第一篇:化学文献查阅方法论文
化学文献及查阅方法论文
题目:氮化硅陶瓷材料基本情况概述
院(系): 化学化工学院 专业年级: 化学工程与工艺2012级 姓 名:**** 学 号: 1********
****年*月**日
碳化硅陶瓷材料基本情况概述
姓名:王军辉学号:121170244专业年级班级:2012级化学化工学院化学工程与工艺(2)班
摘要: 氮化硅陶瓷是一种有广阔发展前景的高温高强度结构陶瓷.其具有高性能(如强度高、抗热震稳定性好、疲劳韧性高、室温抗弯强度高、耐磨、抗氧化、耐腐蚀性好等).已广泛应用于各行各业.氮化硅的制备方法主要有反应烧结法(RS)、热压烧结法(HPS)、常压烧结法(PLS)和气压烧结法(GPS)等.目前存在的主要问题是氮化硅陶瓷产品韧性低、成本较高.今后应改善制粉、成型和烧结工艺及氮化硅与碳化硅的复合化,研制出更加优良的氮化硅陶瓷.鉴于氮化硅的广泛应用性和良好的物理性能,本文从氮化硅的结构及性能、制备方法及发展前景对其进行介绍.关键词:氮化硅;烧结法;前景展望
1.氮化硅陶瓷工艺的发展概述
氮化硅是在人工条件下合成的化合物.虽早在140多年前就直接合成了氮化硅,但当时仅仅作为一种稳定的“难熔”的氮化物留在人们的记忆中.二次大战后,科技的迅速发展,迫切需要耐高温、高硬度、高强度、抗腐蚀的材料.经过长期的努力,直至1955年氮化硅才被重视,七十年代中期才真正制得了高质量、低成本,有广泛重要用途的氮化硅陶瓷制品.我国自80年代中期开始研究氮化硅技术.主要是研究减重效率最高的结构氮化硅材料多孔氮化硅材料,关于氮化硅复合材料的研究刚刚起步,多孔氮化硅复合材料材料组成体系的理论设计与试验设计相关研究很少,尚处于摸索阶段,受国内外相关研究资料较少的影响,这方面我国的研究一直处于相对落后地位,许多研究单位以及学者多把研究重点放在军工领域,而其它领域的应用研究基本尚处空白.这方面的研究有待进一步加强.多孔氮化硅陶瓷介电常数预测及其性能影响规律认识不够完全,其理论工作与试验工作的研究都很少.2.氮化硅的结构及性能 2.1. 氮化硅的结构
氮化硅,固体的Si3N4是原子晶体,是空间立体网状结构,每个Si和周围4个N共用电子对,每个N和周围3个Si共用电子对,大体上是和金刚石中的碳原子结构类似,不过是六面体又称六方晶体.氮化硅分子式为Si3N4属于共价键结合的化合物.氮化硅陶瓷属于多晶材料,晶体结构属于六方晶系,一般分为α、β两种晶向,均由SiN4四面体构成,其中β-Si3N4对称性较高,摩尔体积较小,在温度上是热力学稳定相,而α-Si3N4在动力学上较容易生成.高温时(1400~1800℃)α会发生相变,成为β型,这种相变是不可逆的,故相有利于烧结.不同晶相的氮化硅外观是不同的,α-Si3N4呈白色或灰白色疏松羊毛状或针状,β-Si3N4则颜色较深,呈致密的颗粒多面体或短棱柱状,氮化硅晶体是透明或
[2]
[1]半透明的,氮化硅陶瓷的外观是灰白色、蓝色到灰黑色,因密度、相比例的不同而异,也有因添加剂呈其他色泽氮化硅的制备方法研究进展.2.2. 氮化硅的性能
Si3N4是硅的氮化物中化学性质最为稳定的(仅能被稀的HF和热的H2SO4分解),也是所有硅的氮化物中热力学最稳定的.所以一般提及“氮化硅”时,其所指的就是Si3N4.它也是硅的氮化物中最重要的化合物商品.氮化硅的强度很高,尤其是热压氮化硅,是世界上最坚硬的物质之一.它极耐高温,强度一直可以维持到1200℃的高温而不下降,受热后不会熔成融体,一直到1900℃才会分解,并有惊人的耐化学腐蚀性能,能耐几乎所有的无机酸和30%以下的烧碱溶液,也能耐很多有机酸的腐蚀;同时又是一种高性能电绝缘材料.氮化硅与水几乎不发生作用;在浓强酸溶液中缓慢水解生成铵盐和二氧化硅;易溶于氢氟酸,与稀酸不起作用.浓强碱溶液能缓慢腐蚀氮化硅,熔融的强碱能很快使氮化硅转变为硅酸盐和氨.氮化硅在 600℃以上能使过渡金属氧化物、氧化铅、氧化锌和二氧化锡等还原,并放出氧化氮和二氧化氮.3.氮化硅陶瓷的制备方法
