第一篇:植树问题教学反思
植树问题教学反思
“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。
这节课主线明朗清晰,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。同时能灵活构建知识系统,注重教学内容的整体处理。能活用教材,对教材进行了整合和重构,让资源启迪探究。激发学生探究的欲望。设计的例题是一个开放性的题目,提供给学生的是现实的,是有意义的,挑战性的。开放性的设计,使课堂成为充满活力的自己空间,从而激发学生的思维,让他们积极地去探究,使学生完整的体验“植树”这一实践活动。让学生比较系统地建立植树问题的三种情况,即两端都种;两端都不种;只种一端。
1、关注学习起点。
学生是数学学习的主人,教师作为学生学习的组织者,引导者与合作者,应及时关注学生学习的起点。在教学中,我选取生活中的学生熟悉的事例,请学生设计一条路上植树的情况。根据学生反馈上来的情况进行分类,在教师的引导中让学生探究,设境激趣,建立知识表象,使学生得到启迪,悟到方法。把学生的主动权交给学生,让课堂真正成为学生学习的舞台。
2、体验生活数学。
“数学来源于生活,而又应该为生活服务。”在学生对植树问题的几种不同种法的基础上,我开放课堂时空,让学生从排队做操、插彩旗,让学生认识生活中的许多事例看上去跟植树问题毫不相似,但是只要善于观察题中的数量关系,就明白它与植树问题的数量关系很相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。使学生充分感受到数学知识来源于生活,又回归于生活。
此外,我还进一步拓展了教学目标,在画图求解的过程中,让学生觉得这样画到100米麻烦,产生另辟蹊径的念头,引导学生得出可以先从短一点的研究起,发现规律后在来研究复杂的问题,使学生体验“复杂问题简单化”的解题过程。
一堂课上下来,觉得还是对学生扶的很牢,没有放开,对学生的学习起点没有充分掌握,以至课堂中还有很多不足,期待日后调整改进。
第二篇:植树问题教学反思
植树问题教学反思
植树问题教学反思1
一、教学目标:
1、知识与技能目标:通过动手实践,合作探究,让学生在做数学的过程中经历由现实问题到数学建模,理解并掌握植树棵数与间隔数之间的关系。
2、过程与方法目标:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、合作交流的能力,以及针对不同问题的特点灵活解决的能力。
3、情感与态度目标:让学生在探索、建模、用模的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。
二、教学重点:理解植树问题棵树与间隔数之间的关系。
教学难点:会应用植树问题的模型灵活解决一些相关的实际问题。
三、教具准备:多媒体课件和未完成的表格。
四、教学过程:
课前准备:(多媒体放映牛顿和苹果的故事)
师:科学家的故事给你什么启示?(勤于观察,善于思考,大胆猜想…)
谈话引入:说到不如做到,让我们从现在开始,看谁的观察最仔细,看谁的思考最积极,看谁这节课也能从平常的事物中发现规律,准备好了吗?
(一)、提出问题、引发思考、探究规律。
1、手引发的思考。
师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?
师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。
2、整体感知、确定研究方向。
课件出示:在15米长的小路一边种树,每隔5米种一棵。可能有几种情况?
展示学生的猜想:(两端都种,共4棵)(只种一端,3棵)(两端不种,只2棵)
理解:“间隔”、“间隔数”、“棵数”。
(二)、小组合作,探究规律
1、提出问题。
课件:在全长1000米的孟州市大定路的一边植树,每隔10米栽一棵树(两端都栽),一共需要多少棵树苗?
学生的猜测可能有不同的结果:1000;1001;1002)
2、自主探究。
棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。
课件显示:隔10米种一棵,再隔10米种一棵……,一直画到1000米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。
引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?
让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。
3、发现规律。
学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。
师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?
课件动态演示:一个间隔对应一棵,这样一直对应下去, 1000个间隔就有1000棵,种完了吗?
师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的'方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。
4、总结归纳。
归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。
5、总结规律。
师:你们能用一个式子把规律表示出来吗?
【板书】间隔数+1=棵数 棵数-1=间隔数
6、联系生活
在我们生活中存在着很多类似植树问题的现象,你发现了吗?
让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。
(三)、点击生活
①(求间隔数)判断:元宵节,中华大街一侧从头到尾一共挂了200个大红灯笼,如果在每两个灯笼间挂一个中国结,需要201个中国结( )
②(求间隔长)公共汽车行驶路线全长9千米,从起点站到终点站共有10个站,相邻两站的距离约是多少千米?
③(求棵数)老师登古塔,每层有11个台阶,从一层开始一共走了55个台阶,龙老师到了第几层?
④ (求全长)塔楼上敲钟,从第一敲开始,每隔4秒敲一次,到第5敲时,一共间隔了几秒钟?
(四)、拓展延伸。
(课件出示世界著名数学问题)
师:数学史上有个“20棵树”的植树问题,几个世纪以来一直都引起科学家的研究兴趣。这就是:‘20棵树,若每行四棵,问怎样种植,才能使行数更多?
早在十六世纪,古希腊等国完成了十六行的排列。(出示图1)
十八世纪,美国数学大师山姆完成了十八行图谱。(出示图2)
进入二十世纪,数学爱好者绘制出了二十行图谱,创造了新纪录并保持至今。(出示图3)
(结语)今天进入21世纪,20棵树,每行4棵,还能有更新的进展吗?数学界正翘首以待!期待着同学们大胆探索、积极思考,相信你们一定会有更大的收获!
植树问题教学反思2
植树问题”原本属于经典的奥数数学内容,新课程教材把它放在了四年级下册的“数学广角”中让所有的学生学习,说明这一教学内容本身具有很高的教学思维含量和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。从学生的思维特点看,三、四年级学生仍以形象思维为主,但抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。教学时可以从实际的问题入手,引导学生在分析、思考问题过程中,逐步发现隐含于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决问题中的应用。
反思整个教学过程,我认为这节课在以下2个方面处理得比较好:
1、在探究过程中感受数学
课程标准特别强调:数学活动必须向学生提供充分的从事数学活动的机会,帮助他们在自主探究和合作交流过程中获得广泛的数学活动经验。所以在本节课中,我先让学生自己动手画画需要种几棵树,然后在小组内交流总结发现规律。学生学到了解决问题的方法,并获得了更深层次的情感体验。
2、素材来源生活
在本节课的设计中,我注重数学与人类生活的密切联系。新授环节也是以日常所见的`种树问题引入,巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都内含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它,感悟数学建模的重要好处。
我感觉这节课的不足之处有以下几点:
1、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数-1,路长=间隔数X间隔长”等等知识的扩散。
2、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。我可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
通过这一次磨课,我期望能透过自己一点一滴的积累和改善,提高自己的业务水平。
植树问题教学反思3
植树问题是人教版第八册数学广角中的一个新内容。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。
教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,不仅仅使学生熟练解决与植树问题相类似的实际问题,还要借助内容的教学发展学生的思维,提高学生的思维能力。
反思整个教学过程,我认为我执教的这节课整体是成功的。
首先,设计流畅简单易懂。整节课设计基于我班学生实际情况,课前创设情境使学生明确要学习的内容,紧接着引出例题探讨植树问题。我改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里改小数据,有利于学生的思考,主要照顾后20℅的学生。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。整节课条理清晰、层次分明、浅显易懂,始终围绕重点内容进行难点的.突破。
其次,注重实践体验探究。教学中,我创设了情境,向学生提供多次体验的机会,注重借助图形帮助学生理解知识。在教学过程中,我想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
这节课虽扎扎实实,但问题也存在着。
一、学生能够找到简单植树问题的规律“棵数=间隔数+1”,却无法运用这个规律求路长的问题。因为学生的认知起点与知识结构逻辑起点存在差异,以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。
二、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。
由于植树问题的情况复杂,还要学生多加练习,巩固知识。
植树问题教学反思4
今天我们开始了本学期的最后一个单元《数学广角》的学习,本单元中只要学习的是有关植树问题的学习,植树问题对于小学阶段的学习是一个难度,基本上是将奥数的知识渗透进入了。为了能够让那个孩子们更好的理解,我今天只和孩子们研究了植树问题中的例1,一边两端栽的情况。现根据自己的教学情况和学生的学习情况,本节课的反思如下:
1、抽象思维不够灵活,比较匮乏。
在教学的时候刚开始给出了例题,让孩子读了题,然后进行分析,可是学生很茫然连题意都理解不了,这时自己也有些紧张了于是就给孩子恩滔滔不绝的讲了起来,可是“植树问题”来源于生活,我们学习他的目的最终也是回顾生活中为服务生活做准备,可是对于现在的孩子没有一点生活经验,对于这样的题型又不好用实验去表示,所以老师在丰富的语言和表达在这节课中也显得很无力的,学生听得仍然是一脸的茫然,教师也真是一脸的无奈呀!所以针对的.这样的情况,我用图示给孩子们进行了一遍又一遍的演示和讲解,终于“功夫不负有心人”,孩子们有了一定的理解,我很高兴啊!
