学问题解决是在数学概念、数学命题学习的基础上,应用各种数学知识去解决数学问题的一种学习方式。
它不仅可以巩固学生所学的数学知识,而且能够帮助学生更加深入地领悟数学的文化意蕴,促进数学素养的提高。
一、等价变换—数量关系的不同表述
教学片段一
师:同学们,你们能根据所给的线段图说出它们的数量关系吗
生:红花是白花的50%(或);白花是红花的2倍;白花比红花多100%;红花和白花的朵数比是1∶2;红花是红白花总数的;师:可见同一个数量关系可以用不同方式来表达。
师:你能将下面的数量关系换个说法吗
一桶油,第一次吃去它的20%,比第二次吃的少2千克…
生:一桶油,第一次吃去它的20%,第二次吃了这桶油的20%再加2千克…
一桶油,第一次和第二次共吃去这桶油的40%还多2千克…
线段图表示的数量关系可以用不同的方式表述出来,这不仅给学生思维发散性的培养提供了机会,更重要的是这种运用不同类型知识表示不同数量关系行为的实质,是学生运用不同方式来表征同一个对象。
不同的表征方式对问题的解决具有不同的影响作用,可能某种表征方式比其他方式更有效,因为不同表征能激活长时记忆中的不同事实和程序。
从问题决的角度看,重述数量关系不仅有理解题意的作用,而且这种做法的本身就是在进行解题方案的设计。
g·波利亚认为,改变已知数据或未知量,以及将两者同时改变,从而使新的已知数据和未知量彼此更加接近的做法就是在设计解题方案。
百分数表示的是一个数占另一个数的百分之几,用它表示数量关系与倍数、比或分数(一个数占另一个数的几分之几)表示数量关系形异而实同,它们之间可以进行等价变换。
这种等价的变换,使问题得到重新组织,从而激活某个适当的解题知识块,如倍数知识块、比的知识块和分数知识块等,有助于学生接近或找到解题的路径。
其实,小学数学解题的过程是一个填补已知条件与所求问题之间空隙的过程,而这种填补从一定程度上可以被视为已知条件、所求问题或两者兼而有之的持续的等价变换行为。
二、条件变换—基本解法的训练
教学片段二
师:现在我们在上面的线段图上增加一个数量—20朵,你想将它作为红花的朵数还是白花的朵数?你能求出另一种花的朵数吗?生1:我想将它作为白花的朵数。
生2:我想将它作为红花的朵数。
师:你们会解答吗?师:如果将20朵作为红花和白花一共的朵数可以吗
你能根据它算出红花和白花各是多少朵吗
师:如果将条件“红花是白花的50%”换成“红花比白花少50%”,你们还会解答吗?生:…
常见的百分数问题依据解法有几种基本形式,如a×B%、a÷B%、a×(1±B%)等。
学生对这几种基本形式的理解和掌握是学生解答较复杂问题的基础,其理解的程度和运用的熟练性直接影响着较复杂问题解决的效率。
通过条件变化的方式将百分数问题几种基本形式进行比较,有助于学生系统、全面地理解和掌握这几种题型的数量关系及其解法。
对于前面所论的等价变换而言,其最终归宿就在于解题者已经掌握的基本问题及其解法。
三、画线段图—数量关系的直观化
教学片段三
问题情境:
一桶油,第一次吃去它的
20%,是第二次吃的50%。
师:你能用线段图表示上面的数量关系吗
学生尝试画图,然后师生交流。
师:你为什么这样画?生:我是将上面的话换了一种说法。
“第一次吃的是第二次的50%”可以说成“第二次吃的是第一次的2倍”,这样就好画了。
师:是啊!这样我们很容易地从图上看出第二次吃了一桶油的40%。
师:现在将条件中的“是第二次吃的50%”换成“比第二次吃的50%少2千克”,你还能画出线段图吗?学生尝试画图,然后师生交流。
师:在这里,我们可以将“比第二次吃的50%少2千克”这个条件等价变换为“第一次吃的加上2千克是第二次吃的一半”,即“第二次吃的=(一桶油×20%2千克)×2”。
“画一张图”,这是许多解题高手常用的解题策略。
图形较之于文字可以直观形象地呈现数量关系,使许多隐藏在文字背后的数量关系显现于解题者的眼前,从而使解题者易于找到解题的突破口。
根据皮亚杰的发生认识论原理,小学生的认知主要处于具体运演阶段(2~7岁)。
其特点是外部的行为活动逐步转化为内部的心理运演,即是在心理上进行内部的组合、对应、分类等思维活动,而这在很大程度上离不开直观的支撑,脱离不了对图形表象的依赖。
因此,画图对小学的解题来说尤为重要。
从小学生数学学习来看,解决某些具体的问题不是最主要的目的,学会解题才是最重要的。
秉持这种“学解”的教学观点,教会学生通过画线段图直观显示数量关系的方法是一项重要而必须完成的任务。
画图是解题过程中的理解题意阶段,其实质是对问题进行形象表征,从某种角度上说,它也是一种等价变换—将题目的条件和问题及其相互关系等价变换为一种直观的状态。
在计算成数,税率,和利率等数学题时要注意什么
任务客网站可以赚钱,
折扣率是什么,怎么算
折扣率就是(原价-现价)÷原价x100%,商业折扣是为了长期与购货商保持一种长期合作关系而付出的代价,折扣一般多用于价格,以原价格为基础,扣除按照折扣率计算的折扣额后,得到新的价格。
一般会以此价格作为成交价格。
一家商场的服装专柜正在搞“满200元返100元”的活动,销售人员表示,“我们现在等于搞五折优惠活动,特别划算”。
但事实真的如此吗
所有的服装都是以“8”“9”结尾,很难正好凑够200元或者200元的整数倍。
为了算清优惠幅度,套用这个计算公式,其中,在“满200元返100元”的活动前提下,X代表消费金额,而公式中的n和a需要根据活动数额带入计算。
如果在这个活动里,消费者只买一件399元的衣服,套用该公式可算出消费者享受到7.5折。
扩展资料:
商业折扣是为了长期与购货商保持一种长期合作关系而付出的代价,在原购买价格上给予购货商的折让,在计算价格时。
折让后的价格=原价格*(1-折扣率)这里注意的是在计算并确认折让后价格才按新的价格计算增值税额。
并且在销售方记账的时候,其入账的金额是为折让后的金额。
折扣率为1-1.5表示,折扣为1%-1.5%
而现金折扣是销售企业为是鼓励购货商早日付款而给予的折让。
一般来说,购货商为了少付货款,一般都会提前支付货款。
如果现金折扣表示为:2/10 1/20 n/30
刚表示为如果在10天内付款,则可以有2%的现金折扣,
如果在20天之内付款,则有1%的现金折扣
如果在30天之内付款,则没有现金折扣。
《成数》教学反思8
成数在农业收成、平时的口头语中经常听到,只是成数到底是什么意思,学生不是很理解。因此本节课的教学注重紧密联系学生的生活实际,如导入创设了农业收成的情镜,教学过程中利用学生在日常生活中的实例,使学生体会到数学就在我们身边,学好数学,能解决大量实际问题,从而提高了学生学习百分数应用题的兴趣。
导入环节不仅引发了新知的学习,更激起了学生求知的欲望,学生感到,看似简单的对话,却蕴涵了几个数学问题,为研究成数、折扣应用题作了铺垫。学习成数概念时采用直接告诉,学生仿照现成的成数的意思,说一说所给成数的意思,再强化练习,使学生明白它与十分数与百分数之间的关系,这样的教学符合学情,也达到了水到渠成的效果。
注重培养学生的问题意识和解决问题的能力,刚开始,给学生对话,学生听了对话后,并没有直接告诉学生对话中有数学问题,而是让学生找一找,让他们自己去发现问题,发现新知。当解决了“某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?”根据对话中“某市20xx年出境旅游人数为15000人次,比上一年增长两成”,让学生自己提数学问题,自己去解决。在解决问题时,又让学生找到突破口,只需把成数转化成百分数解决就行了,沟通了知识之间的联系,加深了学生对百分数应用题的理解和掌握,培养了学生分析能力。另外,善于培养学生求异思维的能力,不拘泥于一种解法,有不同解法的,总是舍得花时间让学生讲不同的思路,使学生能真正地理解、掌握。
本课的练习有层次,形式新颖,很好地激发了学生的练习兴趣。在以后的几节课中,我将采用这种方法,教学本单元的知识,以求达到知识的融会贯通。
第四篇:成数的教学反思
成数的教学反思
成数的教学反思1
这节课是在学生已经有百分数知识的基础上进行的,教材编排同时突出两个主要的知识点,第一个知识点是,认识生活中的百分率;第二个知识点是把分数,小数化成百分数。但是两个知识点的产生是相辅相成的,两者之间是即有联系,又有区别,同时教材在编排凸显这部分知识的同时,是要充分利用情境来体现知识产生的价值的。20xx年11月26日,郭波老师展示的这节课,有许多值得我借鉴的地方。结合郭老师的这节课,我也把自己的教学思路进行对比性的反思。