氮化硅陶瓷是一种有广阔发展前景的高温高强度结构陶瓷.其具有高性能(如强度高、抗热震稳定性好、疲劳韧性高、室温抗弯强度高、耐磨、抗氧化、耐腐蚀性好等).已广泛应用于各行各业.氮化硅的制备方法主要有反应烧结法(RS)[3]、热压烧结法(HPS)[4]、常压烧结法(PLS)[5]和气压烧结法(GPS)等.目前存在的主要问题是氮化硅陶瓷产品韧性低、成本较高.今后应改善制粉、成型和烧结工艺及氮化硅与碳化硅的复合化,研制出更加优良的氮化硅陶瓷.3.1. 反应烧结法(RS)制备氮化硅
采用一般成型法先将硅粉压制成所需形状的生坯放入氮化炉经预氮化(部分氮化)烧结处理,预氮化后的生坯已具有一定的强度,可以进行各种机械加工(如车、刨、铣、钻).最后,在硅熔点的温度以上;将生坯再一次进行完全氮化烧结,得到尺寸变化很小的产品(即生坯烧结后,收缩率很小,线收缩率<11%).该产品一般不需研磨加工即可使用.反应烧结法适于制造形状复杂,尺寸精确的零件,成本也低,但氮化时间很长.3.2. 热压烧结法(HPS)制备氮化硅陶瓷
将Si3N4粉末和少量添加剂(如MgO、Al2O3、MgF2、Fe2O3 等),在1916 MPa以上的压强和1600 ℃以上的温度进行热压成型烧结.英国和美国的一些公司采用的热压烧结Si3N4 陶瓷,其强度高达981MPa以上.烧结时添加物和物相组成对产品性能有很大的影响.由于严格控制晶界相的组成,以及在Si3N4 陶瓷烧结后进行适当的热处理所以可以获得即使温度高达1300 ℃时强度(可达490MPa以上)也不会明显下降的Si3N4系陶瓷材料,而且抗蠕变性可提高三个数量级.若对Si3N4陶瓷材料进行1400—1500 ℃高温预氧化处理,则在陶瓷材料表面上形成Si2N2O相,它能显著提高Si3N4 陶瓷的耐氧化性和高温强度.热压烧结法生产的Si3N4陶瓷的机械性能比反应烧结的Si3N4要优异,强度高、密度大.但制造成本高、烧结设备复杂,由于烧结体收缩大,使产品的尺寸精度受到一定的限制,难以制造复杂零件,只能制造形状简单的零件制品,工件的机械加工也较困难.3.3. 常压烧结法(PLS)制备氮化硅陶瓷
在提高烧结氮气氛压力方面,利用Si3N4 分解温度升高(通常在N2 = 1atm气压下,从1800℃开始分解)的性质,在1700—1800℃温度范围内进行常压烧结后,再在1800—2000℃温度范围内进行气压烧结.该法目的在于采用气压能促进Si3N4 陶瓷组织致密化,从而提高陶瓷的强度.所得产品的性能比热压烧结略低.这种方法的缺点与热压烧结相似.3.4. 气压烧结法(GPS)制备氮化硅陶瓷
气压烧结是把Si3N4压坯在5~12MPa的氮气中于1800~2100℃下进行烧结.由于氮气压力高,从而提高了Si3N4的分解温度,有利于薛永能形成高耐火度晶相的助烧剂提高氮化硅陶瓷的高温性能.近年来,人们对气压烧结进行了大量的研究,获得了很大的进展,采用气压烧结的氮化硅陶瓷具有高韧性、高强度和较好的耐磨性.3.5. 其他烧结方法
重烧结是将反应烧结的Si3N4烧结坯在助烧剂存在的情况下,置于氮化硅粉末中,在高温下重烧结,可得到致密的Si3N4制品,重烧结过程中的收缩仅有6%~10%,可制备形状复杂、性能优良的部件.热等静压烧结是将氮化硅及助烧剂的混合物粉末封装到金属或玻璃包套中,抽真空后通过高压气体在高温下烧结,制得的氮化硅陶瓷可达理论密度,但工艺复杂成本较高.此外,近年来还发展了如超高压烧结、化学气相沉积、爆炸成形等烧结和致密化工艺均获得不错的效果.4.氮化硅陶瓷的应用