2、知识的迁移存在很大的欠缺。
在例题中给出的是“植树的问题”理解了,可是在练习的时候把植树问题变成了“要求插红旗、安路灯、安电线杆”的题就不会做了,不知道应该如何下手了,就不会于例题联系起来了,通过这节课的学习也充分看出来了学生对知识的类比能力的欠缺。这也是自己比较忽略的一点。
3、学生不会举一反三的应用。
在一道题中给出全长、间隔长让学生求棵树,绝大多数学生能够勉强的求出,可是,变化一下,给出间隔长、棵树,要求全长就不会了,感觉很困难了,眼神一下子就变得很茫然了。可以看出学生对于知识的迁移了变化很欠缺,分析能力比价弱。
总之,针对以上存在的问题,在接下来的课中,重点引导学生的对问题的分析能力的加强,训练他们分析问题的思维能力和想象能力。然后,通过不同类型的题,加强学生对“植树问题”的理解,做到出来题能够想到是那种类型,应该用那种方法。
植树问题教学反思5
植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的一个新内容。教学中,首先要让学生区分出植树问题的三种类型。即所谓的“两端都种”“只种一端”(包括封闭图形)与“两端都不种” 的三种情况。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”,要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。
其次,要教给学生解题的方法。不管什么植树问题,一般都是先求出有几个间隔。可以根据“路的长度÷间隔长度=间隔数”然后再根据植树问题的三种类型(“两端都种”“只种一端”(包括封闭图形)与“两端都不种”)去求出棵树。也可以根数告诉的棵树,用“加一”“不加不减”“减一”求出间隔数,再求出路的总长。
其三,要让学生学会联系生活。把生活中的问题转化成植树问题。可以让学生找一找生活中的 “植树问题”,很多同学联想到:公路两旁的路灯、公路中的.斑马线、楼梯的台阶、栏杆的铁柱等都含有与“植树问题”相同的数量关系。亚奥让他们学会分析是植树问题中的哪种类型。然后可以利用“植树问题”的规律来解决它。课堂中可以结合教学内容,让学生利用所学找到规律进行解决,使他们的认知得到进一步的深化和提高,从而获得了学习数学的乐趣,达到了理想的课堂教学效果。
植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的一个新内容。教学中,首先要让学生区分出植树问题的三种类型。即所谓的“两端都种”“只种一端”(包括封闭图形)与“两端都不种” 的三种情况。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”,要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。
其次,要教给学生解题的方法。不管什么植树问题,一般都是先求出有几个间隔。可以根据“路的长度÷间隔长度=间隔数”然后再根据植树问题的三种类型(“两端都种”“只种一端”(包括封闭图形)与“两端都不种”)去求出棵树。也可以根数告诉的棵树,用“加一”“不加不减”“减一”求出间隔数,再求出路的总长。
其三,要让学生学会联系生活。把生活中的问题转化成植树问题。可以让学生找一找生活中的 “植树问题”,很多同学联想到:公路两旁的路灯、公路中的斑马线、楼梯的台阶、栏杆的铁柱等都含有与“植树问题”相同的数量关系。亚奥让他们学会分析是植树问题中的哪种类型。然后可以利用“植树问题”的规律来解决它。课堂中可以结合教学内容,让学生利用所学找到规律进行解决,使他们的认知得到进一步的深化和提高,从而获得了学习数学的乐趣,达到了理想的课堂教学效果。
植树问题教学反思6
《植树问题》是人教版新课程标准五年级上册“数学广角”的内容,这一单元主要内容就是植树问题,植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。
这样就把植树问题分成了三种情况,即:
(1)两端都种:植树的棵数=间隔数+1
(2)只种一端:植树的棵数=间隔数
(3)两端都不种:植树的棵数=间隔数—1。
在教学中,我注重了学生动手操作能力的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔之间的关系,既有趣味性又贴近学生的生活。
本节课的主要目标是向学生渗透复杂问题从简单入手和一一对应的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的方法,以此为基础,根据学生的认知规律。
我设计了以下几个环节:
一、通过课前活动,以植树为素材,从让学生初步认识间隔,感知间隔数与棵树的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法,注重学生获取知识过程的体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。
因此,在教学过程中,我注重了对数形结合意识的渗透。直接例题导入,引导学生可以画图模拟实际栽树,通过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的.关系,就此向学生渗透复杂问题简单化的思想,让学生自主选择短距离的路用画图的方式得出结果。这样把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。
但是我感觉在本节课的教学活动中还有不足的地方:
其一,在时间的分配上我前松后紧,在规律的寻找和简单应用中花费的时间有点长,以致后面的练习很仓促。
其二,条理不够清晰,简直成了教师在唱独角戏,学生参与面不广,没有很好地完成教学任务。
在今后的教学中我还要全面、深入的了解学生,充分做好多个方面的准备。
植树问题教学反思7
《植树问题》一课蕴含了许多数学思想方法,但对这些数学方法的挖掘和处理可谓“仁者见仁,智者见智”。我觉得这一课的数学思想方法主要是“化繁为简”或者说是从简单入手寻找规律,而这种方法在北师大版教材中体现得淋漓尽致,而在人教版教材的编排上可谓“若隐若现”,因此我觉得我们使用人教版教材的课堂,应该充分挖掘教材教给学生这种解决问题的.策略。
课堂教学中我安排了三个层次的探究活动,从实物操作到画线段图到类比推理,有效地突出了解决问题策略的重要性和多样性。学生在课堂上也领略到数学智慧的夺目光彩,增强了学生学习数学的兴趣和信心。通过本课的设计和实践,我更迫切地感受到数学思想和方法在学生学习和生活中的重要性,因此对数学思想和方法在课堂中落实的研究迫在眉睫。这也是当前数学课堂中存在的重要缺失,身为教研员更为向广大教师传播数学思想和方法的重要性,并提出渗透数学思想,教给学生数学方法的有效措施。
本课中为了突显解决问题策略的多样化和完整性,我把教材中原本安排两课时完成的内容缩成一课时。而且在这一课时我把教学重点放在学生解决问题策略的学习、理解上,因此对于本课的知识点的处理上略显不足。
植树问题教学反思8
《植树问题》是人教版新课程标准实验教材五年级上册“数学广角”的内容,曾经被演绎出了许多经典课例。因此在教学准备阶段,我认真地研读了很多课例,发现在诸多课例中,存在着这样一个共同的特点:任课教师都特别重视关于“植树问题”的三种不同类型的区分,即所谓的“两端都栽”“只栽一端”与“两端都不栽”。普遍采用了“学生独立探究(或分组探究)、反馈交流、教师总结&rdq
uo;的模式进行教学。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。同时在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。
通过对教材和各种相关的教学资料的深入解读,我认为“植树问题”就教学而言,可分为两个不同的教学目标:
一、明确引出“间隔数”与“棵数”这两者的关系,突出“一一对应”的思想,并以此为基础分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,使学生真正理解棵数与间隔数的关系。
二、总结出相关的计算公式“总长÷间距=间隔数”,并通过公式帮助学生更好地去掌握这一解题模式。
反思整个教学过程,我认为这节课在以下几个方面还是处理得比较好:
1、这节课主线明朗清晰,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。
2、我注重教学内容的整体处理,对教材进行了整合和重构,设计的例题是一个开放性的题目,开放性的设计,使课堂成为充满活力的自由空间,从而激发学生的思维,让他们积极地去探究,使学生完整的体验“植树”这一实践活动,让学生比较系统地认识到在直线上植树有三种情况,即两端都栽;两端都不栽;只栽一端。
3、植树问题的思维有一定的复杂性,对于刚接触植树问题的四年级学生来说,则更有一定的难度了。所以,我让学生根据示意图用算式来表示出植树的棵数,学生在列式计算的'过程中,通过直观的观察初步感知三种情况:两端都栽“棵树=间隔数+1”,只栽一端“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。之后,再引导学生用“一一对应”的思想,举起右手比划比划,分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,从而真正理解这三种情况下,棵数与间隔数的关系。