一、处理教材的灵活性。
数学情境问题与实际生活的紧密联系是我们一直注重的,也是不可或缺的环节,情境不仅仅是代表一小段的故事情节,更是蕴含数学知识价值的场景,运用得当,情节就有它出现的价值,运用不得当,情节只会是多余的片段。郭老师所运用的是班里学生的投球情况,这是学生身边的人物,也是学生生活中常做的事情,所以这一个情节一出现,学生的学习兴趣就非常高,对探究知识的欲望也就很浓。我在设计这一环节时,也对教材做了一个小小的处理,这一处理的目的是为了更能体现知识产生的价值,尽可能体现知识是价值,学生的学习才能更有意义。
二、尊重学生的独立思维。
1、在处理学生经历知识形成这一过程时,郭老师非常重视学生的个体思维,对学生的思考结果做到充分的肯定,并能善于利用,把不完善的思考结果进行再度引导并进行串联,使原本凌乱的知识点得到整合。教师的引导语言是非常有智慧的,她可以做到不打断学生,不重复学生的语言,不盲目给学生提示,关键的知识点也是学生自己重复。在这点上,我需要修炼的地方还很多。
2、在把分数、小数化成百分数这个过程中,她给学生充分的时间进行独立思考,能准确把握学生在转化过程中出现的不同情况。但是,我个人的想法是,这个环节是个重点,应该要更细化一些,比如请几个学生进行板演,并对比方法,再让学生讲解自己的思考过程,学生讲解别人的思考过程也许不会太完善,但是如果是讲解自己的思考过程是会很完整的,毕竟说的是自己心里的想法。所以我在设计这个过程时,不仅让学生板演分析自己的思路,还注重全班学生的整体掌握情况,再优化方法后,把完整的解题过程写下来,毕竟“好记性不如烂笔头”嘛。
3、在生活中的百分率这个知识点的巩固时,郭老师给出了很多有价值的例子。我在设计这个环节时,也借鉴了她的一些例子,但是在处理的方法上,我把难度降低了很多,我个人的想法是,知道某个事件的百分率,并不一定知道是谁占谁的百分之几,只有明确这样的关系,才可以为后面的应用题做铺垫。我们都知道数学知识的连贯非常强,每一个知识点的产生都不是孤立的,也不可能孤立存在。所以在这点上,我对百分率两者之间的关系更注重,也就是更注重一个数是另一个的百分之几的问题。包括比100%大的知识点也在这节课上做延伸,其目的不仅是为后面的学习做铺垫,更是让学生感受知识在生活中的广泛性。
三、知识反馈的多样性。
非常喜欢郭老师最后的环节,设计了三个思考问题来进行知识的反馈。反馈自我,反馈他人,反馈知识。这种反馈是对课堂学习情况的尊重,也是给自己的反思学习状态的过程。我们最常常看到的反馈情况是学到了什么?关注的点是片面的,也就是只对知识敢兴趣,不对态度敢兴趣。其实课堂上,态度比知识还要重要得多,没有好的态度,哪里有知识的收获。这点上我的设计还是没有办法突破郭老师设计。
成数的教学反思2
这一节课,是100以内数的认识,是在20以内数的认识基础上进行教学的。本节课的教学目标是使学生能正确地数出数量在100以内的物体的个数,能正确数出100以内的数,知道这些数是由几个十和几个一组成的;能根据提供的素材,估计数量在100以内的物体的个数;通过对100以内数的认识,进一步培养学生的数感。教学重点是能正确数出数量在100以内物体的个数;知道这些数是由几个十和几个一组成.教学难点是数出几十九后面的一个数。在教学过程中根据教材重难点和新课标理念,主要有以下几个特点,并收到了较好的教学效果。
1、在做中学,通过充分动手操作,让学生体会数是数出来的。
2、师生合作,教和学渗透在一起,基于对学生课前的了解,上本节课之前,绝大部分学生都有口头数数的能力,但都是唱数,对准确地数出物体的个数还是有困难,学生对100以内数的数感还较低。因此,我采用了师生合作的方式来帮组学生对一百以内的数的认识。
3、动手操作,让学生自己动手数准备好的小棒,从而在数的过程中突破几十九后面一个是多少。还让学生明白了数数可以一个一个的数,也可以一十一十地数。一十一十地数会让我们的数数速度加快。
4、自主实践,教学完学生数数之后,让学生数百羊图,先一个一个的数,再一十一十的数。比较两种数数方法的优劣,也加强了学生的数数能力,所学知识得到了应用。
5、尊重学生的认知发展规律,先由实物到抽象的教学数的组成。
本节课当然也存在很多的不足之处:首先情景图没有充分发挥它的作用,它应该有激趣、铺垫、设疑三个方面的作用,我只用了它其中的一个作用。然后教学过程中还应让学生有更多的时间和空间去动手操作及思考。还有教学过程中给学生提要求或任务时应说清楚,让每个学生都知道该怎么做,这点做得不够。这节课的练习设计不是非常好。等等。
总之,要上好一节课,不仅要专研教材,备好课,还应该多听取其他老师的意见。做到课堂中多关注学生。
成数的教学反思3
1、“成数”与“折数”这两个概念对于学生来说并不陌生,成数在农业收成、平时的口头语中经常听到,折数在商场购物常常见到,只是对于表示多少学生不是很理解。因此本节课的教学注重紧密联系学生的生活实际,如导入创设了生活中粮食专业户李丰收和农业技术员老王的对话情境,教学过程中利用学生在日常生活中触手可及的商场购物打折的信息等,通过大量生活中的实例,使学生体会到数学就在我们身边,学好数学,能解决大量实际问题,从而提高了学生学习百分数应用题的兴趣。
2、导入环节不仅引发了新知的学习,更激起了学生求知的欲望,学生感到,看似简单的对话,却蕴涵了几个数学问题,为研究成数、折数应用题作了铺垫。
3、学习成数概念时采用直接告诉,学生仿照现成的成数的意思,说一说所给成数的意思,再强化练习,使学生明白它与十分数与百分数之间的关系,而学习折数概念时,通过学生猜一猜一枝花打五折、八折、三折、一折后的价格,然后讨论得出折数的意义,并得到求商品内现价的方法,因为学生对于商品打折平时已经有所了解,这样的教学符合学情,也达到了水到渠成的效果。
4、注重培养学生的问题意识和解决问题的能力,课始,学生听了对话后,并没有直接告诉学生对话中有数学问题,也没有直接告诉学生对话中有今天要学习的知识,而是让学生找一找,让他们自己去发现问题,发现新知。当解决了去年收稻谷多少吨后,根据对话中“今年又比去年增产了半成”,让学生自己提数学问题,自己去解决。在解决问题时,又让学生找到突破口,只需把成数与折数转化成百分数解决就行了,沟通了知识之间的联系,加深了学生对百分数应用题的理解和掌握,培养了学生分析能力。另外,善于培养学生求异思维的能力,不拘泥于一种解法,有不同解法的,总是舍得花时间让学生讲不同的思路,使学生能真正地理解、掌握。
5、因为本课的内容较多,容量较大,考虑到学生的计算不是本课的重点,因此计算采用计算器,这样使得教学内容能顺利完成。课上学生整体上思维敏捷,总是表现出较浓的兴趣,课堂反应与接受较快。他们能积极地讨论,主动地探索,勇敢地尝试,课堂气氛活跃,学生学得起劲,学得成功。
6、本课的练习有层次,形式新颖,很好地激发了学生的练习兴趣,如算一算小明和小刚同样的钢笔它们的原价各是多少,帮老师算一算手机的原价,算出自己喜欢的肯德基优惠后打了几折,帮张老师选择合适的商场购买电脑,最后用今天所学的知识策划一个广告。
题目结合学生的生活实际,学生很乐意去解决,教学效果好。可惜的是,由于内容多,40分钟的时间还是不够,拖了几分钟课,如果时间有余的话,学生策划广告能在课上完成,那教学效果就更佳了。
成数的教学反思4
成数在农业收成、平时的口头语中经常听到,只是成数到底是什么意思,学生不是很理解。因此本节课的教学注重紧密联系学生的生活实际,如导入创设了农业收成的情镜,教学过程中利用学生在日常生活中的实例,使学生体会到数学就在我们身边,学好数学,能解决大量实际问题,从而提高了学生学习百分数应用题的兴趣。
导入环节不仅引发了新知的学习,更激起了学生求知的欲望,学生感到,看似简单的对话,却蕴涵了几个数学问题,为研究成数、折扣应用题作了铺垫。学习成数概念时采用直接告诉,学生仿照现成的成数的意思,说一说所给成数的意思,再强化练习,使学生明白它与十分数与百分数之间的关系,这样的教学符合学情,也达到了水到渠成的效果。