Si3N4陶瓷是一种重要的结构材料,它是一种超硬物质,本身具有润滑性,并且耐磨损;除氢氟酸外,它不与其他无机酸反应,抗腐蚀能力强,高温时抗氧化.而且它还能抵抗冷热冲击,在空气中加热到1000℃以上,急剧冷却再急剧加热,也不会碎裂.正是由于Si3N4陶瓷具有如此优异的特性,人们常常利用它来制造轴承、气轮机叶片、机械密封环、永久性模具等机械构件.如果用耐高温而且不易传热的氮化硅陶瓷来制造发动机部件的受热面,不仅可以提高柴油机质量,节省燃料,而且能够提高热效率.我国及美国、日本等国家都已研制出了这种柴油机.利用Si3N4重量轻和刚度大的特点,可用来制造滚珠轴承、它比金属轴承具有更高的精度,产生热量少,而且能在较高的温度和腐蚀性介质中操作.用Si3N4陶瓷制造的蒸汽喷嘴具有耐磨、耐热等特性,用于650℃锅炉几个月后无明显损,而其它耐热耐蚀合金钢喷嘴在同样条件下只能使用1-2个月.由中科院上海硅酸盐研究所与机电部上海内燃机研究所共同研制的Si3N4电热塞,解决了柴油发动机冷态起动困难的问题,适用于直喷式或非直喷式柴油机.这种电热塞是当今最先进、最理想的柴油发动机点火装置.日本原子能研究所和三菱重工业公司研制成功了一种新的粗制泵,泵壳内装有由11个Si3N4 陶瓷转盘组成的转子.由于该泵采用热膨胀系数很小的Si3N4 [6]陶瓷转子和精密的空气轴承,从而无需润滑和冷却介质就能正常运转.如果将这种泵与超真空泵如涡轮—分子泵结合起来,就能组成适合于核聚变反应堆或半导体处理设备使用的真空系统.以上只是Si3N4陶瓷作为结构材料的几个应用实例,相信随着Si3N4粉末生产、成型、烧结及加工技术的改进,其性能和可靠性将不断提高,氮化硅陶瓷将获得更加广泛的应用.近年来由于Si3N4原料纯度的提高Si3N4粉末的成型技术和烧结技术的迅速发展,以及应用领域的不断扩大,Si3N4正在作为工程结构陶瓷,在工业中占据越来越重要的地位.Si3N4陶瓷具有优异的综合性能和丰富的资源,是一种理想的高温结构材料.具有广阔的应用领域和市场,世界各国都在竞相研究和开发.陶瓷材料具有一般金属材料难以比拟的耐磨、耐蚀、耐高温、抗氧化性、抗热冲击及比重等特点.可以承受金属或高分子材料难以胜任的严酷工作环境,具有广泛的应用前景.成为继金属材料、高分子材料之后支撑 21世纪支柱产业的关键基础材料,并成为最为活跃的研究领域之一,当今世界各国十分重视它的研究与发展,作为高温结构陶瓷家族中重要成员之一的Si3N4陶瓷,较其它高温结构陶瓷如氧化物陶瓷、碳化物陶瓷等具有更为优异的机械性能、热学性能及化学稳定性.因而被认为是高温结构陶瓷中最有应用潜力的材料.有关应用的主要内容有:
(1)在冶金工业上制成坩埚、马弗炉炉膛、燃烧嘴、发热体夹具、铸模、铝液导管、热电偶测温保护套管、铝电解槽衬里等热工设备上的部件.(2)在机械工业上制成高速车刀、轴承、金属部件热处理的支承件、转子发动机刮片、燃气轮机的导向叶片和涡轮叶片等.(3)在化学工业上制成球阀、泵体、密封环、过滤器、热交换器部件、固定化触媒载体、燃烧舟、蒸发皿等.(4)在半导体、航空、原子能等工业上用于制造开关电路基片、薄膜电容器、承受高温或温度剧变的电绝缘体、雷达天线罩、导弹尾喷管、原子反应堆中的支承件和隔离件、核裂变物质的载体等.(5)在医学工程上可以制成人工关节.(6)正在研制的氮化硅质的全陶瓷发动机代替同类型金属发动机.所有这些应用都有很好的或者突出的经济效益和社会效益,甚至是重大变革.如用于制作刀具,耐用度比合金车刀高4~5倍,可以实现高速切削和断续切削,切削效率可提高2.2~10倍,对金属材料的车削光洁度可达到七级.如用于化工厂的耐蚀泵、轴承、设备,可以保证长期正常运转,增加生产,建立“无泄漏工厂”.如用于制造发动机成为现实,则将是热机的根本变革,具有划时代的意义.那时的发动机的机械效率将达到45~50%,可望实现发动机的轻量、小型、高功率、节能、省料、高速度以及长寿命、少污染等目标.5.碳化硅陶瓷材料的发展展望