4、学生列式计算出三种栽法的棵数后,我引导学生思考:这三种情况,我们在列式计算棵数时,第一步都是先求什么,怎样求?通过学生的小组讨论后得出:要求棵数,得先求间隔数,并清楚地总结出相关的计算公式“总长÷间距=间隔数”,通过公式帮助学生更好地去掌握这一解题模式。
5、注意反映数学与人类生活的密切联系。巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。
我感觉这节课的不足之处有以下几点:
1、数学的思想方法是数学的灵魂。本册安排“植树问题”的目的之一就是向学生渗透复杂问题从简单入手的思想,本节课没有让学生体验到“复杂问题简单化”的解题过程。
2、一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,以至课堂中还有很多不足之处,期待日后调整改进。
3、对课堂的生成问题处理还不够灵活,不能进行很好的利用。
在今后的教学中,希望能通过自己一点一滴的积累和改进,提高自己的业务水平和调控、处理课堂生成的能力,在不久的将来,能看到更棒的自己。
植树问题教学反思9
一、教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角” 第117—118页。
二、教材目标:
1.通过生活中的事例,知道 “植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。
2.通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培 养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。
3.能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应 用,培养学生的应用意识和解决实际问题的能力。
三、教学重点:引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。
四、教学难点:理解间隔数 与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。
五、教学准备:学习单、多媒体课件、小树和小路模型。
六、教学过程:
(一) 问题导入:
出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?
教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”
(二)探究新知:
1.队列问题:
出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的.关系,再次对应“间隔数+1”
并出示课题。
2.植树问题:
(1)体会“化繁为简”思想:
问题导入:同学们到达目的地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?
突出矛盾:数字太大,不易思考,引导学生转换较小的数。
明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)
(2)设计三种植树方案:
引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。
①学生活动,教师巡视。
②汇报、展示:
③小结:组织学生对不同方案进行命名,突出其主要特征。
教师板书:两端都种、只种一端、两端不种
(3)探究规律:
①求间隔数:
教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1” 。
在没有植树的棵数时,探究间隔数与全长、间隔的关系。
组织学生独立思考,借助学具、线段图等形式探究规律
a:学生思考并摆学具或画线段或列算式。
b:汇报:
②探究间隔数与棵数的关系:
开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔 米植一棵,一个需要棵树?
小组合作完成探究,活动要求:
1)自己选择适合的间隔长度,四人小组合作完成记录表。
2)小组选择一种植树方式进行探究。
3)可以借助摆学具、画线段、数手指或列算式的方式。
a:学生小组活动,教师巡视。
b:学生汇报发现规律,教师板书。
c:升华:
三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。
d:应用:
老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?
(三)巩固提升:
1.选一选:
下面每一题相当植树问题的哪一种情况?
(1)音乐中的“五线谱”( )
(2)衣服上的纽扣( )
(3)成语“一刀两断”
(4)自鸣钟九点报时的钟声( )
A.两端都种 ; B.只种一端; C.两端不种。
2. 广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要 秒。 3. 小法官:
(1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。( )
(2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。( )
4.学校一条大路的一边共插了20面彩旗。
(1)如果使两面彩旗中间放一盆花,一共要放多少盆花?
(2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?
(四)课堂总结:
师:今天我们学习了什么?你有什么收获?
生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。
教学反思:
通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。
植树问题教学反思10
这节课中我教学的是植树问题中的一种情况,即两端植树问题。反思这节课,我是有喜也有忧。喜的是学生学习比较投入,气氛比较活跃,大多数发言积极,悲的是学生的学习效果没有达到我预期的目标,中等以上的学生掌握的很轻松,但基础较差的学生掌握的不太好,还没真正达到学以致用目的。
为了让学生积极主动地投入到数学活动中,我创设与学生的生活环境和知识背景密切相关的学生感兴趣的学习情境。我选择猜谜语的方式,接着以学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,首次清晰地看出手指的个数与空格数之间是相差1的。然后让他们观察教室里那里有间隔,最后举出生活中那里存在间隔,让学生听钟声,在听到基础上用线段图画出钟声和他们之间的时间的间隔。学生在看,听,画之后初步感受了间隔和棵数之间的关系。这一系列的创设使学生体会到,只要处处留心用数学的眼光去观察宽阔的生活情境,就能发现在平常事件中蕴涵的数学规律。
学生在分组合作寻找规律的时候表现的很轻松。在学生的积极性调动起来后,便出示生活中的植树问题,让学生分组自主解决,在这个环节中,我让学生自主选择自己喜欢的.方法解决问题。学生通过自己动手画线段、摆跳棋,完成我给出的表格,很快就发现了其中蕴含的规律,产生了很强的成功感,同时也有了一份自信,极大的调动了学生积极性。在此基础上,我适时的提出要同学们帮忙解决一个问题,这样既培养了学生的数学应用意识,又让学生感受到数学与生活的密切联系。植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,我并没有就此罢手,而是让学生找找生活中的类似现象,如栽电线杆,排座位,安路灯,插彩旗等等,在学生从具体生活中抽象出数学现象后,又再一次让学生运用规律解决形式各异的生活问题,使数学知识运用于生活,使学生深深地体会到数学的价值与魅力。整节课,大多数学生的思维表现的很活跃。
但这节课也有我颇感不足的地方,那就是我把学生估计过高,我以为只要学生弄懂了棵数也段数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为有一部分学生知道了全长和间距不会求段数,我以为这是学生早已经学过的而且经常用到的,所以没特别的复习,导致了基础较差的学生无法下手。其二在时间的分配上我前松后紧,在规律的寻找和简单应用中花费的时间有点长,以致后面的练习很仓促。
植树问题教学反思11
《植树问题》是新人教版小学五年级数学上册数学广角的内容。本节课是第一课时,是植树问题中比较简单的情况。教学目标和教学重点都是引导学生发现两端都栽时,棵数比间隔数多1,渗透化繁为简、一一对应的数学思想。教学难点是理解这一规律。
为了突出重点,探究新知环节,我分了五个层次进行:第一个层次,同桌合作,模拟在20米的小路一旁植树的过程,思考棵数与什么有关;第二个层次,独立操作,模拟在25米的小路一旁植树的过程,感知棵数与间隔数的关系;第三个层次,根据前两次的经验,不操作,画线段图,探究在30米的小路一旁植树的情况,验证棵数与间隔数的关系;第四个层次,想象在35米的小路一旁植树,计算出要栽多少棵;第五个层次,观察比较,找出四个题目中的相同点。通过五个层次的教学,学生不难发现“间隔数+1=棵数”这一规律,同时渗透“化繁为简”这一重要数学方法。突破“理解这个规律”这一难点时,我提示:“植树问题能不能也看成是两种物体的`一一间隔排列呢?”。