注重培养学生的问题意识和解决问题的能力,刚开始,给学生对话,学生听了对话后,并没有直接告诉学生对话中有数学问题,而是让学生找一找,让他们自己去发现问题,发现新知。当解决了“某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?”根据对话中“某市20xx年出境旅游人数为15000人次,比上一年增长两成”,让学生自己提数学问题,自己去解决。在解决问题时,又让学生找到突破口,只需把成数转化成百分数解决就行了,沟通了知识之间的联系,加深了学生对百分数应用题的理解和掌握,培养了学生分析能力。另外,善于培养学生求异思维的能力,不拘泥于一种解法,有不同解法的,总是舍得花时间让学生讲不同的思路,使学生能真正地理解、掌握。
本课的练习有层次,形式新颖,很好地激发了学生的练习兴趣。在以后的几节课中,我将采用这种方法,教学本单元的知识,以求达到知识的融会贯通。
成数的教学反思5
成数在农业收成、平时的口头语中经常听到,折数在商场购物常常见到,只是对于表示多少学生不是很理解。因此本节课的教学注重紧密联系学生的生活实际,如导入创设了生活中粮食专业户李丰收和农业技术员老王的对话情境,教学过程中利用学生在日常的实例,使学生体会到数学就在我们身边,学好数学,能解决大量实际问题,从而提高了学生学习百分数应用题的兴趣。
导入环节不仅引发了新知的学习,更激起了学生求知的欲望,学生感到,看似简单的对话,却蕴涵了几个数学问题,为研究成数、折数应用题作了铺垫。学习成数概念时采用直接告诉,学生仿照现成的成数的意思,说一说所给成数的意思,再强化练习,使学生明白它与十分数与百分数之间的关系,而学习折数概念时,通过学生猜一猜一枝花打五折、八折、三折、一折后的价格,然后讨论得出折数的意义,并得到求商品内现价的方法,因为学生对于商品打折平时已经有所了解,这样的教学符合学情,也达到了水到渠成的效果。
注重培养学生的问题意识和解决问题的能力,课始,学生听了对话后,并没有直接告诉学生对话中有数学问题,也没有直接告诉学生对话中有今天要学习的知识,而是让学生找一找,让他们自己去发现问题,发现新知。当解决了去年收稻谷多少吨后,根据对话中“今年又比去年增产了半成”,让学生自己提数学问题,自己去解决。在解决问题时,又让学生找到突破口,只需把成数与折数转化成百分数解决就行了,沟通了知识之间的联系,加深了学生对百分数应用题的理解和掌握,培养了学生分析能力。另外,善于培养学生求异求异思维的能力,不拘泥于一种解法,有不同解法的,总是舍得花时间让学生讲不同的思路,使学生能真正地理解、掌握。
本课的练习有层次,形式新颖,很好地激发了学生的练习兴趣。
成数的教学反思6
本节课教学的“成数与折扣”,大多数同学在日常生活中通过新闻媒体、交往、购物等多少都有所接触、了解。但学生的这种认识还只是凭借生活经验产生的感性认识。如打折,学生都能想到是便宜了,比原价少了,但问其所以然,能解释清楚的并不多。所以对成数、折扣知识概念学生并未真正理解。另外,学生很少会将这种生活中的商业折扣、农业成数与数学、与课本上的百分数数学知识相联系,欠缺知识间沟通互化的意识。
所以,我在本节课的教学中注重紧密联系学生的生活实际,利用学生在日常生活中触手可及的商场购物、新闻消息等,创设教学氛围,让学生既体会到数学源于生活,又认识到所学数学可应用于生活。同时,教师引导学生大胆地猜测,积极地讨论,主动地探索,勇敢地尝试,将教学活动建立在学生已有的知识经验基础之上,所以课堂气氛活跃,学生学得起劲,学得主动。但在成数、折扣应用题的教学上,个别学困生还是有理解较慢的情况。由此看来,应在讲授新课前,适当增加对百分数应用题的复习。
成数的教学反思7
折扣是指;成数是指()。
税率是指();利息=()。
折扣是指商业折扣和现金折扣成数是指一个数是另一个数的十分之几的数税率是指对征税对象的征收比例或征收额度
利息=本金x年利率x存入年限
折扣和成数与百分数的关系
举例来说,一件上衣原售价100元。
库存太多,流动资金无法周转,决定:
七折出售
这就是说:
100乘以0.7,70块钱就卖出去
0.7就是《七折》,也就是原价的百分之七十。
店家扣掉了《三成》。
看明白了吧
百分数,百分率,百分比和成数,折扣有什么区别和联系
区别:
(一)含义方面:
1、百分数也叫百分率和百分比。
把两个数量的比值写成分母是100的分数。
如某学校去年1000名学生中有150名加入了共青团,入团人数与学生总数的比是,百分比就是,记作15%。
2、折扣是买卖货物是,照标价减去一个数目,减到原标价的十分之几叫做几折或几扣。
3、成数指不带零头的整数,如五十、二百、三千等;一数为另一数的几成,泛指比率。
(二)生活应用方面:
1、百分数用于利息问题、折扣问题、盈利率问题。
2、折扣一般用于商品打折,可以是整数的八折,也可以是7.8折等。
3、成数农业收成经常用成数表示,也适用于应用于表达各行各业的发展情况。
不仅仅是用于商品打折。
联系:
1、折扣和百分比、百分数、百分率:比如商场打八折为折扣,可换算成百分数即百分之八十。
2、成数和百分比、百分数、百分率:比如我国进口车总量增加三成为成数,可换算百分数为百分之三十。
3、折扣和成数:打八折折扣即是八成成数。
扩展资料成数,表示一个数是另一个数的百分之几的数,相当于百分数。
例:一成就是10%,三成五就是35%,八成五就是85%。
方法:分数X10=成数成数/10=小数(成数除以10等于小数)成数X10=百分数折扣,指买卖货物时按原价的若干成计价,如按九成,叫九折或九扣。
如:以汇票的折扣动用银行的基金。
计算方法:单位货物折扣额=原价(或含折扣价)×折扣率。
卖方实际净收入=原价-单位货物折扣额。
百分数,表示一个数是另一个数的百分之几,也叫百分率或百分比。
百分数通常不会写成分数的形式,而采用符号“%”(百分号)来表示。
别名:百分率、百分数。
参考资料:百度百科-成数
百度百科-折扣
百度百科-百分比
税率问题也可以转化成百分数问题来解决
一、课题背景、意义及介绍
1、背景说明(怎么会想到本课题的):
“百分数”是六年级较为重要的教学内容,用“百分数解决问题”在日常生活中有着广泛的应用,如求各种百分率、成数与折扣、纳税等等,研究性学习既扩大了学生所学的知识范围,又能加深对百分数的认识,同时也渗透了概率统计思想。
正是由于这方面思考,促使我运用“研究性学习”来开展这部分的思考和教学,希望通过这一实践来贯彻探究性学习理念。
2、课题的意义(为什么要进行本课题的研究):
用“百分数解决问题”的实用性比较强,这一内容具有研究性和实践性,使学生的学习更具开放性,在学习中更能激发学生的积极性和探究欲望,培养学生综合能力。
教师更能通过实施研究性学习来贯彻新课标的理念,丰富我们的课堂教学。
3、课题介绍
用“百分数解决问题”教学通过学生亲身经历研究达标率、发芽率、增长率、税率、利率等问题,学习用百分数解决问题的方法,培养学生分析问题,解决问题和综合应用数学知识的能力。
二、研究性学习的教学目的和方法
知识目标:
1、让学生理解生活中的.百分率的含义,掌握求达标率、发芽率、增长率、税率、利率等百分率的方法。
2、能用百分率解决生活中一些简单的实际问题,知道纳税人和负税人的区别联系,通过调查与研究,认识储蓄的意义和了解主要的存款方式,掌握利息的计算方法,会正确地计算存款利息。
构建用百分数计算的数学模型。
技能目标:
1、让学生在自主探索、合作交流的过程中理解百分率的意义,探求百分率的计算方法,提高学生应用数学知识解决问题的能力。
2、培养学生的探究意识、策略意识和运用数学知识解决实际问题的能力。
情感目标:
1、让学生在具体的情况中感受百分数来源于实际,培养学生用数学的眼光观察生活的意识,在应用中体验数学的价值。
培养学生初步的应用意识和实践能力。
2、培养学生积极探索的科学精神,使其体会到在合作中从事科学研究的魅力。
三、参与者特征分析
起点能力分析:
学生以前学过求一个数是另一个数的几分之几的分数应用题,引导学生发现百分数应用题与分数应用题分析过程一致的地方,即明确以谁作单位“1”,确定了谁和谁比,根据所学知识建立数学模型,找到计算方法,懂得计算结果用百分数表示。
认知结构分析:
学生原有的对用分数解决问题与当前所学用百分数解决问题的分析方法是相同的,具有可利用性、可分辨性的特点,有利于学生更好地学习新知。
学习态度分析:
在活动的安排上有调查研究、小组合作、动手操作(画图表)等学生所喜欢的学习方式,能增进学生的学校兴趣。
学习动机分析:
学习者是六年级的学生,具有一定的研究性学习经历,善于思考和同学交流,语言表达能力较强,对研究问题有着浓厚的兴趣。
四、研究过程
数学问题解决是在数学概念、数学命题学习的基础上,应用各种数学知识去解决数学问题的一种学习方式。