[7]Si3N4 陶瓷材料作为一种优异的高温工程材料最能发挥优势的是其在高温领域中的应用.但是目前人们对它的高温强度、抗热震性、高温蠕变及高温抗氧化性研究仍很少距离高温下应用的要求还很远.特别是在1400℃下的强度和断裂韧性还不能令人满意;高温和高应力环境中能否可靠地工作几千个小时,其高温下的动、静态疲劳性能如何等,还需做大量的研究作氮化硅材料强度低的主要原因之一是含有较多的孔隙,致使产品密度不高、强度较低.如何进一步提高氮化硅的密度从而改善其力学性能是人们普遍研究的课题之一.为了扩大Si3N4 陶瓷的应用领域,首先必须使现有Si3N4陶瓷制品的质量更加稳定,要尽量避免和消除在成型后的各种变化因素.其次,需要研制一种与成型相适应的快速且柔软的技术.当今世界技术日新月异,经常发生变化.左右Si3N4最终成形制品的物理性能的主要因素之一是Si3N4 原料粉末.目前必须对现有的制品进行改良,而且还应该采取有关措施对一部分制品进行专门化处理.另外,对投入生产的新制品,必须进一步积极进行高功能化的研制.从这一观点来看,关于研究者与Si3N4粉末的成型制造厂间的质量设计,应该进一步开展合作.与上述两点具有同样重要意义的是,由于Si3N4成本的降低,可以促进应用范围扩大.近年来,市场上对Si3N4陶瓷的需求很强烈.但同时认为Si3N4作为工业材料,为了取得牢固地位,还要经受实际考验.Si3N4 陶瓷要想与硬质合金、耐热合金或SiC、Al2O3等陶瓷进行竞争或者Si3N4陶瓷作为本世纪的工业材料并在工业中占有一定位置,Si3N4粉末的价格高低是非常重要的因素.所以,对降低从原料粉末到最终成型零件之间的总成本应作为今后研究的焦点.Si3N4今后的发展方向是:
(1)充分发挥和利用Si3N4本身所具有的优异特性;
(2)在Si3N4 粉末烧结时,开发一些新的助熔剂,研究和控制现有助熔剂的最佳成分;(3)改善制粉、成型和烧结工艺;
(4)研制Si3N4与SiC等材料的复合化,以便制取更多的高性能复合材料.Si3N4陶瓷等在汽车发动机上的应用,为新型高温结构材料的发展开创了新局面.汽车工业本身就是一项集各种科技之大成的多学科性工业,我国是具有悠久历史的文明古国,曾在陶瓷发展史上做出过辉煌的业绩,随着改革开放的进程,有朝一日,中国也必然挤身于世界汽车工业大国之列,为陶瓷事业的发展再创辉煌.参考文献:
[1]籍丽娟,白培康,任卫,等.反应烧结注浆氮化硅陶瓷材料的性能研究.热加工工艺,2010.5 [2]廖荣,程之强,胡利明,等.低介电高强度多孔氮化硅陶瓷的研制.现代陶磁技术,2007(1):3-23 [3]刘海林.反应烧结碳化硅凝胶注模成型工艺及烧结体性能研究[D].中国建筑材料科学研究院 2004 [4]王晓燕,罗发,刘代军,朱冬梅等.热压烧结氮化硅陶瓷的力学性能研究[J].稀有金属材料与工程2007 [5]王春华,王改民.常压烧结碳化硅陶瓷的制备及导电性能[J].中国陶瓷 [6]田开文;先进陶瓷材料在军用柴油机上的应用 [J];车用发动机;1996年01期
[7]彭志坚,苗赫濯,齐龙浩,龚江宏,杨思泽,刘赤子;氮化硅陶瓷刀具表面涂覆高硬耐磨氮化钛涂层研究[J];稀有金属材料与工程;2004年05期
第二篇:文献查阅情况小结
文献查阅情况小结