在老师的引导下,学生思考后,自己说出用分组的方法,把每组中两种量一一对应起来。接着,老师因势利导,学生发现如果一组一组的分,正好分完,则数量相等;如果有剩余,则数量就是相差1,帮助学生理解间隔数+1=棵数。从学生学习状态、课堂交流来看,达到了本节课的目标,实现本节课的预期目的。
本节课的还有很多足之处:
1、学生回答问题不准确,甚至出错,我觉得是老师组织语言不严密,问题的指向性模糊,备学生不太充分等多方面的原因造成的。学生有时一脸茫然,有时不知所措。
2、课堂条理还需改进,有遗漏的环节,有强调不足的情况,也有不必要重复的话语。
3、因担心时间超时,在教学过程中,不予理睬学生的答非所问,而急于得到只符合老师想要的答案。
有遗憾的课才是真实的课,才是更有价值的课。我会以每节课为起点,在需要努力的方面下功夫,需要改进的地方多揣摩,从一点一滴做起,使自己的课堂日趋完美,上得精彩,少留遗憾。
植树问题教学反思12
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。
然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
二、注重学生的自主探索,体验探究之乐。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。
因此,在教学过程中,我注重了对数形结合意识的渗透。生活情景图引入后出示实例图示,引导学生在观察、点数形象图形后进行填表,发现两端植树时棵树与间隔数之间的关系!当学生对实物图有了清晰的认识后,教师将形象的。图形抽象成线段图,让学生在脱离实物图后,依然能够发现棵树与间隔数之间的关系。在电脑演示中学生直观的.体会到了植树问题中相关的量,在观察思考后学生则进一步验证了棵树与间隔数之间的关系。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、利用学生资源,加强生生合作
学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。
四、关注植树问题模型的拓展和应用
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:
(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如校园内花盆的摆设,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的。
植树问题教学反思13
“植树问题”是人教版四年级下册第八单元的内容,本单元通过现实生活中一些常见的实际问题,借助线段图等手段让学生发现一些规律,抽取出其中的数学模型,然后在用发现的规律来解决生活中的简单实际问题。
本单元的植树问题分为三种类型:两端都栽、两端不栽、在一条首尾相接的封闭曲线上植树。我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单情境入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。反思整个教学过程,我认为我执教的这节课整体是成功的。
第一、预习安排得比较巧妙。从学生熟悉的手指切入,理解什么叫间隔,手指数与间隔数的关系,转化为树与间隔数的关系,得出:棵树=间隔数+1。
第二、教学环节设计由浅入深。在学习完例题后的'检测中我先设计了一个和例题基本一样的题型(课本下面的做一做)让学生练习,这道题告诉我们的信息是“2的街道两旁路灯,每个50安一盏”问题是“一共安装多少盏”它一方面检测学生对刚学习的知识是否掌握,另一方面检测学生是否认真审题。另外设计了一个求棵树的变式练习,在最后的拓展环节中又设计了一个求间隔数的练习题,整个环节给人一种稳步高升的感觉。充分体现了数学的由浅入深、由易到难的思想。
再次,学生学习的积极性较高。本节课学生预习较充分,对新知有了一定的认识,学习起来相对容易些,比如再找棵数与间隔数之间的关系时,一方面有了预习题的基础,再加上充分的预习,学生很快就得出了他们之间的关系,所以很快解决了检测的题,留下的遗憾就是学生审题不认真,只注意到了单位的不统一,没有注意“两旁”一次,方法对了,缺少了一半。后来的练习在提醒学生认真审题后,学生的积极性更高,争先恐后要求上台展示。
这节课虽不错,但问题也存在着。
一、学生在展示时语言表达不够完整。在说思路时总说半截话,需要教师的提醒在说完整,导致说的解题思路不够清晰,因此在今后学生手思路时要求学生按顺序;第一步、第二步、第三步......,一步一步来说。
二、在拓展训练中引导不到位。求路长,实际还是先求“间隔数”,没让学生弄明白。
三、总结规律时本人在复述时叙述不完整,没有强调“两端都栽”这个前提条件。这也说明,本人在语言叙述中也存在问题,也折射出本人数学思维的不严密,也导致学生的课堂语言出现问题。这也是本人应该深思的,更应该改进的。
植树问题教学反思14
《植树问题》是四下第八单元“数学广角”中的内容,这个单元主要是向学生渗透有关植树问题的一些思想方法,通过现实生活中一些实际问题,让学生发现规律,然后再用发现的规律解决生活中的一些实际问题。植树问题分为两端都栽、两端都不栽、一端栽一端不栽三种情况。本节课我教学的是植树问题中的第一种情况,即两端都栽的问题。反思整个教学过程,我认为有以下几点做得比较好:
一、关注学生的学习起点
学生是数学学习的主人,教师作为学生学习的组织者、引导者与合作者,应及时关注学生学习的起点。在教学过程中,我通过对五指的手指个数与手指缝之间关系的探究,在直观形象的手指演示中让学生初步感知棵数与间隔数的关系。本课伊始,我首先出了个谜语:“一棵树,五个叉,不长叶子不长花,能写能做还会画,就是不会开口讲讲话。”随后让学生观察自己的手指,引导学生得出:五个手指有4个间隔,4个手指有3个间隔,3个手指有2个间隔,2个手指有1个间隔。使学生清楚地看出手指的个数与间隔数之间是相差1的。接下来又通过做快速问答的游戏,使学生加深认识了植树问题中间隔数和棵数的关系,为下面的学习做了铺垫,同时学生的学习兴趣也被激发了起来。由此可见,我们在教学中一定要关注学生的学习起点,放低起点,这样才会收到事半功倍的效果。
二、注重学生的自主探索
学生通过自己动手画图,很快就发现了其中蕴含的规律。展示环节,我让展示小组的学生利用展示台给大家展示,学生指着自己画的线段图边讲解边说,让其他同学清楚地看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。改变间距后,段数和棵数相应也发生了变化。
通过自学,小组交流,小组展示,学生很容易的得出了在两端栽的情况下棵数与间隔数之间的关系是:总长÷间距=间隔数,棵数=间隔数+1。整个学习过程都是学生自主探索的结果。学生把整个分析、思考、解决问题的过程全部自己展示了出来。在这一过程中,学生积极思考,大胆尝试,主动探索,也体验到了成功的喜悦和学习的乐趣。
三、关注植树问题模型的拓展和应用
规律总结出来了,我并没有就此罢手,而是让学生找生活中的类似现象,使学生认识到生活中的许多事例看上去跟植树问题毫不相干,但是只要善于观察题中的数量关系,就明白它与植树问题的数量关系很相似,如计算公共汽车从起点站到终点站所行的距离及爬楼梯问题。求路边的电线杆、排座位、在路两旁安装路灯、插彩旗等等,目的是让他们利用所学植树问题的知识来解决生活中的数学问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值。
四、渗透数形结合的思想,培养学生借助图形解决问题的意识
数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。本着这个思想我在让学生理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的`能力。练习环节,我还设计了我们平时熟悉的钟声,让学生听钟声,在听到基础上用线段图画出钟声和他们之间的时间的间隔。学生在听、画之后初步感受了间隔数和棵数之间的关系。同时,通过画图,降低了此题的难度。再如:在解决锯木头问题时,通过成语“一刀两断”引出“一刀两段”,结合线段图,清楚地使学生理解间隔数总是比端点数少,使用数形结合的方法,在增加学生学习兴趣的同时,植树中棵树和间隔数之间的关系便迎刃而解。
存在问题:
这节课也有不足的地方,那就是我把学生估计过高,我以为只要学生弄懂了棵数与间隔数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为例题是给了全长和间距求棵树,但“做一做”却是给了间距和棵树求全长,属于逆向思维,所以,有好多同学就不知从何下手了,导致出错很多。其实就是在发现规律与运用规律间缺少了链接,应加强对规律的扩散教学,比如:得出规律时,可以总结一下“间隔数=棵数—1,路长=间隔数×间隔长”等知识的扩散。
植树问题教学反思15
5月2日,我有幸参加了县教研室举办的“小学数学教学能手评选——课堂教学展示”。欣赏了同行智慧、高效的课堂教学,聆听了名师、专家精彩独特的点评,感触多多、收获多多!自己课讲完了,有一些轻松,但也有深深的遗憾!
