第一篇:圆柱的体积教学案例
2016-2017学年度第二学期
教
学
案
例
单位:阳东区大沟镇中心小学
科目:数 学
姓名:陈贤很
时间:2017年6月
《圆柱的体积》教学案例
[教学内容/学生情况分析] 《圆柱的体积》是人教版六年级下册第三单元《圆柱和圆锥》中的一个内容,它包括圆柱体的体积计算公式的推导和运用公式计算圆柱的体积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体转化成已学过的立体图形,再通过观察、比较找出两个图形之间的关系,来推导出圆柱的体积计算公式。
《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。在此之前,学生已掌握了一定的几何知识与数学方法,部分学生思维活跃,数学成绩较好,加上“圆的面积公式”的推导的学习,辅以多媒体的教学,学生应该容易完成圆柱体体积计算公式的推导过程,为今后学习复杂的形体知识打下扎实的基础。[教学目的]
1、运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解其推导过程。
2、会用圆柱的体积计算公式计算圆柱形物体的体积或容积。
3、引导学生逐步学会转化的数学思想和数学方法,培养学生解决实际问题的能力。
4、借助课件演示,培养学生抽象、概括的思维能力。[教学重难点] 圆柱体体积计算公式的推导过程 [设计理念及策略] “有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”即要求我们在教学中,要让学生通过自主的知识建构活动,学生的潜能得以开发,情感、态度、价值观得以培养,从而提高学生的数学素养。因此根据本节课内容的特点,这节课的教学将通过对圆柱体积知识的探究,重点培养学生探究数学知识的能力和方法。为了把“一切为了学生的发展”这一新的教学理念融入到了课堂教学之中。在课堂教学中将以学生的活动为主,让学生通过亲身体验、实际操作来找出数学知识之间的内在联系。在学生学习过程中,充分运用了教育资源中动画、声音、视频文件,并进行了有效地整合。本节课将使用以下策略:
1、利用迁移规律引入新课,借助远程资源为学生创设良好的学习情境。
2、以合作探究为主要的学习方式,充分发挥学生的自主性,体现学生的主体地位。
3、练习多样化,层次化。
4、引导学生把知识转化成相应的技能,从而提高灵活运用的能力,培养学生的综合素质。
[教学准备] 多媒体课件、圆柱体体积演示器 [教学过程]
一、创设情境
设疑导入
1、复习铺垫。
(1)求各园的面积:
A、半径3厘米
B、直径为4厘米
C、周长为62.8厘米(2)什么叫体积?长方体的体积怎样计算?
2、导入新课。
1、出示(资源)几组圆柱体实物图(同底等高、同底不等高、等高不等底),引导学生观察比较它们体积的大小。
激趣后让学生思考讨论:怎样计算圆柱的体积呢?能不能把圆柱也转化成我们已经学过的图形来求出它的体积?
2、指名说说自己想法。教师引入:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。(板书课题:圆柱的体积)
二、自主探究
学习新知
(一)探究推导圆柱的体积计算公式、教师演示(远程资源动画演示“圆柱体的体积”):
(1)屏幕上呈现一个圆柱体变为一个长方体(圆柱与长方体等底等高)的动画。提问:变化过程中,圆柱的什么变了(截面)?什么没有变(高、体积)?
(2)将圆柱的底面、长方体的底面闪烁后移出来。提问:你学过将圆变成长方形吗?(3)再次出示圆柱形物体,动画演示圆柱拼成近似长方体。让学生取出圆柱体学具拼成近似长方体。
2、学生利用学具独立操作(教师巡视、指导操作有困难的学生),思考并讨论。
(1)圆柱体切开后可以拼成一个什么图形?(近似的长方体)
(2)通过刚才的实验你发现了什么?① 拼成的近似长方体的体积与原来的圆柱体积有什么关系?② 拼成的近似长方体的底面积与原来圆柱的底面积有何关系?③ 拼成的近似长方体的高与原来的圆柱的高有什么关系?
(3)学生汇报交流。
3、让学生根据圆的面积公式推导过程,进行猜想。
如果把圆柱的底面平均分成32份或更多,拼成的长方体形状怎样?平均分成的份数越多,拼成的长方体形状会怎样?