1.糖肽:是指糖蛋白和蛋白聚糖中,糖与氨基酸或多肽链以共价键相连而形成的区域。糖链与氨基酸之间的连接称为糖肽键。硫酸糖肽:能显著地抑制胃蛋白酶的活性,适用于治疗胃、十二指肠溃疡和胃炎,是用于胃及胃粘膜溃疡治疗的有力的胃保护剂。目前常用的硫酸酯化方法有氯磺酸-吡啶法、浓硫酸法和三氧化硫-吡啶法等。2.硫酸酯化:用硫酸酯化试剂与反应物上羟基反应形成硫酸酯盐。目前有六种主要方法(详细方法见文献《硫酸酯化反应研究进展》):
① 用硫酸进行硫酸酯化
② 二环己基碳二亚胺介导的硫酸酯化反应
③ 用氯磺酸和氯磺酸-胺复合物进行硫酸酯化反应 ④ 用三氧化硫胺复合物进行硫酸酯化反应 ⑤ 应用保护与脱保护进行硫酸酯化
⑥ 应用亚硫酸酯化氧化后水解进行硫酸酯化
酯化条件是影响硫含量的最主要因素。酯化率与酯化试剂使用量、反应温度、反应时间有关。
3.糖肽分离纯化:DEAE-纤维素离子交换层析和凝胶过滤色谱法。
4.鉴定:电泳定性检测--琼脂凝胶平板电泳法,高效凝胶过滤色谱法,苯酚-硫酸法。
5.工艺优化:可以从以下几个方面进行优化:投料比例,制备温度,反应时间长度,可以在单因素试验基础上采用三因素三水平正交实验。
第三篇:论文写作前如何查阅文献和收集资料
本文作者:面朝大海 好范文原创投稿
论文写作一旦确定好题目,就要开始着手准备资料,做相关研究。论文撰写中大量的工作是阅读与自己课题相关的文献资料,包括书籍、期刊、报纸、杂志、百科全书、词典等。了解前人在这个课题上已做了什么?结论如何?还有哪些尚未研究?存在的问题是什么?从而明白自己该干什么。事实上这一步骤应该始终贯穿在整个论文写作过程中,以下是搜集资料的基本步骤和一些注意事项:
1、查阅文献
一般说来,图书馆可以为学生提供任何领域研究的资料。学生既可以根据作者名查找也可以通过主题目录来查找。另外专业百科全书、专业年鉴也会对查找资料起到很大的帮助作用。另外,互联网业已成为新的便捷的资料来源,许多网络都开通免费的网上图书馆,超强快速搜索引擎成为查找资料的重要手段,论文写作完成后通过赛思论文检测系统checkthesis.com进行论文指导和检测,同时有条件的学生应有效地将其利用起来,但要注意核实其可靠性。来源不可靠的资料会使整篇论文的可信度大打折扣,因此应尽可能寻找一手资料作为科研的基础,可能条件下应参阅最新版的文献资料,这一点尤为重要。
2、收集资料
一般说来,在查到一本与课题有关的书时,不要急于逐页细读,可先阅读以下几个部分:内容提要、内容目录、前言、书后的索引和参考书目,最后到有兴趣的章节或段落。在阅读过程中要注意脚注,文中注或尾注,它们都是作者引用素材的出处。阅读论文的方法稍有不同,阅读要从标题开始,若对标题感兴趣,可先阅读其摘要,阅读摘要后仍对论文仍感兴趣,即可阅读论文全文。
3、用批判的眼光进行阅读
书海浩瀚,文献也是良莠混杂,这就涉及到一个对文献的评估问题。不要认为所有印在纸上的东西都是真理,不要不加思索地摘录所有有关资料,要有选择性,要用批判的眼光进行分析研究,对资料的来源及作者的研究方法是否可靠分析,并做出正确的判断。要善于去伪存真,注意甄别哪些是作者对事实的描述,哪些是作者自己的观点,挑选那些对所要写的论文真正有价值或帮助的东西。我们的思路不一定要按文献中的观点走,要与自己的工作实际环境结合起来考虑,要有自己的见地。
论文是文献和事实的有机结合,要用实证来认证理论、检验理论。确立研究题目,了解了相关的文献后,还要理论与实际相结合,用科学的研究方法来分析问题和解决问题。研究方法有许多种,如历史研究法、问卷研究法、观察法、个人访谈、取样、测试法、实验法等。在采用某个方法前要论证拟采用方法的前提是什么,需要做哪些准备,例如在介绍选择例案或研究对象时,需要说明选择的标准,还需要说明在做了哪些初步调研后才确定拟采用的方法。研究方法主要包括如下几点:
1、设计---是彩调查法还是实验法?你将选择什么样的设计?