我所执教的是四年级下册“数学广角”第117页内容,教学两端都栽的植树问题。主要目标是向学生渗透复杂问题从简单入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会数学就在身边,体验到数学的魅力。因此,我在教学中设计了“形成猜想——化繁为简——合作交流——发现规律——梳理方法——应用规律”的教学流程,意在让学生经历“猜想——验证——建立数学模型——应用”这一过程。反思本课教学过程,我觉得以下几个方面做得比较成功:
一、重情境创设,让学生亲近数学
讲授新知时,利用猜谜语“手”导入,孩子很感兴趣。在手指并拢、张开的活动中,引入“间隔”“、间隔数”;感知手指数与间隔数的关系;并通过课件展示一些生活中的间隔,让学生体会不同的事物或现象之间存在着相同的数学本质,从而提炼出“植树问题”的生活原型,让学生感受到生活中处处洋溢数学信息。
二、重自主探索,让学生体验数学
如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解就是学生建构知识的一根拐杖。在突破本课重点部分,我用课件演示“一棵一棵的种树”,使学生认识到:一棵一棵的种,一直要种到100米,太麻烦、太浪费时间?就此向学生渗透复杂问题简单化的思想,让学生自主选择短距离的路程,动手画线段图、完成表格,寻找规律。学生在操作和交流中,经历了直观、感知、观察、发现的全过程,很快地找到了“间隔数”与“全长和间距”之间的关系、“间隔数”与“棵数”之间的关系。孩子们的动手能力、合作能力、实践精神都得到了一定的培养。
三、重生活应用,让学生实践数学
植树问题的模型在现实中有着广泛的应用价值,为了让学生理解这一建模的意义,我出示了生活中的一些植树问题。如:“路灯的安装”,让学生自主完成巳知总长和间距,
求路灯的座数。又如:“跨栏”,出示图片,学生从中找到间隔数,并用间隔数乘以间距求出全长。学生从正反两个方面出发,应用模型解决实际问题,孩子们在实践数学的过程中,巩固了所学知识,更感悟到数学学习的价值所在!
这节课虽扎扎实实,但问题也存在着:
一、练习设计缺乏趣味性
题型设置太过单一(应用题),可挑选些填空题、选择题,让孩子们进行智力闯关,从而体验作业也是一种快乐。
第二题可改为“公共汽车站台”的事件,这样会和主题“生活中的植树问题”更为贴近。
二、细节的处理不够到位
1.要善于鼓励。轻松愉悦的课堂离不开学生的积极投入,更离不开老师由衷的鼓励。课堂中,我惦记着教学任务,也放不开自己,没能经常鼓励、赞美学生,好孩子可是夸出来的呀!
2.要懂得微笑。上课时,我应多一些微笑,让四(1)班的孩子都感到我是喜欢他们的`,这样有助于拉近我们师生间的距离,让他们更具安全感,营造一个更为和谐的课堂氛围!
3.要前呼后应。教学例1时,我先让学生猜一猜需要多少棵树,之后动手画图验证猜想,但忽略了反馈:“谁的猜想正确呢?” 、“为什么?”这样的话既为下面的学习作了铺垫,又能激起学生的学习兴趣!
4.要面向全体。课堂中,要使每一个学生获得参与的机会,不能扶得太牢。如:“巩固练习”部分,可采取学生介绍解题思路、批改同伴作业、生生互评等形式,给他们足够的空间展示自己,增强自信心、荣誉感,使他们更加热爱数学!
记得一位名人曾说过:“平庸的老师传递知识;水平一般的老师理解知识;好的老师演示知识;伟大的老师激励学生学习知识。”我明确肩上的重任,定将掌握课标、更新观念,本着“勤学、善思、实干”的准则,在课堂教学中减少缺点,慢慢地增多优点与亮点,让自己的数学教学充满学问!充满魅力!
第三篇:植树问题教学反思
勐卯小学教研活动《植树问题》的心得体会
姐相小学 蚌绍芝
人教版小学数学四年级下册《植树问题》是本册书中“数学广角”里的内容。本单元主要是渗透有关植树问题的一些思想方法,通过观察生活中一些常见的问题,让学生从生活中发现数学规律,再利用所发现的规律来解决生活中的一些简单问题。这一部分知识的学习为后面学习封闭曲线中的植树问题及两端都不栽树的问题打下了基础。
听了于谦老师的课给我的总体感受是:
本节课本着数学源于生活,回归生活的基本指导思想,引导学生经历了感知——设疑——猜想——验证——总结——应用等一系列的数学活动。学生在比较轻松的气氛中自主展开学习,展示出了自己独具个性的学习方法,并理解了间隔数与点数这两个概念之间的抽象关系,学生的思维得到了锻炼、能力得到了提高,取得了很好的学习效果。具体认识如下:
1、精心设计,展现科学流程
这节课教学流程经历了:图片导入,感知规律——探索新知,发现规律——回归生活,运用规律的过程。思路清晰合理,整个教学过程流畅自然,轻松民主,简约而不简单。
2、尊重规律,关注学生主体发展
本节课的教学符合学生的认知规律,关注学生主体作用的发挥。如:课一开始,老师以情境式的语言激发学生观察三组图,鼓励学生说说自己的发现。学生通过观察、试说初步感知了“植树问题”的三种情况,为探索新知做好了铺垫。出示例题后教师又以此为载体,引导学生把数据改小,根据自己的思考进行探究,让学生在开放的情景中合作、交流。这些设计不仅让学生理解了多1少1的原因,建立起深刻、整体的表象,而且提炼出了植树问题解题的方法。最后例举生活中类似植树问题的内容进行解决,以生活中植树问题的应用为探讨对象,了解植树问题的实质,多角度拓展了对植树问题的认识和应用。在探究新知的过程中教师始终利用激励性的、启发性的语言,注重引导学生自主观察、发现、验证,最终学会了方法,解决了问题,锻炼了能力。
3、注重数学思想的渗透
新课程越来越重视数学思想的渗透。丁老师在本节课中注重向学生渗透化归思想。这种思想的渗透很好的帮助学生找到了解决复杂问题的一般方法。如:例题出示后丁老师引导学生将复杂问题转化成简单事例,通过鼓励学生画线段图、利用数据转化等简单方式寻求规律找出解决植树问题的一般方法。经过尝试,学生很快发现了点数与间隔数之间的关系,既为解决问题做好了必要的准备,又成功突破了本节课的教学难点。在解决问题后及课内小结等多个环节,丁教师还鼓励学生试说“我们可以用什么样的方法解决复杂问题?”,进一步渗透了方法,强化了用数学思想方法解决问题的意识。
4、师生关系融洽教学效果良好
本节课教学氛围轻松民主。教师语言简洁、教态亲切有感染力。学生上课参与主动,全班不同层面的学生都积极参与学习的全过程,学生成了学习的真正主人。本节课教师借助内容的教学,提高了学生对数学方法的理解、掌握和运用,发展了学生的思维。从课堂生成情况来看,三维目标达成良好。
第四篇:植树问题教学反思
植树问题教学反思
植树问题教学反思1
植树问题”原本属于经典的奥数数学内容,新课程教材把它放在了四年级下册的“数学广角”中让所有的学生学习,说明这一教学内容本身具有很高的教学思维含量和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。从学生的思维特点看,三、四年级学生仍以形象思维为主,但抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。教学时可以从实际的问题入手,引导学生在分析、思考问题过程中,逐步发现隐含于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决问题中的应用。
反思整个教学过程,我认为这节课在以下2个方面处理得比较好:
1、在探究过程中感受数学
课程标准特别强调:数学活动必须向学生提供充分的从事数学活动的机会,帮助他们在自主探究和合作交流过程中获得广泛的数学活动经验。所以在本节课中,我先让学生自己动手画画需要种几棵树,然后在小组内交流总结发现规律。学生学到了解决问题的方法,并获得了更深层次的情感体验。
2、素材来源生活
在本节课的设计中,我注重数学与人类生活的密切联系。新授环节也是以日常所见的种树问题引入,巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都内含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它,感悟数学建模的重要好处。
我感觉这节课的`不足之处有以下几点:
1、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数-1,路长=间隔数X间隔长”等等知识的扩散。
2、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。我可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
通过这一次磨课,我期望能透过自己一点一滴的积累和改善,提高自己的业务水平。
植树问题教学反思2
《植树问题》一课蕴含了许多数学思想方法,但对这些数学方法的挖掘和处理可谓“仁者见仁,智者见智”。我觉得这一课的数学思想方法主要是“化繁为简”或者说是从简单入手寻找规律,而这种方法在北师大版教材中体现得淋漓尽致,而在人教版教材的编排上可谓“若隐若现”,因此我觉得我们使用人教版教材的课堂,应该充分挖掘教材教给学生这种解决问题的策略。