4、推导圆柱的体积公式(利用远程资源动画演示推导过程)
(1)学生分组讨论、汇报:圆柱体的体积怎样计算?
(2)用字母表示圆柱的体积公式。学生口述后,教师板书。
因为 长方体的体积=底面积×高
↓
↓
↓
所以 圆柱的体积 =底面积×高
↓
↓
↓
V = S × h
5、引导学生进一步讨论后交流。
(1)要求圆柱的体积必须知道哪些条件?
(2)如果分别知道圆柱的底面半径、底面直径、底面周长,又怎样求圆柱的体积?
(二)、练一练
1、学生完成20页的[做一做]。
2、让学生想一想:如果已知圆柱底面的半径r和高h,怎样求圆柱的体积?(请学生自学并填写第44页第一自然段的空白部分)
(三)教学例6
1、引导学生默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?
2、指名说解题思路,讨论并归纳解题方法。
3、学生独立按讨论的方法完成例6。
4、教师评讲、总结方法。
三、练习巩固
应用拓展
(一)巩固练习
1、完成第21页的“练习三”第1、2题。(指名板演,其余同学在作业本上练习,完成后及时反馈练习中出现的错误,及时加以评讲。)
2、学生判断。(1)长方体、正方体、圆柱体的体积都可以用底面积乘高的方法来计算。()(2)圆柱体的底面积和体积成正比例。()(3)圆柱的体积和容积实际是一样的。()
(二)、拓展训练(课件出示拓展延伸题,学生课外练习)
一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?
四、总结延伸
通过本节课的学习,让学生谈谈本节课学后有什么收获?(根据学生回答教师总结延伸)
五、作业
练习三:第3、4、6题
[附:板书设计]
圆柱的体积
长方体的体积=底面积×高
↓
↓
↓
圆柱的体积=底面积×高
↓
↓
↓
V = S ×
h
[教学反思]
1、这节课是通过观察、猜想、操作验证、巩固、应用这几个环节来完成的。学生在最佳的情景中通过实践、探索、发现,得到了“活”的知识,学到有价值的数学。
2、操作验证是本节课的关键,为体现活动教学中学生“主动探索”的特点,我从问题入手,组织学生围绕观察猜想后展开验证性的操作活动。学生以活动小组为单位,思维活跃,积极探索,学习能力、抽象概括能力和逻辑思维能力得到了提高。
3、充分利用媒体资源,化解难点,提高课堂效果;注重习题多样化、层次化,拓展学生思维。
第二篇:“圆柱的体积”教学案例分析
“圆柱的体积”教学案例分析
段俊国 山东省莱西市经济开发区苏州路小学 266600
一、案例背景
《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。本节课利用教具,课件演示等多种方式体现数形结合在空间几何的应用。圆柱的体积是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,给体积的认识和计算增加了难度。教材将本课学习安排在圆柱的认识和圆柱的表面积之后,让学生有序地经历了探究物体与图形的形状、大小、位置关系的变换过程,掌握圆柱体积的计算方法和公式的推导过程,为学习圆锥体积打下坚实的基础。由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积公式的应用是本节课教学重点。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。弄清楚圆柱与转化后的近似长方体之间的关系是教学关键。
二、案例描述
1.创设生活情境引入新课
设计意图:数学问题对学生来说有些枯燥无味,通过让学生参与演小故事引入本节课要学习的体积问题,有利于激发学生兴趣和探索的热情,同时也自然地导入新课。
完成目标:通过观察、回忆,能正确表述圆柱体积的含义。
2.回忆旧知,实现迁移,动手操作,推导公式
(1)回忆旧知,实现迁移
师:我们以前学习过哪些物体的体积呢?生:长方体和正方体。师:同学们还记得它们的体积公式吗?师:怎样求圆柱的体积呢?我们也许能从以前研究问精品论文 参考文献 题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的?生:将圆分成小扇形再转化成长方形,它的长=圆周的一半,它的宽=圆的半径,得出圆的面积公式。
*
设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,通过数形结合回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。