2、研究工具---你将利用什么工具或采用什么问卷问题来进行分析研究?为什么要采用?它们是否正确可靠?
3、步骤---你计划怎样实施你的研究?其中涉及什么活动?需要多长时间?
第四篇:文献查阅报告格式
文献查阅提交论文要求
基于查阅的中文文献和英文文献库,各撰写一篇中文的文献综述。
一、查阅中文文献(中国期刊网、维普、万方)后撰写文献检索报告1份,(权重:占总成绩的30%)
二、查阅英文文献(EI Village, web of science, ACS, Wiley, Elsevier等)
后撰写文献检索报告1份(权重:占总成绩的60%)
三、要求
(1)文献检索报告正文均为中文,其中查阅英文文献撰写的中文报告的参考文献著录格式为英文。
(2)查阅与本科毕业课题相关的中英文文献各10篇;
(3)撰写相关课题的文献综述(中文,不少于1000字);
(4)5-10篇文献每篇文献的第一页附于两次检索报告后面。
四、提交
(1)提交时间:结课后一周,全部交给各班班长,由各班班长交到科技楼809室,原则上不接受个人提交文稿。
(2)全部为纸质版,不接受电子文档。
正文要求(题目,三号黑体)
×××,×××(作者,学号;小四宋体,)
关键词:××× ×××(小四宋体,5个以内,1.5倍行距,词间用空格隔开)
(正文,篇幅1-4页,大于1000字,小四宋体,1.25倍行距)
1、全文要求:篇幅1-4页。
排版在A4纸上,版面(版芯)宽为150mm,高为210mm。中文文题为三黑,姓名、学号和关键词为小四宋,正文为小四宋。
参考文献在文中以顺序标注于应用处的右上角[1]。参考文献打印格式如下:序号,作者(多名作者用“,”隔开),期刊名,年,卷(期):起始页码。参考文献:
[1] 作者(多名作者用“,”隔开),期刊名,年,卷(期):起始页码
固化剂分子结构对碳纤维复合材料界面性能的影响
第五篇:化学教育文献
化学教育
2010年化学教育和科学教育学术的排名是通过从事化学教育的研究。
文摘:世界排名22的学术印刷期刊积极参加在化学教育和科学教育方面的化学教育的研究。这次调查的结果可以补充过去在学术质量这一领域的影响因素。了解这些学术在顶级领域有利于学术环境,要求研究员经常出版和产生影响。
关键词:研究生教育/研究.化学教育研究.专业发展
特征:化学教育研究
介绍
当前在学术方面的研究是致力于生产力。实际上很多人预期显示较过去30年和许多高校相比有一定的增长.1 例如:在澳大利亚,大学可以获得额外的资金,源于他们的学术的出版速度和推广,推广是很难有一个出版记录的.2 在美国.出版物的记录通常被用于评估学术性产量的一个标准,这个标准经常用于进行推广和任期的决定.3
Pienta已经证明在化学教育出版物速度比较积极,并且已经在所有教师的部门做了比较。化学教化学教育的每年平均出版率百分之67是为了获取博士学位,百分之55是授予硕士学位。作为教师在化学 教育本门发表论文占3.7,还有1.2是授予了博士和硕士学位的论文。与每年出版的率低的相比较,教师同事发表的化学和科学研究的期刊可以总结为进行研究和准备所需时间在化学教育方面的手稿。及时的审查出版物是研究人员和有关知识引文度量时成功的关键,一篇期刊在这一领域得到肯定变得至关重要。在科学家中普遍的观点是高质量的期刊趋向于有更大的影响。
在大部分科学学科,包括化学,影响因素已成为一种广泛用于度量区分,目的为了在期刊中产生的影响和信誉。尤金.加菲尔德在1963设计的影响因素,并且成立了科技信息的研究所为了把影响因素制成表格.ISI现在是汤普森出版公司的一部分,它计算每年影响因素的指标,并且把它们在JCR期刊中出版这些因素。
计算期刊的影响因素
特定的期刊的影响因素平均被引用的频率在一个具体的时期之内。它被决定的平率在一个为期两年的时间框架,但是也可以被计算用于五年的期间。为了计算一个特定为期2年的索引的期刊,被计算文章的数量超过2年以上。在一年之内这些引文的文章的数量被计算。影响因素就是在这2年期间出版文章的比例。如此这样,为期2年的影响因素为5.0,将意味着平均在在一个特定的杂志文章2年内被引用五次。