它不仅可以巩固学生所学的数学知识,而且能够帮助学生更加深入地领悟数学的文化意蕴,促进数学素养的提高。
一、等价变换—数量关系的不同表述
教学片段一
师:同学们,你们能根据所给的线段图说出它们的数量关系吗
生:红花是白花的50%(或);白花是红花的2倍;白花比红花多100%;红花和白花的朵数比是1∶2;红花是红白花总数的;师:可见同一个数量关系可以用不同方式来表达。
师:你能将下面的数量关系换个说法吗
一桶油,第一次吃去它的20%,比第二次吃的少2千克…
生:一桶油,第一次吃去它的20%,第二次吃了这桶油的20%再加2千克…
一桶油,第一次和第二次共吃去这桶油的40%还多2千克…
线段图表示的数量关系可以用不同的方式表述出来,这不仅给学生思维发散性的培养提供了机会,更重要的是这种运用不同类型知识表示不同数量关系行为的实质,是学生运用不同方式来表征同一个对象。
不同的表征方式对问题的解决具有不同的影响作用,可能某种表征方式比其他方式更有效,因为不同表征能激活长时记忆中的不同事实和程序。
从问题决的角度看,重述数量关系不仅有理解题意的作用,而且这种做法的本身就是在进行解题方案的设计。
g·波利亚认为,改变已知数据或未知量,以及将两者同时改变,从而使新的已知数据和未知量彼此更加接近的做法就是在设计解题方案。
百分数表示的是一个数占另一个数的百分之几,用它表示数量关系与倍数、比或分数(一个数占另一个数的几分之几)表示数量关系形异而实同,它们之间可以进行等价变换。
这种等价的变换,使问题得到重新组织,从而激活某个适当的解题知识块,如倍数知识块、比的知识块和分数知识块等,有助于学生接近或找到解题的路径。
其实,小学数学解题的过程是一个填补已知条件与所求问题之间空隙的过程,而这种填补从一定程度上可以被视为已知条件、所求问题或两者兼而有之的持续的等价变换行为。
二、条件变换—基本解法的训练
教学片段二
师:现在我们在上面的线段图上增加一个数量—20朵,你想将它作为红花的朵数还是白花的朵数?你能求出另一种花的朵数吗?生1:我想将它作为白花的朵数。
生2:我想将它作为红花的朵数。
师:你们会解答吗?师:如果将20朵作为红花和白花一共的朵数可以吗
你能根据它算出红花和白花各是多少朵吗
师:如果将条件“红花是白花的50%”换成“红花比白花少50%”,你们还会解答吗?生:…
常见的百分数问题依据解法有几种基本形式,如a×B%、a÷B%、a×(1±B%)等。
学生对这几种基本形式的理解和掌握是学生解答较复杂问题的基础,其理解的程度和运用的熟练性直接影响着较复杂问题解决的效率。
通过条件变化的方式将百分数问题几种基本形式进行比较,有助于学生系统、全面地理解和掌握这几种题型的数量关系及其解法。
对于前面所论的等价变换而言,其最终归宿就在于解题者已经掌握的基本问题及其解法。
三、画线段图—数量关系的直观化
教学片段三
问题情境:
一桶油,第一次吃去它的
20%,是第二次吃的50%。
师:你能用线段图表示上面的数量关系吗
学生尝试画图,然后师生交流。
师:你为什么这样画?生:我是将上面的话换了一种说法。
“第一次吃的是第二次的50%”可以说成“第二次吃的是第一次的2倍”,这样就好画了。
师:是啊!这样我们很容易地从图上看出第二次吃了一桶油的40%。
师:现在将条件中的“是第二次吃的50%”换成“比第二次吃的50%少2千克”,你还能画出线段图吗?学生尝试画图,然后师生交流。
师:在这里,我们可以将“比第二次吃的50%少2千克”这个条件等价变换为“第一次吃的加上2千克是第二次吃的一半”,即“第二次吃的=(一桶油×20%2千克)×2”。
“画一张图”,这是许多解题高手常用的解题策略。
图形较之于文字可以直观形象地呈现数量关系,使许多隐藏在文字背后的数量关系显现于解题者的眼前,从而使解题者易于找到解题的突破口。
根据皮亚杰的发生认识论原理,小学生的认知主要处于具体运演阶段(2~7岁)。
其特点是外部的行为活动逐步转化为内部的心理运演,即是在心理上进行内部的组合、对应、分类等思维活动,而这在很大程度上离不开直观的支撑,脱离不了对图形表象的依赖。
因此,画图对小学的解题来说尤为重要。
从小学生数学学习来看,解决某些具体的问题不是最主要的目的,学会解题才是最重要的。
秉持这种“学解”的教学观点,教会学生通过画线段图直观显示数量关系的方法是一项重要而必须完成的任务。
画图是解题过程中的理解题意阶段,其实质是对问题进行形象表征,从某种角度上说,它也是一种等价变换—将题目的条件和问题及其相互关系等价变换为一种直观的状态。
在计算成数,税率,和利率等数学题时要注意什么
任务客网站可以赚钱,
折扣率是什么,怎么算
折扣率就是(原价-现价)÷原价x100%,商业折扣是为了长期与购货商保持一种长期合作关系而付出的代价,折扣一般多用于价格,以原价格为基础,扣除按照折扣率计算的折扣额后,得到新的价格。
一般会以此价格作为成交价格。
一家商场的服装专柜正在搞“满200元返100元”的活动,销售人员表示,“我们现在等于搞五折优惠活动,特别划算”。
但事实真的如此吗
所有的服装都是以“8”“9”结尾,很难正好凑够200元或者200元的整数倍。
为了算清优惠幅度,套用这个计算公式,其中,在“满200元返100元”的活动前提下,X代表消费金额,而公式中的n和a需要根据活动数额带入计算。
如果在这个活动里,消费者只买一件399元的衣服,套用该公式可算出消费者享受到7.5折。
扩展资料:
商业折扣是为了长期与购货商保持一种长期合作关系而付出的代价,在原购买价格上给予购货商的折让,在计算价格时。
折让后的价格=原价格*(1-折扣率)这里注意的是在计算并确认折让后价格才按新的价格计算增值税额。
并且在销售方记账的时候,其入账的金额是为折让后的金额。
折扣率为1-1.5表示,折扣为1%-1.5%
而现金折扣是销售企业为是鼓励购货商早日付款而给予的折让。
一般来说,购货商为了少付货款,一般都会提前支付货款。
如果现金折扣表示为:2/10 1/20 n/30
刚表示为如果在10天内付款,则可以有2%的现金折扣,
如果在20天之内付款,则有1%的现金折扣
如果在30天之内付款,则没有现金折扣。
成数的教学反思8
相比于“折扣”,“成数”对学生来说是个陌生的词语。但有了“折扣”的铺垫,学生理解起“成数”也不算太难。教学时,我多训练了几个将“成数”化成百分数的练习,学生很快就理解了“成数”的具体含义。试一试的问题和两个例题类型不一样,学生解答中出现了或多或少的问题,有的是不注意认真审题,有的是照猫画虎当然结果是不对的。出了问题是正常的,正好培养他们认真审题的习惯,借此机会进行一番思想教育。
本节课由旧知引入知,让学生通过复习从而很自然过渡到新知,自己探究百分数和小数的互化。但在复习的创设过程中时间稍长,如果能再压缩一点效果会更好!在百分数和小数的互化教学中教师加以引导,放手让学生自己去探究,效果好。练习的设计形式多样,从不同角度巩固了百分数和小数的互化,它是本节课的一个亮点。同时又遵循了由易到难,由直观到抽象的原则。在选择练习中潜意识渗透了百分数、小数、分数比大小,通过比较,学生能加深它们之间的互化。在最后开放题的练习中,让学生切身体会百分数和小数互化在数学中的应用,同时又进一步了巩固了百分数和小数的互化,使学生的新知重新跃上了一个新台阶。本节课采用了合作学习法,学生在小组里做到了互动学习、互动思考、互动操作、互动总结。在整个学习过程中,每个学生在小组里大胆地开放了自己的思维,互相取长补短,拓宽了思路,学得扎实灵活,达成了教学目标,完成了教学任务。
第五篇:《成数》教学设计
《成数》教学设计
《成数》教学设计1
教学目的
1.明确成数的含义。
2.能熟练的把成数写成分数、百分数。
3.正确解答有关成数的实际问题。
教学重点
1.成数的理解。
2.成数的计算。
教学难点
1.成数的理解。
2.成数的计算。
教学准备:班班通课件
教学过程:
【情景导入】
农业收成,经常用“成数”来表示。例如,报纸上写道:“今年我省油菜籽比去年增产二成”……
教师:同学们有留意到类似的新闻报道吗?(学生汇报相关报导)
【新课讲授】
1.介绍成数的含义,会把成数改写成分数,百分数。
(成数:表示一个数是另一个数的十分之几,通称“几成”)
(1)刚才大家都说了很多有成数的发展变化情况,那么这些“成数”是什么意思呢?比如说,增产“二成”,你怎么理解?