完成目标:通过复习,学生很自然地想到将圆柱体转化成长方体。
(2)互助合作,自主探究
设计意图:通过动手操作、观察思考、小组交流,加深孩子对推导过程的理解,才能用语言准确叙述圆柱体积公式的推导过程,准确归纳圆柱体积公式。同时合理运用多媒体技术,形象生动地展示“分成的扇形越多,拼成的立体图形就越接近于长方体”,这里转化思想得到应有的体现,同时发展了学生的空间观念。
完成目标:以小组合作的形式,利用学具动手操作,通过自主探究、交流、归纳,从而推导出计算公式。
3.解决问题,加深巩固
教学例一:一个圆柱形冰激凌包装盒底面半径是6平方厘米,高是20厘米。它的体积是多少?给出图形,学生可参照图形完成。
*
①一生板演,其他学生独立完成。
②小组交流并汇报解题思路。
③生生评价,优化解题方法步骤。
设计意图:安排了密切联系生活实际的习题,学生通过审题运用公式解决问题,认识到数学的价值,切实体验到数学就存在于自己的身边。
完成目标:能掌握圆柱体积的计算方法,并结合生活中的具体情境,会正确地解决生活中的相关问题。
三、案例分析
精品论文 参考文献
学生在前面已经学习了长方体和正方体的体积,知道它们的体积都可以概括为底面积乘高。同时,学生已经具备了独立思考、动手操作、表达交流、分析总结的能力。已经知道事物之间可以相互转化的道理。在研究问题时,可以把没学过的知识转化为学过的知识,揭示事物之间的规律。教学过程中运用数形结合的思想,利用学具通过让学生动手操作拆,拼的过程,让学生感受圆柱体积形成的过程。同时利用课间演示将空间几何在学生的眼前直观的呈现。将“化圆为方,化曲为直”的数学思想引入本课,为推导新公式打好基础。特别注意引导学生亲历知识的形成过程,引导学生质疑、探究,通过学生的猜想、操作、最终推导得出圆柱体的公式,从而获取知识。
本节课应充分利用学生的已有知识和经验,通过动脑猜一猜、动手拼一拼概括出圆柱体积的计算方法。为学生建立初步的空间概念,培养了形象思维,提高学生的知识迁移能力。
精品论文 参考文献
第三篇:圆柱体积教学案例及反思1
圆柱体积教学反思
每个学生在一节课的40分钟里获得最大发展应作为我们用好教材组织教学的追求。本节课紧扣教材,“以人为本”,着眼学生的发展,无论是知识技能、过程与方法、数学思考还是情感态度价值观,学生都获得了最大发展。
在教学“圆柱体体积计算”时,灵活地运用了教材的内容,由浅及深,步步让学生动脑筋想办法解决问题,从能借助旧知识解决问题到实际中不能解决的问题,引出我们需要推导圆柱体体积的计算公式。首先直接让学生自由猜想圆柱体体积的计算方法,学生根据已有的知识经验可以设计出许多方法。如将圆柱体的橡皮泥捏成长方体(或正方体)的形状,求出长方体(或正方体)的体积,就是圆柱体橡皮泥的体积。将圆柱体容器注满水,然后倒进长方体容器中,测出水的体积,就是圆柱体容器的体积。将圆柱体等分成若干份,然后拼成长方体。尽管有的设想不切合实际,但这些猜想中都包含一个成功的因素,那就是转化数学思想,更重要的是培养了学生勇于探索,积极思索,敢于创新的精神。
第四篇:圆柱的体积教学案例及反思
圆柱的体积教学案例及反思
教学内容:义务教育六年制小学教科书数学第12册“圆柱的体积”。
教学目标:
1.结合实际,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。2.让学生经历观察、猜想、验证等数学活动过程,培养学生探究推理能力,体验数学研究的方 3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式。
教学准点:掌握圆柱体积公式的推导过程。
教教学过程:
一、问题导入,质疑问难
师:长方体水槽里放入一个圆柱,仔细观察,你有什么发现? 生:水面上升
生:圆柱占据了水槽内的水的空间。生:水面上升的体积就是圆柱体的体积。
师:同学们真善于发现!谁能用你的话说说,什么是圆柱的体积吗? 生:圆柱的体积就是圆柱所占空间的大小。
二、猜想推理
师:想一想,你有办法得到这个圆柱学具的体积吗?(圆柱课件再从槽中跳出。)生:求出刚才水面上升的体积就是这个圆柱的体积.生:往圆柱里装满水再倒入长方体或正方体的容器中,量出长方体或正方体内水的长、宽、高,求出水的体积就是圆柱的体积。
师:大家的方法都很好,但是我要求大厅内圆柱的体积,或压路机前轮的体积,用刚才的方法还合适吗?(生摇头)
师:看来,我们刚才的方法有一定的局限性,我们要是能像求长方体或正方体那样,有一个通用的公式多好啊!