课堂教学中我安排了三个层次的探究活动,从实物操作到画线段图到类比推理,有效地突出了解决问题策略的重要性和多样性。学生在课堂上也领略到数学智慧的.夺目光彩,增强了学生学习数学的兴趣和信心。通过本课的设计和实践,我更迫切地感受到数学思想和方法在学生学习和生活中的重要性,因此对数学思想和方法在课堂中落实的研究迫在眉睫。这也是当前数学课堂中存在的重要缺失,身为教研员更为向广大教师传播数学思想和方法的重要性,并提出渗透数学思想,教给学生数学方法的有效措施。
本课中为了突显解决问题策略的多样化和完整性,我把教材中原本安排两课时完成的内容缩成一课时。而且在这一课时我把教学重点放在学生解决问题策略的学习、理解上,因此对于本课的知识点的处理上略显不足。
植树问题教学反思3
“植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
我所执教的是教材第117页的内容,主要教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。一、通过课前活动,以中央电视台公益广告为素材,让学生感知植树与数学的联系。二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、抓住《植树问题》的数学本质,注重学习方法的培养
因为现在的家长都非常重视对孩子的,因此许多孩子都通过各种各样的途径或多或少的接触过此类问题,甚至部分学生可能已经完全掌握此类问题。但是可以肯定还有许多孩子对此类问题还是感到陌生,毕竟我们的数学课堂要顾及每一位同学的发展。因此对于此类问题的教学因采用发现学习。通过孩子对问题的探索和讨论逐步得到结论再用得到的结论回到生活中解决问题。例如在《植树问题》中,因为课始了解到许多孩子已经接触或听说过,因此课的开始教师故意把问题复杂化,把路的长度拉长,在处理教材时我把例题中的100米改为500米。其优点是让学生产生矛盾冲突,产生不同的结果,然后提出解决或验证的方法,引导学生可以采用画图的方法,因为路太长,在画图过程中学生就会发现没法解决。从而启发学生可以自己选择短一点的路来进行研究,围绕问题解决过程中的中心环节,指导学生通过分析、比较、判断、推理等思维活动,积极探究和挖掘具体事物的数学本质,并最终将问题以数学模型的方式呈现出来,使复杂的问题本质化、简洁化、一般化,从中寻找规律,再来判断和确认课始的猜想或结果是否正确,最后方法解决问题。这样一来,学生对这一类问题的解决就有了共同的程序与方法。而这对学生数学思想的培养,无疑有着无可替代的作用。
二、注重学生的自主探索,体验探究之乐。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽
松、和谐的.学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己做设计师,根据不同路长的路设计植树,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变路长后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:500米长的小路,按5米可以平均分成100段,也就是共有100个间隔,而栽树的棵数比间隔数多1,因此一共要准备101棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、关注植树问题模型的拓展和应用
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,老师加强了模型应用功能的练习,本课练习有以下两个层次:
(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学
生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如公共汽车站台的事件,街道两旁路灯的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。以精美图片的形式让孩子们了解生活中与植树问题相似的现象,感受数学的美。
从本节课的教学效果来看,由于考虑到学生的生活经验,结合生活实际,重视了数学思维培养,方法的渗透,预设的教学目标是顺利完成的。尽管本节课有值得高兴之处,但仍存在一些不足,如:课堂上生成的资源,没能及时的点拨学生,小组合作学习形式太少,因此生生交流不够充分等。这些问题有待今后教学中引起重视并加以改善。
植树问题教学反思4
《植树问题》是人教版义务教育教科书五年级数学上册第七单元数学广角的内容。这一内容主要涉及到的知识点有:两头植、两头都不植、封闭情况下的植树问题(一头植和一头不植)这三种情况。我选取的是第一课时两端种植,怎样才能让学生即能学会,还要学的轻松呢,我反复研读教材,两端其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想.模型思想,同时使学生感悟到应用数学模型解题所带来的便利。我这节课重点教学两端都栽的植树问题,主要目标是向学生渗透复杂问题从简单入手,奇妙运用数形结合的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。
一、通过自主探索的活动,渗透“以小见大”的数学思想方法,培养学生数学思维能力和解决问题的能力。
整节课设计基于我班学生实际情况,课前创设情境让学生欣赏美丽的风景,同时引导学生明确要学习的内容,紧接着引出例题,探讨植树问题,同时改小数据,将长度改成20米。目的在于,让学生在开放的'情景中,突现知识的起点,从而用一一对应的思想方法让学生理解段数+1,建立起深刻、整体的表象,提炼出植树问题解题的方法。可引导通过“以小见大”数形结合来找规律加以验证,让学生通过观察、猜测、实验、推理与交流等活动。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。这节课的设计依据了认知规律:通过例题感知间隔,以例题为载体突破教学重点难点,以生活中植树问题的应用为探讨对象,了解植树问题实质,多角度应用拓展。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。
二、关注植树问题模型的拓展和应用,反映数学与生活的密切联系。
“植树问题”通常是指沿着一定的路线,这条路线的总长度被“树”平均分成若干间隔,由于路线不同、植树要求不同,路线被分成的间隔数和植树棵数之间的关系就不同。现时生活中类似的问题还有很多,如安装路灯、设立公交车站等等。让学生从中悟出植树问题的模型它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。在学生已经自主地寻找到植树中前两种的规律后,我适时的提出在我们的生活中有没有类似植树的情况呢?通过学生的举例,让他们进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。整节课,大多数学生的思维表现的很活跃。
三、本节课的不足:
1、把学生对于段数+1应做更多的探究,部分学生并没有理解这个知识点,只会运用,应再多加讨论,让学生明白其中的原因。
2、一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,以至课堂中还有很多不足之处,期待日后调整改进。
教学是一门遗憾的艺术,虽然这节课我很尽心尽力,但也留下了很多遗憾,新的教法的一种大胆的尝试过程,总在摸索中不断完善。在准备这节课时我参考了很多资料,学习了很多方法,为的是让这节课的遗憾能少一些。我把握每一个细节,问题及时解决,站在学生的角度去思考问题,使得数学学习的思想方法得到深度的渗透。
植树问题教学反思5
复习《植树问题》
教学内容:人教版五年级上册第七单元—数学广角:《植树问题》 教学目标:
知识与技能:
(1)理解植树问题中在一条线段上植树的三种特征,并能应用规律解决问题。
(2)通过猜测、画图操作,验证,交流的方式探究三种植树问题。
(3)从封闭曲线(方阵)中发现植树问题的规律。
过程与方法:
培养学生观察能力、操作能力以及与人合作的能力。
情感态度与价值观:
学生通过观察、操作、交流等活动探索新知。
教学重点:在探究活动中发现规律,抽取数学模型,并能够用发现的规 律来解决生活中的一些简单实际问题。
教学难点:基本规律的提炼和方法的应用。
教学方法:三疑三探教学模式
教具准备:课件
学具准备:练习本、直尺
教学过程:
一、课前谈话。
同学们,学校旁边有一条长100米的小路,老师要在栽几棵树苗,想请你们当回小小设计师帮忙设计行吗?(行)今天我们来研究研究植树问题中的奥秘。
二、探究规律。
(一)1.出示题目
这条小路长100米,每5米栽一棵小树苗(两端要栽),一共可以栽多少棵?可能会有部分学生会马上列出算式:100÷5=20(棵)
①理解题意
a、指名读题,从题中你了解到了哪些信息?
b、理解“两端”是什么意思?