(学生讨论并回答)
教师板书:
成数分数百分数
二成十分之二20%
(2)试说说以下成数表示什么?
①出口汽车总量比去年增加三成。这里的.“三成”表示什么?
②北京出游人数比去年增加两成。这里的两成表示什么?
引导学生讨论并回答。
2.运用成数的含义解决实际问题。
(1)出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
(2)分析题目,理解题意:
①今年比去年节电二成五怎么理解?是以哪个量为单位“1”?
②找出数量关系式。
先让学生找出单位“1”,然后再找出数量关系式:
今年的用电量=去年的用电量×(1-25%)
③学生独立根据关系式,列式解答。
④全班交流。
方法一:350×(1-25%)=350×75%=350×0.75=262.5(万千瓦时)
方法二:350×(1-25%)=350×75%=350×75/100=262.5(万千瓦时)
【课堂作业】
完成教材第9页“做一做”。
答案:15000÷(1+20%)=15000÷1.2=12500(人)
【课堂小结】
这节课我们一起学习了有关成数的知识,你们对成数的知识有哪些了解?
【课后作业】
完成练习册中本课时的练习。
教学反思:“成数”已经广泛应用于表示各行各业的发展变化情况。教学本课时要多联系实际讲解,列关系式时要多强调哪个量是单位“1”,加强学生的逻辑训练。
《成数》教学设计2
过程与方法
结合具体事例,经历认识“成数”、解答有关“成数”实际问题的过程。
知识与技能
了解“成数”的含义,会解答有关“成数”的实际问题。
教学过程
一、问题情境
1.教师谈话
上节课,我们研究解决了商场商品打折的问题,今天我们继续研究商品价格问题。
2.复习引入
双丰农场去年水稻播种面积是504公顷,今年计划比去年增加15%。今年计划播种水稻多少公顷?
二、自学与研讨
1、出示课本情境图。
观察这幅图,图中的售货员和经理正在讨论电视机的售价问题。他们在说什么?你了解到哪些数学信息? 2.加二成大家不太熟悉,猜一猜可能是什么意思。学生说出教师表扬,说不出,教师介绍。
师:“几成”是人们生活中的数学语言,“一成”表示10%,二成表示20%,三成表示30%。题中加二成就是按进价提高20%后作为零售价。
3、现在,大家明白了加“二成”的含义,就帮助售货员算一算电视机现在的`售价吧。
学生自主计算,教师个别指导。
4.交流学生的计算思路和方法,重点说一说是怎样想的。重点讨论1800×(1+20%)的方法。
学生说,教师板书。
5、成数在生活中应用非常广泛,请同学们看课本第70页下面的问题。认真读题,说一说从题中了解到哪些信息。谁知道“减产一成五”是什么意思?现在,请同学们帮助老大爷算一算今年大约产棉花多少万千克。
学生自主计算,教师个别指导。然后交流。
6、总结整理
同学们,今天解决了生活中关于成数问题。成数问题的解题思路和方法与前面学习的百分数问题是一样的,所不同的是题中的百分数用成数表示。分析刚才解决的两个问题,谁能说一说有什么不同的地方?(1)小组讨论(2)全班交流(3)小结
解决成数和百分数问题,关键是要理解题意,确定谁是单位“1”的量,看单位“1”的量是已知的,还是未知的。然后,找出所求问题和已知数量、百分数之间的关系,再选择是直接列算式还是用方程解答。
三、尝试练习
1、出示71页试一试,认真读题,说一说从题中了解到哪些信息。“降价二成五”表示什么意思,然后自主计算。全班进行交流。
2、全班进行交流。重点说一说找到的等量关系是什么,是怎样解答的。
四、课堂练习
1.练一练第1题,让学生独立完成,交流时,说一说是怎样想的。
2、练一练第2题,读题,使学生明白“减少三成就是8月份比7月份少销售30﹪。鼓励学生列方程解答。
3.练—练第3题,教师进行简单提示,让学生自己解答,然后全班交流。
五、总结
这节课你有什么收获?
《成数》教学设计3
教学目标:
1、理解“成数”的意义,拓宽学生的视野。
2、建立“成数”问题与百分数问题的联系,体会“转化”、“迁移”思想。
3、能解决有关“成数”的实际问题,培养自主探究、灵活解题的能力。
教学重点:
理解“成数”的意义,并能进行应用。
教学难点:
在理解的基础上,能与百分数建立联系,正确解决问题。
教学方法:
教师启发、点拨、归纳;学生自主探究,交流合作。
教学课时:
1课时
教学过程:
一、唤醒旧知,顺利导入
师:同学们,今天我和大家共同探讨有关“成数”的问题,你准备好了吗
生:准备好了!
师:那我可要考考大家了,请看大屏幕!
1、读读 、想想、填填(举手回答)(ppt2)
a、30比50少( )%
b 、10比8多( )%
c、六(2)班男生比女生少34%,
意思是说( )是( )的34%, 那么( )是( )的66%呢?
2、读读、填填、说说(举手回答)(ppt3)
a、五折是十分之( ),改写成百分数是( )%
b、三八折是十分之( ),改写成百分数是( )%
c、五折表示:( )是( )的50%
d、三八折表示( )是( )的( )%
师:看来同学们对折数、百分数及其关系已掌握得很好!其实折数是百分数的另一种表现形式,它用于商家促销,商品降价;那么,今天我们所探讨的“成数”也是百分数的有一种表现形式。
二、自主探究,合作交流
师:关于“成数”你想知道些什么?
生1:什么是成数?
生2:成数能做什么?
生3:我们为什么要学成数?有何意义?
生4:成数和我们学过的数有什么联系?
师:好,老师把大家的想法整理如下:(出示学习目标)(ppt4)
师:请同学们带着这些愿望自学课本第九页的1、2、3自然段!看你能发现些什么?(教师巡视指导,学生自学后举手。)
师:个别提问,当学生基本说出后,教师整理归纳。(出示ppt5)并举例进行数的“转化”。
整理归纳:
a、成数:表示两个数之间的倍数关系
它表示一个数是另一个数的十分之几
也就是一个数是另一个数的百分之几十
b、几成 就是十分之几 也就是百分之几十
C、它不仅用于农业收成,还用于各行各业的发展变化情况
师:怎么样?会转换了吗?试一试!(出示ppt6)
课堂检测:
1、三成=十分之( )=( )%=( )填小数
四成六=十分之( )=( )%=( )填小数
七成三=十分之( )=( )%=( )填小数
2、今年玉米产量比去年减产二成 表示:( )比 ( )减少( )%
3、电器商品售价比进价提了二成五 表示: 比()增加了()%,
那么售价是进价的'()%
师:我们认识了“成数”,在实际生活中就能解决关于“成数”的问题了。例如:(出示例2 ppt7)
(请同学们认真读题、找准关键句、分析数量关系、确定算法、列式解答!)
例2、某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少千瓦时?