师:下面我们来猜想一下圆柱的体积大小可能与什么有关?
生:圆柱的底面积和高。底面积增大或高增大,圆柱体积都可能增大。师:大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?
生:圆柱的体积等于底面积乘高。(因为圆柱可以看成是由许多圆形纸片叠加而成的)生:因为长方体的体积等于底面积乘高,所以圆柱的体积也可能是底面积乘高。
三、图形转化,验证猜想:
你想怎样推导圆柱的体积公式呢?结合你们以往学习几何图形的经验,举例说明。
生:大部分图形公式的推导都是把新学的转化为学过的。例如:在求圆的面积时,把圆还平均分成若干等份,剪开,拼成一个近似的长方形。长方形的长就是圆周长的一半,宽就是半径,长方形的面积是πr×r=πr 2也就是圆的面积。
师:联系旧知识,采用转化法,确实不错。
师:那现在它是一个圆柱,你想怎么办? 生:像刚才一样进行平均分。
师:你能具体说说吗? 生:沿着圆柱的底面直径平均切分成16个小扇形。
生:把圆柱的底面平均分成若干等分,沿高切开,拼成长方体或正方体。
师:都说实践出真知,接下来就请同学们拿出学具,动手尝试着进行转化,并说说转化后的结果。
生:将圆柱沿底面直径平均分成16个小扇形,切分之后,可以拼成一个近似的长方体。
师:(刚才我们将圆柱沿底面直径平均分成16个小扇形,拼成一个近似的长方体。)如果想让它更近似于长方体,你想分成多少份?(32)更近似一点。(64)你呢?(128)„„ 师:这是同学们刚才的转化过程。
师:打开书,自由读,用直线标记,找出关键词,依照关键词自由读读转化的过程。
师:我们已经把圆柱转化成了一个近似的长方体,离找它的体积只有一步之遥了。下面我们要干什么?(课件动画演示推导过程)
生:找二者之间的关系,推导圆柱体的公式
师:现在再请一名同学到前面来演示转化过程,其他同学注意观察,圆柱转化为长方体后什么变了,什么没变7(圆柱转化为长方体时形状变了,但是它们底面积、高和体积都没变。)总结文字公式: 圆柱体积=长方体体积=长方体底面积×长方体高
=圆柱底面积 ×圆柱高 师:用字母表示是?
生: V=S h 师:仔细观察你还能有什么发现? 生:我发现长方体的长是圆柱体底面周长的一半,宽是底面半径,高不变。师:你能用这个发现推导出长方体的体积公式吗?V=πr×r×h=πr 2×h=Sh 师:太好了,还有什么发现吗?
生:我发现原来圆柱的侧面变成了长方体的前后面。
师:现在我把长方体由站立变为睡倒,你还能找出其它的计算圆柱体体积的方法吗? 生:长方体的体积等于圆柱侧面积的一半×半径。用公式写是(生说师板书)V=c×1/2×h×r=πr×h×r=πr 2×h=Sh 师:(太棒了)刚才把长方体睡倒我们也能求出它的体积公式。现在我把这个长方体侧面放在桌面上再立起来,你还能求出它的体积吗?