在计算顶级出版的文章里,JCR仅仅包括文章.评论.注解,然而顶级的引文也能包括信件和会议摘要。尽管JCR出版了一个2年的影响因素,在某些领域,五年影响因素可能是一个更合适的度量。这些领域有冗长提交出版时间表,需要花费2年多的时间去整合和和应对,出版物可以通过一个影响因素获得更好的服务,发表的款项引文和文章数需要更长的时间框架。
汤姆森计算来自60多个国家1000多份期刊的影响因素,大量的期刊被用英文出版或最低限度的书目知识也是用英文。然而,在这特定领域里,这些影响因素并不是对所有期刊都有价值。例如,在化学教育领域,化学教育者和澳大利亚教育杂志不能被ISI索引,在科学教育方面,科学学院教学杂志不能被ISI索引。影响因素,它源于数字上的公式,没有偏见。重度引用评论文章可以使一篇期刊的影响因素膨胀,尽管评论型的文章可以从计算中移
除。有些影响因素不赞成那样的研究领域,这些研究是在小的范围或者领域,他们往往引用旧的研究和非定期的来源,例如,人文或者社会科学.尽管影响因素的缺点,他们被学术机构使用,为了在这一领域里比较期刊和评估奖学金的工作。期刊和领域的比较可能产生误导,作为一个低影响因素将是在一个小的.专门的领域,而不是在一个大的令人深刻的一般领域。也很少出版有关作为一个奖学金工作指标的影响因素的有效性.化学教育研究期刊出版的影响因素
2009年索引的期刊的影响因素在化学教育和科学教育出版,并且被列于表1。通过比较,表2列出了期刊的影响因素,发布广泛的科学研究和化学研究,包括那些专注于特定的学科2年和5年期刊的影响因素包括化学科学和自然,与化学教育和科学教育研究的期刊相比,他们大幅度的提高。实际上,在化学教育方面,评估化学教育研究者的奖学金是通过推广和任期限制的委员会.薪酬与功绩委员会等,他们需要一个方法使他们能洞悉低的影响因素。
每2年和5年在化学教育具体的期刊方面的影响因素少于1.000,。如此这样,那些评估作为一种比较一个给定的出版期刊的方法是近乎没有意义的。即时指数被定义为文章引用的次数除以某一年在该杂志发表的文章数目。因此,它代表一篇在今年出版的文章平均被引用的次数。在表1的低即时指数值表明整合,在化学教育的教育研究出版工作的时间长于1年,因为在每一个案件的即时指数不到1。
科学教育期刊出版化学教育研究的文章,为期2年的影响因素都大于1.000.4个刊物有2个5年的影响因素接近3.0。然而,即时指数再次表明,出边和科普工作在科学教育方面的一体化步伐缓慢。在一个小的领域里,提供可靠的数据不作为比较的影响因素,影响因素具有速度较慢的出版和集成研究。在化学教育研究需要被探究中,我们认为有一个方法在决定顶级期刊提供了影响因素的比较。
这项研究的灵感和它被设计的起源来自一个数学教育的场地研究报告,这项研究关注了出版场地的排名,在本科数学教育研究,包括了同行审阅的期刊会议录。调查问卷被送往49个本科数学科学人员,要求他们将3种22个期刊不同的分类,第一类:最突出现场的的场地,第二类:表示表示强烈的审阅场地,第三类,简单描述另一个审阅场地。在该领域里大量期刊的质量的排名有效的提供大量的分析源自该领域的期刊,关于质量.信誉.外贸.工贸各个时期的影响。这个信息可以用来通知的推广和使用权的过程中。
因此,我们决定如何同行审评化学教育研究员在化学教育和和科学教育方面的排名。
方法:合伙调查
这项人口调查研究由2种来源组成。化学教育研究人员的清单通过使用由Stace.Lowery.Bretz建设的网站所认定,它包含了一系列大学,这些大学拥有化学教育的项目(硕士和博士水平)和实际上直接参加这些项目。第二个来源指出“期刊编辑”由已经在研究方面有所发表的一系列成员所组成:2000和2009的科学与教育的化学教育部分章节或者已经在化学教育方面出版过文章和在2005年和2009之间实践过(CERP)。2005的这一年的标志,当时大学化学教育被英国皇家化学学会出版,化学教育起初在欧洲被Ioanninas大学合并为了组成化学教育研究和实践,然后它被英国皇家化学学会研究和实践。2个来源取得的总人口人数的267名教师成员。化学教师成员来自32个国家和6个不同的州的代表在这个联合里。这相当于美国的中心,267名教师中的146人被雇佣到美国的学院和大学。在欧洲,66名教师在联合里被认定,他们中的25定居在美国。