(学生自主探究,教师启发、点拨;搜集不同素材,指名板演。解答完毕后,同桌交流订正;板演同学说思路,讲方法)
生1:关键句是,今年比去年节电二成五,意思是今年比去年节电25%
把“去年的用电量”看做单位“1”;单位“1”已知,用乘法
先求节省了的电量350×25%,再求今年的用电350-350×25%
生2:关键句是,今年比去年节电二成五,意思是今年比去年节电25%
把“去年的用电量”看做单位“1”;单位“1”已知,用乘法
先求今年用电量所对应的百分率,即今年用电量是去年的百分之几
用单位“1”减去今年比去年节省的百分率(1-25%),然后用单位“1”
乘问题所对应的百分率 即:350×(1-25%)
师:教师带领全体学生肯定上述方法后,规范解题格式,强调:解关于“成数”应用题时,必须先将“成数”转化为百分数(出示ppt8)
课堂小结:
“成数”问题解题思路和方法,同“百分数”问题
是一样的
所不同的是:百分数用成数表示了,成数是百分数的有一种表现形式
因此,只要把“成数”改写为“百分数”,“成数问题”就转化为“百分数问题”了。
三、当堂训练,巩固提高
师:这就是我们今天主要研究的内容,你会了吗?我们当堂检测
基础练习:
一、填一填(出示ppt9,指名回答)6
七成=( )% =( )%=( )= () =( )成
填小数
四成三=( )% 十成=( )% 78%=( )折=( )成( )
二、选一选 (出示ppt10、11,小组交流,代表回答)
1、某市20xx年出境旅游人数为15000人次,比上一年增加了两成,20xx年出境旅游人数是( )人次
a、15000×(1+20%) b、15000÷(1+20%)
c、15000 ×20% d、15000÷ 20%
2、一个果园去年共收苹果156吨,今年比去年减产三成,今年减产( )吨
a、156 ×(1 — 30%) b、156 ÷ 30%
c、156 ÷ (1 — 30%) d、156 × 30%
3、某厂今年生产化肥350万吨,比去年增产一成五,去年生产化肥( )万吨
a、350÷(1—15%) b、350×(1+15%)
c、350÷15% d、350× (1—15%)
e、350×15% f、350÷ (1+15%)
提升练习
一、说一说: (出示出示ppt11同桌讨论,举手回答)
某农业合作社去年盈利二成七
表示:
某屠宰场四月份亏损三成五
表示:
今天八成要下雨
表示: (用可能性作答)
出售的二手车有六成新
表示: (用现新和全新作答)
二、比一比:成数与折数的异同(出示出示ppt12自主完成学习卡,小组交流,全班订正)
类型名称 相同点 不同点
写法 意义 表示的百分数类型 列式
四、畅谈收获,轻松下课
一节课就要结束了,请你谈谈有和感受,有什么收获!
《成数》教学设计4
教学目标:
1、理解成数的意义,知道它在实际生产生活中的简单应用,会进行一些简单计算。
2、努力培养学生自主学习的能力,培养学生灵巧解题的能力,拓宽他们的视野。
教学重点:成数的意义,并会进行一些简单计算。
教学难点:成数的意义
教学过程:
一、引言:
师:前面我们学习了百分数的一些应用,像计算发芽率,出勤率,成活率,还有计算储蓄的利息等。今天我们来学习“成数”。(板书课题;成数)
二、教学成数
师:成数常常用来说明农业的收成,比如说今年的小麦比去上增产二成,苹果比去上减产一成,这“二成”和“一成”是用来说明收成情况的。“一成”就是十分之一,改写成百分数就是10%;“二成”就是十分之二,改写成百分数就是20%。
师:今年小麦比去年增产二成,也就是今年小麦比去年增产十分之几?,也即百分之几?
(学生回答)
师:今年苹果产量比去年减产一成,表示什么意思?今年苹果的产量是去年的百分之几?(学生回答)
1、请学生回答:
“一成”是十分之几?改写成百分数是()%
“二成”是十分之几?改写成百分数是()%
“三成”是十分之几?改写成百分数是()%
“二成五”是十分之几?改写成百分数是()%
2、出示例10:水北庄村民小组前年收水稻46吨,去年比前年多收了一成五,去年收水稻多少吨?
师:去年比前年多收了一成五,表示什么意思?谁是单位“1 ”的量?怎样计算?根据什么?如何列式解答?
学生1:多收了一成五,表示多收了15%。
学生2:单位“1 ”的量是前年收水稻的产量。
学生3:列式为:46+46×15%,因为是求46吨的15%是多少?或者:46×(1+15%),是求46吨的(1+15%)是多少?
[教师板书算式:4.6十46×15%或者46×(1十15%),并请学生说出计算结果]
三、教学折扣
1、请学生自觉课本第108页上有关折扣的内容。
2、请学生回答懂得了什么?并请学生进行质疑问难。
3、出示例3:商店出售一种健身器,原价1800元。现在打九折出售,现在的价格是多少元?
师:如何求现在的价格?如何列式。
生:现在的.价格=商品原价×折数,列式为:1800×90%=1620(元)。
师:如果将题目的问题改变成“比原价便宜多少元?”,如何列式解答?
生1:1800×(1-90%)=180(元)
生2:1800-1800×90%=180(元)
四、练习
1、师生共同讨论完成第109页“练一练”
2、出示下列各题请学生进行讨论并解答。
(1)、某乡去年水稻总产量是1500吨,今年比去年增产一成五,今年水稻总产量是多少吨?
(2)、一套儿童故事丛书原价75元,现价60元,这套儿童故事丛书是打几折出售的?
(3)、一台录音机按30%的利润售出,卖得390元,求这台录音机的成本是多少元?
五、总结:
请学生说出今天学习了什么?懂得了什么?并请学生质疑问难。
六、作业:练习二十三,第14 ~ 16题
七、组织学有余力的学生,讨论下面各题:
(1)、一种书每本定价15元,售出后可获利润50%,如果按定价的八折出售,可获利润多少元?[师指导:先求出成本为:15÷(1+50%)=10(元),按定价的八折出售,定价则为:15×80%=12(元),仍可获利润:12-10=2(元)]
(2)、张老师要购买一台笔记本电脑,为了尽可能少花钱,他考察了A、B、C三个商场,他想购买的笔记本电脑三个商场都有,且标价都是9980元,不过三个商场的优惠方法各不相同,具体如下:
A商场:全场九折。
B商场:购物满1000元送100元。
C商场:购物满1000元九折,满10000元八八折。
张老师应该到哪个商场去购买电脑?请说明理由。
[师进行指导:因为每台电脑的价格均为9980元,而去A商场是全场九折,因此张老师如果去A商场购电脑,那么张老师应该付:9980×90%=8982(元)。
因为B商场是购物满1000元送100元,张老师如果只买电脑,需付:9980-900=9080(元);张老师如果再买其它的物品凑满10000元,需付:10000-1000=9000(元)。
因为C商场是购物满1000元九折,满10000元八八折,张老师在C商场购买电脑时,只要再多买20元物品,即凑满10000元,最多需付:10000×88%=8800(元)。
综上所述显然可知道,张老师去C商场购电脑花钱最少。
《成数》教学设计5
本节课是在了解“成数与折扣”的基础上进一步认识在生活中的应用,大多数同学在日常生活中通过新闻媒体、交往、购物等多少都有所接触、了解。但学生的这种认识还只是凭借生活经验产生的感性认识。
教学内容:教科书第4页例1和第5页例2,完成第5页“做一做”中的题目及练习二的习题。
教学目的:使学生理解成数的意义,知道它在实际生产生活中的简单应用,会进行一些简单计算。
教学过程
一、导入
教师;前面我们学习了百分数的一些应用,像计算发芽率,出勤率,成活率,还有计算储蓄的利息等。今天我们来学习“成数”,板书课题;成数
成数常常用来说明农业的收成,比如说今年的小麦比去上增产二成,苹果比去上减产一成,这“二成”和“一成”是用来说明收成情况的。
说明并板书;“一成”就是十分之一,改写成百分数就是10%;“二成”就是十分之二,改写成百分数就是20%。
小麦比去年增产二成,也就是小麦比去年增产十分之二,即百分之二十。下面让学生回答:
“苹果比去年减产一成,表示什么意思?”(表示苹果比去年减产十分之一,即百分之十。)
“油菜去年比前年增产三成,表示什么意思?”(表示油菜去年比前年增产十分之三,即百分之三十。)
二、新课
1.教学例1.
出示例1,让学生读题。提问:
“去年比前年多收了二成五,表示什么意思?”(多收了二成五,表示多收了25%。)
“怎样计算?根据什么?”学生口述。
教师板书算式:41.6十41.6×25%或者41.6×(1十25%)
2.教学例2.
教师:你们在商店有没有看到过某某商品打几折出售?比如“运动服打八折出售”,这是什么意思呢?就是按原价的80%出售。提问:
“衬衫打六折出售是什么意思?”(衬衫按原价的60%出售。)?“书包打七五折出售是什么意思?”(书包按原价的75%出售。)
出示例2,让学生读题,然后每个学生自己列式计算。
让学生说算式并说明根据。
教师板书算式:430—430×90%或者430×(1—90%)
三、课堂练习
1.做第5页“做一做”中的题目。
先让学生自己做,做完后让学生说一说:
“是怎样做的?根据是什么?”“还有别的做法吗?”
教师:根据题意可以看出,一个水壶的85%是25.5元,所以这道题可以用方程
解,也可以直接用除法做。
用方程解,设:这个水壶的原价是2元。
85%×x=25.5
x=30
直接用除法做,25.5÷85%=30(元)。
2.做练习二的第1、2、5题。
指定学生每人口答一小题,其它学生核对。
3.做练习二的`第4题。
让学生独立做,做完后一起订正。订正时可以提问:“减产三成是什么意思?”