生:现在底面积是r×h,高是πr。所以V=r×h×πr=πr 2×h=Sh 师:同学们真是太厉害了,通过种种发现我们都有能推导出圆柱的体积公式是V=Sh。
师:老师这有一些字母:d、s、r、C、h、v、π。它们与圆柱体体积的计算公式息息相关,请你们用字母表示出圆柱的体积公式。生:V=S h V=πr 2×h V=π(d/2)2×h V=(c÷π/2)2π×h 师:对比这四个公式你又有什么新发现?(彩色粉笔画线。)生:相同之处都是底面积乘以高,不同是底面积求法不同。
三、运用公式,解决问题
师:现在我们,快来解决刚才的实际问题吧!师:我们现在已经知道了圆柱的体积公式,请大家想办法求出这个圆柱的体积吧!
生:我需要量出这个圆柱的底面周长和高;或者底面直径和高,运用公式就能求出它的体积。师:找生量出数据,并写出公式正确计算。
师:看来,灵活运用公式,并选择合理的算法。会使我们的学习更高效。
四、巧用公式,多重探究
师:同学们到现在为止,你都学到了哪些关于圆柱的知识? 生:表面积、体积、容积。
师:老师这里有一组习题。请你们选择合适的问题。师:读完之后,你认为求什么就可以大声地说出来。(生:体积、容积、表面积。)学具厂有一个制作学具的圆柱形铁皮桶。它的底面直径是22厘米,高是25厘米,_________?从里面量底面直径是20厘米,高是25厘米______________底面积是380平方厘米。侧面积是1727平方厘米_________________? 师:说说你选择问题的根据是什么? 生:体积是圆柱所占空间的大小。容积是圆柱能容纳物体的大小,表面积是圆柱所有面积的总和。
五、开放训练,拓展提升
师:学习很愉快,我们来庆祝一下:在一个棱长为a分米正方体盒中,放一个最大的圆柱体蛋糕,系上b分米长的丝带,(打结部分忽略不计)挖去1根直径为c厘米,高是d厘米的圆柱蜡烛空隙,这个蛋糕体积到底是多少呢?这次我们男女生比赛,列式不计算,看谁解法多并说明解题思路。教学反思:
作为数学活动的策划者、组织者和引导者,巧妙地把纯数学的“体积问题”与生活实际联系起来,组织学生进行实践操作、构建数学模型,自主探究圆柱体积公式并推广应用。这正是我们努力探索的一种新型的数学教学模型:来源于生活——提炼为数学——应用于实际。
遗憾之处; 在学生汇报圆柱转化成近似的长方体的时候,学生只说把圆柱分成16份、32份、64份等。没有说“平均分”。当学生语言不够严密的时候,教师要及时纠正。教师叙述的时候也没有加以强调,“平均分”在这里显得尤为重要。而这一部分教学用时过长,教师调控课堂教学能力还有待提高,如果紧凑些,就不会出现超时现象了。
总之,一堂充满快乐的创新性的数学课,教师创造性地开发教学內容,创造性地开展教学,学生创造性地构建数学知识,发现数学规律,解决问题。师生一起分享创造与发现的快乐。
第五篇:圆柱的体积教学案例及反思
圆柱的体积教学案例及反思
教学过程:
师:在前一阶段,我们对长方体、正方体以及圆柱体有了初步的认识,而且我们也学会了计算长方体、正方体的体积,但是,在我们的生活中,并不是所有的物体都是长方体和正方体,比如,窗户上的钢筋,桌子上的茶杯,要是求它们的体积怎么办呢?(学生摇摇头,非常困惑)
师:大家不要着急,我们先来看看这三个物体,长方体、正方体和圆柱体,它们的底面积和高都是相等的,大家猜想一下,它们的体积谁大谁小呢?
生:长方体和正方体的体积都是底面积乘以高,所以它们的体积是相等的。但是这圆柱体好像瘦一些,体积应该小一些。师:好,请坐。有没有不同的意见呢? 生:应该是相等的吧!师:为什么呢? 生:不太清楚,猜的。
师:好,请坐。现在我们有不同的意见,那到底哪种说法是对的呢?(学生片刻议论)
师:大家回想一下,我们在学习圆面积的计算时,是怎么推出公式的呢?