指名说一说,然后实物演示。
指一指哪里是小棒的两端?
说明:两端要栽就是小路的两头要种。
②学生动手操作。
拿出小棒,同桌间互相说一说,画一画,摆一摆。
③同桌互相讨论后,全班汇报交流
a、指名说一说:你一共摆了多少根小棒?
上黑板上来摆给大家看一看。
b、数一数你们刚才摆的小棒,它们之间有几个间隔?一共摆了几根小棒?
c、间隔与种树的棵数有什么关系?
④师说明:开始大家算出的100÷5=20,这个20并不是表示可以栽20棵树,而是指共有20个间隔。
2.改变题目条件变为:
在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案,并说明理由。(可用线段图表示)
1.学生试解答
2.用小棒检验
3.说一说你的想法
间隔数与栽树的棵数又有什么关系呢?
学生试说后,教师小结。
4. 基本练习:同学们做操,某竖行从第一人到最后一人 的距离是24米,每两人之间相距2米,这一行 有多少人?
5. 提高练习:园林工人沿公路一侧栽树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
(二)出示例2
1、学生读题,理解题意
①“两馆间的小路”指的是哪一段?
②“小路两旁”指的是要栽几边?
2、学生互相合作,用小棒摆一摆
师提示:我们现在可以假设大象馆和猩猩馆相距18米,其它条件不变,用小棒摆一摆,说一说。
要求完成:
①你一共摆了几根小棒?
②每一边的小棒根数和间隔数之间有什么关系?
3、全班交流
4、教师小结
这种情况属于两端都不种的植树问题,即植树棵数=间隔个数—1。
(三)用摆小棒的方法教学例3
教师小结:两端封闭的情况下 植树棵数=间隔个数
三、练习应用
1.一要木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?
2. 在教学楼前植树,每4米栽一棵,20米内可以在多少棵树?
四、课堂总结
五年级数学《植树问题》教学反思
在这节课的教学中,我不但注重了学生动手操作能力的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔数之间的关系,既有趣味性又贴近学生的.生活。
教材在编写时,都是给出路的长度,求间隔或棵数,但在练习时,很多题都是间隔数和棵数,求路的长度。避免上节课出现问题的同时我还针对上节课出现的问题对学生提出质疑,让生生互评或师生互评,重点表扬大部分学得好的同学使每一个学生获得参与的机会、培养学生探究精神体验成功的感觉,增强学生的自信心和荣誉感,使他们更加热爱数学。
本节课的主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式, 使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的方法,以此为基础,根据学生的认知规律,我设计了以下几个环节:
一、通过课前活动,以春季植树为素材,从让学生初步认识间隔,感知间隔数与棵树的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法,注重学生获取知识过程的体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。直接例题导入,引导学生可以画图模拟实际栽树,通过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的关系,就此向学生渗透复杂问题简单化的思想,让学生自主选择短距离的路用画图的方式得出结果。这样把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。
但是我感觉在本节课的教学活动中,师生间的沟通交流上还有待于进一步加强,有时过高的估计学生的学习基础和理解能力,造成站位过高的局面。今后的教学中要全面、深入的了解学生,充分做好更方面的准备。
植树问题教学反思6
第二课时教学内容:
教科书第120页的内容
知识目标:
通过开放题的教学,培养学生探究数学问题的兴趣,引导学生细致严密地考虑问题;
能力目标:
让学生自己动手,自己实验,得出规律,解决生活中的实际问题。
情感目标:
通过小组合作、交流,培养学生的协作精神。
教(学)具准备:
长方形泡沫塑料板(每小组一块,正面画圆,背面画其他的封闭图形),牙签,画有长方形的练习纸。
教学过程:
一、复习铺垫
同学们,前面我们已经研究了一些植树问题,现在我这儿有三棵小树,要把它种在公路的一侧,想请你帮我想想有几种种法?
指名回答,引导学生说出棵数与段数的关系:
两端都种只种一端两端都不种
棵数=段数+1棵数=段数棵数=段数-1
请你把这个规律跟同桌说一遍;教师在黑板上贴示。
二、引入新课:
前几节课我们考虑的都是在直条线上种树,都可以找到线路的端点,可我们生活中经常会碰到在湖的四周植树,在花坛边缘种盆花
这些你能找到它的端点来吗?这就是我们今天要重点来讨论的内容封闭路线上的植树的规律
1、湖、花坛等等,它们的外围线路都是封闭的。它和不封闭路线上的植树规律是否相同呢?我们自己动手种一下就知道了。
1)、请同学们以四人小组为单位,用牙签当树苗,在泡沫塑料板的圆上种几棵数(棵树任你自己决定),边种边数:种了几棵,把圆分成了几段?
2)、学生以小组为单位操作;
3)、交流:你们小组种了几棵,把圆分成了几段?
4)、初步概括:你们发现了什么规律?(在圆形路线上植树,棵数=段数)
2、是不是每种封闭路线上的植树规律都是这样的呢?我们还要进一步研究。
1)、出示长方形空地题目
我们学校5号楼的东面有一块长方形空地,要在它的四周种树,每边种3棵,四个角上可以种也可以不种,有几种种法?
2)、四人小组讨论,并把种的方法在练习纸的长方形上表示出来(建议:公共角上的树用圆点表示,其他的用长点表示);
教师巡视指导;
3)、学生交流:说说你们小组是怎么种的?种了几棵?把长方形分成了几段?
得出:种植路线是长方形的,种植棵数与种植段数是相等的。
4)、出示教科书第120页的例3,让学生先独立思考,再讨论解决。
5)、展示不同的解决问题的方法,集体讨论判断正误
3、研究在其他封闭图形上种树:
A、你还想在什么封闭路线上种树?(指名回答)
B、学生在泡沫塑料板的各种封闭图形上种树,边种边数:种了几棵?分成了几段?
C、小组交流。
4、得出规律:在封闭路线上植树:棵数=段数(板书)
5、联系:它和非封闭路线上的哪种情况相同?
(告诉学生事物就是这样相互联系的!
6、质疑问难:大家还有什么疑问吗?
如果在不规则的封闭路线上植树,棵数和段数是否相同?
三、尝试练习:
练习第121页的做一做上的`习题
学生尝试练习,交流,指名板书解题方法。
四、课堂小结。
这节课你最大的收获是什么?
第三课时课题:围棋中的数学问题
教学内容:人教版教科书四年级下册数学广角第120页例3及部分练习。
教学目标:
1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;
2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;
3.让学生感受数学在日常生活中的广泛应用。
教学重点:从封闭曲线(方阵)中探讨植树问题。
教学难点:用数学的方法解决实际生活中的简单问题。
情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。
教具准备:33格、44格、55格方格纸、围棋子若干粒、44格条形吹塑纸贴在地下。
课前准备:课桌围成回字形。
教学过程:
一、情境导入(课件出示)
猜谜:十九乘十九,
黑白两对手,
有眼看不见,
无眼难活久。(打一棋类名称)
[设计意图:用谜语引入,从学生的已有经验出发,激发学生的学习兴趣。培养学生良好的兴趣爱好。]
二、探索新知
1.教学每边摆放3粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?
(2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)
(3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。
(4)汇报交流(着重请学生说出方法。)
可能会出现以下方法:
32+2=824=8
33-1=834-4=8直接点数。
教师表扬学生的创新摆法,并奖励智慧星。(教师随学生回答,用课件出示摆放方法。)
2.教学每边摆放4粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。
(3)游戏:让一学生当小老师,其余学生当围棋子,请小老师邀请围棋子按上题要求站在老师设计的大棋盘上。
[设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。]
(4)汇报交流(着重请学生说出方法)
教师随学生回答,用课件出示摆放方法。
(5)你们最喜欢哪种方法?为什么?