“去年收的萝卜是前年的百分之几?”(1—30%=70%。)
“怎样列式解答?”学生口述。
教师板书算式:15×(1—30%)或者15—15×30%。
4.做完上面的练习题学有余力的学生,可以做练习二的第7题。
让学生独立做,订正时可以让学生说一说是怎样想的。
教师:因为张大伯的120千克青菜是分两部分卖出的,其中是按每千克2.40元卖出的,剩下的是打八折卖出的。所以可以先求120千克的卖了多少钱,再求剩下的卖了多少钱,最后再把两次卖的钱加起来,就是这些青菜一共卖了多少钱。
算式是:2.40×120×十2.40×120×(1一)×80%
四、作业
练习二的第3题和第6X题。
《成数》教学设计6
一、教学目标
(一)知识与技能
1、理解“折扣”“成数”的含义,知道它们在生活中的简单应用。
2、在理解“折扣”“成数”含义的基础上,能自主解决与此相关的实际问题,培养学生运用知识解决实际问题的能力。
(二)过程与方法
利用生活情境重现结合所学数学知识,发挥学生学习的主动性;同时通过引导对比及学生的自主探索,发现知识之间的联系。
(三)情感态度和价值观
通过教学,使学生感受到数学与实际生活的联系,培养学生数学的应用意识。在自主探索的过程中,感受数学学习的乐趣。
二、教学重难点
教学重点:理解“折扣”“成数”的含义,并能进行应用。
教学难点:在理解的基础上,与百分数应用题建立联系,正确解决问题。
三、教学准备
教学课件。
四、教学过程
(一)创设情境,引入新课
1、同学们去商场购物的时候遇到过商家做促销活动吗?一般他们会采用哪些促销手段?
2、刚才同学们都提到了“打折”这种情况,没错,像这样降价出售一些商品,引发人们的购买欲望,是商家常用的促销手段之一。今天这节课,我们就先来了解有关于“折扣”这件事(板书课题──折扣)。
【设计意图】从学生的生活经验入手,引导学生进行知识的迁移,为学生自主探索理解打下基础,也让学生体会到数学与生活的联系。
(二)结合情境,学习新知
1、理解“折扣”
(1)(课件出示促销文字信息)这里的九折、八五折是什么意思?
(2)同桌互相说一说。
(3)反馈:
预设:①举例说明:一件衣服100元,八五折的话就只要85元。
②九折就是现价是原价的90%。
(4)归纳:商品打几折,其实就是指现价是原价的百分之几。
(5)练习:看折扣写出相应的百分数。
%()%()%
2、解决与“折扣”相关的问题
(1)课件出示教材第8页例1第(1)小题:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
①独立完成并进行校对。
②反馈:谁能来说说自己是怎么想的,为什么这样计算?
重点分析以下问题:
问题一:八五折是什么意思?是把谁看作单位“1”?
问题二:求“买这辆车用了多少钱”也就是在求什么?(180的85%是多少)
(2)课件出示教材第8页例1第(2)小题:爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
①独立思考并完成,同桌交流解题思路。
②交流反馈:
重点对比两种解题方式:
第一种算法:原价160减去现价(即原价的90%):160-160×90%。
第二种算法:现价是原价的90%,也就是现价比原价便宜了(1-90%),160×(1-90%)就是便宜的价钱。
想想哪种方法计算起来比较简便。
(3)练习教材第8页“做一做”,完成后校对。
(4)小结:通过刚才的问题解决,你发现原价、现价、折扣之间有什么关系吗?
现价=原价×折扣。
【设计意图】引导学生运用折扣的意义解决生活中的问题。让学生充分掌握学习的自主权,认真去分析、思考,并在理解的基础上展示不同的解题方法,实现问题解决的多样化,并进行方法优化的引领。
3、理解“成数”
生活中的百分数还有很多,比如说“成数”。(板书课题──成数)
(1)学生自学教材,明确成数的含义。
(2)反馈:说说什么是成数,可请学生举例说明。
(3)练习:将下列成数改写成百分数。
二成=()%;四成五=()%;七成二=()%。
【设计意图】有了折扣理解的基础,虽然学生在生活中对成数接触较少,但教师完全可以放手让学生去自学理解,并通过反馈对学生的自学情况进行了解,对培养学生的自学能力很有帮助。
4、解决与“成数”相关的问题
(1)课件出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
①学生读题,独立解答问题。
②交流说说解题思路。
思路一:今年比去年节电二成五,也就是今年比去年少25%,今年用电是去年的(1-25%),即350×(1-25%)。
思路二:去年用电数减去今年节约的度数,即350-350×25%。
教师小结:可以根据自己的理解和计算能力,选择合适的方法进行计算。
(2)课件出示教材第9页“做一做”:某市20xx年出境旅游人数为15000人次,比上一年增长两成。该市20xx年出境旅游人数为多少人次?
①独立完成再进行集体校对。
②说说如何解决这类“成数”的问题。
5、小结
(1)结合例1及例2说说我们是怎么解决有关“折扣”和“成数”的问题的?
(2)教师小结:在解答这类应用题时,关键是理解“折扣”及“成数”的含义,把“折扣”或“成数”化成百分数,再按解百分数应用题的方法解答。
【设计意图】引导学生通过对比、探讨,参与解题方法的'总结,对于发展学生数学思维、数学语言表达很有帮助。
(三)应用练习,巩固认知
今天我们学习的知识可以帮助我们解决生活中的一些问题,现在请你来算一算,做一做。
1、课件出示教材第13页练习二第1题。
(1)独立完成,集体校对。
(2)引导学生按一定的顺序进行思考。
2、课件出示教材第13页练习二第3题。
书店的图书凭优惠卡可打八折,小明用优惠卡买了一套书,省了9.6元。这套书原价多少钱?
(1)请学生读题思考:9.6元表示的实际含义是什么,和八折有什么关系?引导明确:9.6元就是打折后比原价减少的钱数,它相当于原价的(1-80%)。
(2)尝试练习,集体校对。
3、课件出示教材第13页练习二第4题。
某县前年秋粮产量为2.8万吨,去年比前年增产三成。去年秋粮产量是多少万吨?
4、课件出示教材第13页练习二第5题。
某汽车出口公司二月份出口汽车1.3万辆,比上月增长3成。一月份出口汽车多少万辆?
(1)读题,找出关键句,想想两道题目中增长的3成,分别是谁的3成?也就是把谁看作单位“1”?应该怎样进行计算?
(2)独立完成,集体校对。
【设计意图】练习的设置和安排有层次性和针对性,教师对于练习的辅导也相应有层次性,简单的题由学生自行梳理、分析、解答,易错题和难题进行针对性点拨,对于学生对数学的学习应用也大有益处。
(四)回顾梳理,课堂总结
今天这节课我们学了什么?我们应如何解决这一类问题?
《成数》教学设计7
2成数一课时
教学内容:成数(课本第9页例2)教学目标:知识与技能
明确成数的含义。能熟练的把成数写成分数、百分数。正确解答有关成数的实际问题。
过程与方法
通过成数的计算,进一步掌握解决百分数问题的方法。情感态度与价值观
感受数学知识与生活的紧密联系,激发学习兴趣。教学重点:理解“成数”的意义。
教学难点:会解决生活中关于成数的实际问题。教学过程:
一、预习。
1、什么是“成数”?试举例说明。
2、九成表示什么意思?八成
五、六成三各表示什么意思?
二、检查。
1、组织学生同桌之间互查,并讨论、交流自己预习时遇到的问题以及看法。
2、指名回答问题,并适时点拨学生遇到的思维障碍,引导学生寻疑、质疑,然后去释疑。
三、课堂讲评、展示。
1、理解成数的含义。
成数:表示一个数是另一个数的十分之几或百分之几十,通称“几成”。
(1)那么这些“成数”是什么意思呢?比如说,增产“二成”,你怎么理解?
(学生讨论并回答,教师随机板书)成数
分数
百分数二成
十分之二
20%鼓励学生举手回答,并给予适当表扬。(2)试说说以下成数表示什么?①出口汽车总量比去年增加三成。 ②北京出游人数比去年增加两成。引导学生讨论并回答。
2、教学例2。
(1)出示例题,让学生读题,分析题意。
(2)学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。
(3)理解“节电二成五”就是比去年节省了百分之二十五的.意思。从而根据求一个数的百分之几是多少的解法列出算式和解答。
350×(1-25%)=262.5(万千瓦时)或者引导学生列出:350-350×25%=262.5(万千瓦时)
四、课堂评议。
这节课,你有什么收获?同桌之间互相说一说。
五、课堂练习、测试。
1、完成课本第九页的做一做,师巡视辅导学困生,然后指名板书解答过程,共同订正、讲评。
2、出示习题,学生独立尝试解答。
1、王大爷的这块地去年产玉米4050千克,预计今年的收成比去年增加一成,预计今年可产玉米多少千克?
2、某水泥厂8月份销售水泥875吨,比7月份减少三成,7月份水泥销售量是多少吨?