生:把一个圆分成许多个扇形,然后把它重新拼成一个近似的长方形,分成的扇形个数越多,它就越接近长方形。
师:很好,对以前的知识掌握得很牢固。那么,请同学们想一想,我们可不可以也同样的对圆柱体进行切分呢?(一些同学点了点头)
师:现在,这里有一个已经被切分了的圆柱体,(教师展示教具),有没有同学愿意来将它重新组合一下?
(有同学举手示意,一个同学到讲台上进行操作,重新组合,得到了一个新的物体)。
师:很好。刚刚那位同学把圆柱体改成了这样一个形状的物体。大家看一下,这个物体像我们学过的哪种物体形状啊? 生:长方体。师:是的。
(教师带着学生观察)。
师:大家请看,以前圆柱体的底面是不是成了这个长方体的底面?它的高是不是还是以前圆柱体的高啊? 生:是!
师:那么,我们现在来求这个长方体的体积怎么求? 生:底面积乘以高。
师:那我们现在求出来的体积与之前圆柱体的体积相等吗? 生:相等。
师:是的。我们将以前的圆柱体变成了现在的长方体,没有多一块,也没有少一块。我们现在可以得出圆柱体的体积公式是 师生:v=sh。
师:那我们现在知道了,底面积和高都相等的长方体,正方体和圆柱体的体积有什么关系呢?
生:相等。
师:我们应用到了数学上一种很重要的思想和方法,那就是转化,我们要推导的是圆柱体的体积,经过转化,实际上就变成了解决转化后长方体的体积。请你们想想,要求圆柱体积,需要知道哪些条件? 练习本很快列式
1)已知一个圆柱底面底面半径6分米,高为2分米,求体积 2)已知一个圆柱底面周长12.56cm,高为10cm,求体积 3)已知一个圆柱侧面积为50平方厘米,半径为4厘米,求体积 怎样?做第三题的时候有什么感觉?好像很麻烦哦 根据圆柱体的侧面积和半径能直接计算圆柱的体积吗? 生:可以,通过侧面积可以把高求出来。
师:很正确,但是如果我们不求高,能不能算出体积呢?(教师带着学生一起将公式变形)
师:所以圆柱的体积还可以用公式表示为V=πrh*r=S/2*r=S/d。我们经过认真观察和推导,发现计算圆柱体体积的方法可以是不同的,同学们课后可以自己再仔细推敲。根据提供的不同信息,选择合适的公式,这样可以减少计算难度或者步骤。
现在我们就要利用学到的知识来解决不同的问题。(例题讲解,学生练习)。
反思:
这一部分的内容与我们日常生活中的计算联系紧密。这是首次学习含有曲面的几何体的体积,不论是思考方法,还是对立体图形的认识上,都更加深入了一步,难度也加大了。所以本节的重点是:对圆柱体体积公式的理解。难点是:圆柱体体积公式的推导过程。学习本节课应具备的旧知识是:1圆面积公式的推导过程。2长方体体积的计算方法。
在教学中就是要运用圆面积公式的推导方法,将圆柱体转化为长方体,从而由长方体体积公式推导出圆柱体体积公式。因此根据本节课的特点我采用的教学方法是:
1.从生活的实际出发激起兴趣。课堂来源于生活,要从生活中的实际问题出发,引起学生对生活中存在的问题进行思考,从而激起它们对知识的渴求,使学生对待学习的态度是积极主动的,而不是被动接受,这样才会有一个好的教学效果。
2.让学生自己动手操作发现。学自己亲自动手实践,有助于学生对问题本质的认识,而且由于该节内容涉及到空间中的立体图形,在理解上有一定的难度。让学生动手操作、观察,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
3.巩固旧知识,学习新知识。将教学中的前后内容紧密练习在一起,通过巩固旧的知识与方法,联系到新知识的学习,使同学们很快的接受而且很好的掌握所学的新课内容。教师通过设疑,指明研究方向,营造探究新知识 的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
在本节课的学习中,我力图让学生掌握一些基本的学习方法
1)学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2)学会利用旧知转化成新知,解决新问题的能力。
3)学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。