资料搜集
这项调查是使用一个程序,允许匿名手机数据,通过一个基于Web的软件界面。一个邀请去完成那个调查,它被发送通过Qualtrics软件送到267名教师成员那里。
调查
这项调查由3个问题组成。第一个问题包含了7个国际期刊的名单,出版化学家与研究在美国.墨西哥.英国和澳大利亚。被选中的7个刊物整个基于频繁引用整个化学教育文献。对于每个杂志,3个选择之1就是教师成员被要求去给期刊的质量排名打分。第一类表示一个顶级期刊,在这个领域里最杰出之一。第二类表示中级期刊,和第二类是低级期刊,要么化学教育研究人员不熟悉或者认为是至少在该领域有影响力的,在调查的第二个问题要求受访者使用相同的分类方案分类15科学教育期刊。一套科学教育期刊的选择源于在化学教育文献被频繁的引用。第三个问题要求提供同行评审期刊的名字,它们没有被列于前两个问题之中和使用分类方案去分类这些期刊。
邮寄调查
此次调查可有效利用30天和一个提醒邀请在15天内被发送,在最初的邀请送到教师成员那里,他们还没有完成那个调查,一个功能有效的Quqltrics软和件,所以回应数据在结束的30天的期间被下载和在一个密码保护的电脑上储存。
结果与讨论
一个回应率百分之四十的调查被获得(267中的107参加了那个人口回应)。这些资料被分析用于完成107位调查回应的每一个人的问题并且进行低的讨论。那些回应和分析被展示在化学教育期刊的表3。这些期刊按照意义从最小到最大的排列好,化学教育期刊(美国)一直排名最高,平均1.28,Quimica教育(墨西哥)一直排名最低,平均2.59。这些受访者的回应的比例被包括在表2的最后一列为了表明,并不是每一个参加的期刊都会被排名。平均计算.中位数.标准差,不包括空白处的响应,因此,空白处的这些回应不会差生不利于统计的分析的影响。
方差分析方法被用来测试是按照坐落的地理位置在回应中的差异。坐落的地理位出现的响应对排名没有重大意义的影响。
这些资料显示,积极的化学教育研究人员把“华尔街日报”评为最杰出的期刊,由ACS化学教育和ACS期刊联合出版,化学教育研究与实践由皇家化学学会出版。中级的期刊包括化学教育家.生物化学模建和分子生物学教育。较低层次的期刊包括澳大利亚在化学方面的期刊.化学教育和Quimica教育。
科学教育期刊的回应和分析在表4中展示。四个排名最高的科学教育期刊被索引在ISI和已经报道了一些影响因素。再次,方差分析方法被用来测试是按照坐落的地理位置在回应中的差异。坐落的地理位出现的响应对排名没有重大意义的影响。
在教师的回应和分析的基础之上,最杰出的期刊科学杂志.国际科学教育杂志.科学教学.科学教育中的研究。中级的期刊是科学教育期刊和科技期刊.科学教师教育期刊.科学学院教育杂志.校园科学期刊和数学期刊。低级的期刊的科学教育期刊是科学期刊的编辑,国际科学教育期刊.加拿大科学期刊.数学科技术教育.纳米教育杂志.妇女杂志和少数民族在科学与工程.,共振:科学教育期刊和Baltic科学教育期刊。
这很能说明较在化学教育的评级比较最高等级的的期刊排名的问题—化学教育期刊和化学教育研究与实践—与那些在科学教育方面:科学教育研究期刊(JRST),国家科学教育期刊(IJSE),科学教育。所有这些期刊的编辑委员会,包括从来自国际委员会的研究人员,除了JCE之外,其中有一个是社会咨询委员会,他们由来自美国的教师和化学家组成。有关答辩的一件一致的其他证据可以再表5中搜索,它平均的展示了JCE.IJSE,对于其他期刊,科学教育作为第一类期刊排名在JCE或者CERP。表6平均展示了JCE和CERP的期刊,期刊在JRST,IJSE的排名,或者科学教育作为第一类期刊。