六、布置作业。
1、练习二的第
4、5题。
2、预习课本第十页“利率”的内容。
《成数》教学设计8
1.教学目标
1.理解成数的意义,会进行成数和分数、百分数之间的互相改写。
2.能应用成数进行有关的计算,进一步提高百分数实际应用的能力。
2.教学重点/难点
学习重点理解成数的意义,正确解答有关成数的实际问题。
学习难点能把成数转化为百分数后,再根据解决百分数问题的方法来解决问题。
3.教学用具
教具准备:PPT
4.教学过程
一、创设情境,引入新课(5分钟)
出示新闻消息。
1.今年我省油菜籽比去年增产二成。
2.某商场因经营不善,今年的收入比去年减少一成。
3.今年某省参加高考的学生中,男生占六成。
请你选择一句,说说它是什么含义。
同学们解释得到底对不对呢?学了今天这节课我们就知道了。
板书课题,进入新课。
二、自主探究,解决问题。(25分钟)
1.理解成数含义。
学生预习教材第9页1~3自然段。
(1)思考:什么是成数?
(2)举1~2例说明成数含义。
学生独立预习后小组交流。
指名学生汇报预习情况。
教师小结。(根据学生汇报的成果适时讲解、板书。)
2.教学例2。
(1)出示例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
(2)认真读题,理解题意。
①“今年比去年节电二成五”这句话你是怎样理解的?
②这道题是把谁看成单位“1”?
学生小组交流后汇报交流结果。
(3)学生独立列式解答。
指名学生板演后集体订正。
(4)总结提升。
有关“成数”的问题和前面学习的百分数问题相比,它们有什么联系?
学生集体交流后,指名学生回答。
学案
学生阅读新闻消息,思考教师提出的问题。
1.(1)预习教师布置的内容并解决提出的问题。
(2)举例说明成数的含义。
2.(1)学生思考例题。
(2)组内交流,谈谈自己对本题的理解。
(3)学生独立列式解答此题。
(4)学生谈谈此题与百分数问题的关系。
三、巩固练习(5分钟)
完成教材第9页“做一做”。
提出问题:把谁看作单位“1”?和例题相比,有什么不同之处?
2.完成教材第13页第4题。
四、总结收获。(5分钟)
1.说一说本节课的收获。
2.布置作业。
五、课堂小结
“成数”对学生来说是个陌生的词语,教学开始,呈现几则含有成数的例子,让学生充分表达对句子含义的'理解,由此引出本节内容,激发学生学习新知的欲望。教学中,主要采取“放”的形式,首先让学生预习教材,并通过小组交流理解“成数”的含义;其次,让学生根据例题进行分析,独立列式计算;最后,通过对比,总结出成数问题与百分数问题的关系,调动了全体学生参与学习活动的积极性。
六、课后习题
1.把下面的“成数”改写成百分数。
三成(30%)六成(60%)
七成五(75%)十成(100%)
2.把下面的百分数或分数改写成“成数”。
40%(四成)(七成)
(九成五)85%(八成五)
3.李阿姨家今年的棉花因虫害严重,比去年减产了一成,去年的产量是450千克。李阿姨家今年的棉花产量是多少千克?
答案:450×(1-10%)=405(千克)
答:李阿姨家今年的棉花产量是405千克。
4.文化小学有学生1200人,只有一成五的学生没有参加意外事故的保险。参加了保险的学生有多少人?
答案:1200×(1-15%)=1020(人)
答:参加了保险的学生有1020人。
板书
成数
三成= 3/10 =百分之三十
五成= 5/10 =百分之五十
《成数》教学设计9
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)六年级下册第9页。相对于“折扣”,“成数”对学生来说是个陌生的词语,但有了“折扣”的铺垫,学生理解起“成数”不算太难。本课时从实际问题引入,进而把成数问题转化成百分数问题,并在解决问题的过程中,不断地提高知识的迁移和学习能力。
(二)核心能力
在理解成数含义的基础上,运用迁移类推,将成数转化成百分数,并在解决问题的过程中,提高分析、归纳、推理的能力。
(三)学习目标
1.通过自主学习,能用自己的语言举例说明成数的实际含义,并会准确进行成数和分数、百分数之间的互相改写。
2.通过独立思考,运用迁移类推,能将成数问题转化成百分数问题,在分析、归纳的过程中,不断巩固和提高解决有关百分数的实际问题的能力。
(四)学习重点
理解成数的含义,会将成数问题转化成百分数问题。
(五)学习难点
正确解决生活中的成数问题。
(六)配套资源
实施资源:《成数》名师课件。
二、学习设计
(一)课前设计
1.预习任务
(1)从报纸、杂志、网络上搜集一些关于成数的例子。
【设计意图:通过搜集一些成数的相关例子,有助于学生了解成数在日常生活中的实际应用,形成对成数的初步认识,为课堂教学做好铺垫。】
(二)课堂设计
1.情境引入
师:农业收成,经常用“成数”来表示。比如,我们来看看,老师搜集到的一条新闻。同学们有留意到类似的新闻报道吗?
2.探究新知
(1)理解成数的实际含义。
①自学课本前三自然段,理解成数的含义。
②反馈:说说什么是成数,可结合课前搜集的例子加以说明。
③练习。
七成五表示(),改写成百分数是();半成改写成百分数是()。
()÷20=0.6=()%=()成。
【设计意图:虽然学生在生活中对成数接触较少,但有了学习折扣的`基础,学生可以自主学习,后对学生自学情况进行反馈,注重培养学生的自学能力。考查目标1】
(2)用成数解决问题
①呈现信息,提出问题。
出示例2:某工厂去年用电350万千瓦时,今年比去年节电二成五。
师:根据这些信息,你能提出什么问题?
学生汇报,教师板书。
预设1:今年用电多少万千瓦时?
预设2:今年比去年节电多少万千瓦时?
②分析问题,理解题意
师:解决这两个问题,题目中给出的信息,你们认为哪些是关键?
今年比去年节电二成五。
师:今年比去年节电二成五是什么意思?
生自由发言。
③独立思考,尝试解决
师:请同学们独立思考,解决我们提出的这两个问题。
④集体交流,汇报方法
师:谁来说说自己解决的方法?
学生展示自己的算式,并解释。(板演在黑板上)
A.今年用电多少万千瓦时?
350×(1-25%)350-350×25%
B.今年比去年节电多少万千瓦时?
350×25%
⑤启发思考,辨析原因
师:求“今年用电多少万千瓦时”也就是在求什么?
比350少25%的数是多少?
师:求“今年比去年节电多少万千瓦时?”也就是在求什么?
350的25%是多少?
师:你们认为在解决关于成数的实际问题时,关键是什么?
学生思考后汇报交流。
引导小结:在解决关于成数的实际问题时,需要先把成数转化为百分数,然后利用解决百分数问题的知识进行解决。
课本第9页的做一做。
某市20xx年出境旅游人数为15000人次,比上一年增长两成。该市20xx年出境旅游人数为多少人次?
学生独立完成后,全班展示交流。(板演在黑板上)
师:这道题目与刚才做的两道题目有什么相同点和不同点?
引导学生进一步明晰解决此类问题的方法。
【设计意图:在理解成数含义的基础上,从提出问题—分析题意—独立解决—交流碰撞—分析成因,引导学生经历将未知的成数问题转化成已知的百分数问题的过程,并分析、推理、归纳出解决此类问题的方法。通过练一练,进一步培养学生迁移类推的学习能力。考查目标1、2】
3.巩固练习
(1)填空。
①请将下列新闻中的成数改写成百分数。
八成=()%七成半=()%五成半=()%四成半=()%
②某县今年蔬菜产量比去年增产三成五,今年蔬菜产量是去年的()%。
(2)解决问题。
①某水泥厂前年销售水泥1.8万吨,去年比前年增产三成,去年水泥销量是多少吨?
②某种音响的利润是成本的三成,已知它的售价是每台390元,求这台音响的成本是多少元?
③河汉村有个种粮大户,前年收稻谷26000kg,去年比前年增长了一成五。这个种粮大户去年比前年多收多少稻谷?
4.课堂总结
师:今天这节课我们学了什么?应如何解决关于成数的实际问题呢?
小结:在解答成数问题时,关键是理解成数的含义,把成数化成百分数,再按解百分数应用题的方法解答。这种把新知变成旧知的方法,我们称之为转化。
(三)课时作业
1.小明家六月份用电180千瓦时,七月份比六月份多用了二成,每千瓦时电费为0.54元,小明家七月份的电费为多少元?
2.一块地原产小麦25吨,去年因水灾减产二成,今年又增产二成。这样今年产量和原产量比()。
3.某款液晶彩电进价为每台5000元。根据这款彩电在三个地区的销售信息,解决问题。
(1)A地区售价为每台5600元,盈利百分之几?
(2)B地区定价为每台6000元,元旦时以八折销售,优惠了多少元?
(3)C地区高于进货价的一成五定价,每台定价多少元?