3.教学每边摆放5粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。
(3)汇报交流。(教师随学生回答,用课件出示摆放方法。)
(4)你们最喜欢哪种方法?和同桌说一说。
[设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身经历的过程中实现知识能力乃至生命的同步发展。]
三、总结规律
(1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)
每边放的个数最外层总数
3
4
5
6
18
你发现了什么规律:_____________________________________
(2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?
(2)总结规律::教师随着学生的回答板书:
间隔数边数=最外层的总数
(3)学生根据规律,独立完成例3。
三、运用规律
1.如果最外层每边能放100个,最外层一共可以摆放多少个棋子?
如果最外层每边能放200个,最外层一共可以摆放多少个棋子?
如果最外层每边能放300个,最外层一共可以摆放多少个棋子?
拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)
2.做第121页第三题
植树问题教学反思7
《植树问题》是人教版新课程标准五年级上册“数学广角”的内容,这一单元主要内容就是植树问题,植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。这样就把植树问题分成了三种情况,即:(1)植树的棵数=间隔数+1;(2)植树的棵数=间隔数;(3)植树的棵数=间隔数-1。
在这节课我们学习的是第一种情况,在教学中,我不但注重了学生动手操作能力的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔之间的关系,既有趣味性又贴近学生的生活。教材在编写时,都是给出路的长度,求间隔或棵数,但在练习时,很多题都是间隔和棵数,求路的长度。避免上节课出现问题的同时我还针对上节课出现的问题对学生提出质疑,让生生互评或师生互评,重点表扬大部分学得好的同学使每一个学生获得参与的机会、培养学生探究精神体验成功的感觉,增强学生的自信心和荣誉感,使他们更加热爱数学。
本节课的主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的方法,以此为基础,根据学生的认知规律,我设计了以下几个环节:
一、通过课前活动,以春季植树为素材,从让学生初步认识间隔,感知间隔数与棵树的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的.高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。反思整个教学过程,发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法,注重学生获取知识过程的体验是学生从旧知识向隐含的新知识迁移的过
程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。
因此,在教学过程中,我注重了对数形结合意识的渗透。直接例题导入,引导学生可以画图模拟实际栽树,通过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的关系,就此向学生渗透复杂问题简单化的思想,让学生自主选择短距离的路用画图的方式得出结果。这样把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。但是我感觉在本节课的教学活动中还有不足的地方:
其一,上课前准备不充分,那就是我把学生估计过高,我以为只要学生弄懂了棵数和段数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为有一部分学生知道了全长和间距不会求段数,我以为这是学生早已经学过的而且经常用到的,所以没特别的引导,导致了学生无法下手。
其二,在时间的分配上我前松后紧,在规律的寻找和简单应用中花费的时间有点长,以致后面的练习很仓促。
其三,条理不够清晰,简直成了教师在唱独角戏,学生参与面不广,没有很好地完成教学任务。
在今后的教学中我还要全面、深入的了解学生,充分做好多个方面的准备。
植树问题教学反思8
一、遇到的问题:
《植树问题》是三年级第一学期教材数学广场中的教学内容,也是二期课改中数学拓展性的知识。是曾经无数次被搬上?舞台?演绎出了许多经典课例。因此在教学准备阶段,我认真地研读了很多课例,发现在诸多课例中,存在着这样一个共同的特点: 任课教师都特别重视关于“植树问题”的三种不同类型的区分,即所谓的“两端都种”“只种一端”与“两端都不种” 。普遍采用了“学生独立探究(或分组探究)、反馈交流、教师总结”的模式进行教学。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。 但是在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。
二、第一次试教分析:
我根据教学内容的特点和学生的实际情况,在探究两端都植的规律时安排了动手操作,想通过引导学生积极参与,使学生在多种形式的教学活动中,加深对植树问题棵数和间隔数之间的关系的认识与理解。活动的设计是这样的:
出示一道开放性的题目:一条公路长( )米,每隔5米植一棵(两端都要植),需要多少棵?让学生自己确定这条路的长度,
从而探究出两端都要植树时的间隔数和棵数之间的关系,要求是这样的:设计:全长( )米,每隔5米,有( )个间隔,种( )棵树让学生独立思考,画线段图,填表,汇报。本以为自己设计的教案考虑到了学生的生活经验,结合生活实际,重视了数学思维培养,方法的渗透,是可行的,学生们应该是能够掌握的。可是在实际的教学过程中,在“植树”时还是跃跃欲试的学生们到“探究规律” 时一个个都像被打败公鸡,毫无斗志与反应。勉强参与的总是那几个平时成绩比较优秀的学生。看来这样的设计无法顾及全体学生的发展。没有了学生的主体参与,何来思维的培养,主题的`建构呢?我开始反思:为什么学生不能找到简单植树问题的规律呢?为什么缺乏参与的积极性呢?学生一脸的茫然。经过反复的思考,我想到了我设计的探究活动有一定的问题,对于学生来说太抽象,太难了,自己确定长度时,要考虑到平均分还要分完,只给学生一条线段,他们不知道从何下手。我请教有经验的老师们,自己又反复琢磨,调整了自己的教学过程,从简单入手的思想,使这节课主线更清晰明朗了,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。这样能灵活构建知识系统,注重教学内容的整体处理。又能活用教材,对教材进行了整合和重构,让资源启迪探究。激发了学生探究的欲望。让学生比较系统地建立植树问题的三种情况,即两端都植;两端都不植;封闭情况下的植树问题(一头植和一头不植)。
三、第二次试教分析:
我把目标制定为:知识性目标:利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。过程性目标:进一步培养学生从生活实际问题中发现规律,应用规律解决问题的能力。
为了让学生掌握物体个数与间隔数的关系,课前我布置学生去数一数路灯排列有什么规律,初步感受物体个数与间隔数的关系,这样首先让学生在生活中学会有所观察,有所思索,有所实践。既能激起学生强烈的求知欲,做好课前准备,又能体会到数学知识在生活中的实际应用价值。在教学过程中,我创设情景聘请学生做环境设计师,说明学校南墙边有一段40米的小路,学校准备在路的一侧种树,按照每隔10米种一棵的要求设计一份植树方案,并说明设计理由,择优录用。我先请学生估计产生不同的意见,此时需要验证,怎样验证,学生想出不同的办法,给学生动手操作的时间和空间,让学生在操作中感悟,学生通过摆一摆,数一数,得出结果。学生的思绪一下打开了,最后出现了三种方案:第一种,两头都种,有5棵数。这样可以让学校有更多的绿色。第二种有3棵,头尾都不种。因为节约成本。第三种有4棵。种头不种尾;或者相反;又或者考虑树的实际生长空间不够,成本既不太高,绿色又不会太少。在这个环节,学生在实际操作中初步感受植树问题的特征,这个时候我利用模具加以归纳、总结,形成规律。学生靠自己主动、独立地完成所学任务,发现规律,发现特点,找到窍门,感到非常高兴,记得牢固。
但是问题又就出现了,在和学生开始列举生活中有关植树的问题的事情,然后运用学生自己发现的规律,解决插彩旗,仪仗队队伍的长度、走楼梯、锯木头等问题。为什么学生能够找到简单植树问题的规律“间隔数+1=棵数”“间隔数-1=棵数”却无法运用呢?在发现规律与运用规律间缺少了怎样的链接?
四、第三次试教分析:
首先,创设了情境,学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。不仅需要向学生提供多次体验的机会,而且还需要创设能够激发学生共鸣的情境。在举例过程中,比如手指之间的点段,座位之间的位置关系,并且还利用了“一刀两断”来说明锯木头的问题,让我惊喜不已。学生真正的生活经验是他们身边熟悉的事物,这时的学生才会真正感兴趣,才能够产生共鸣,才易激发探究的欲望,让活动化的数学学习有个坚实的基础。
其次,书上的例题直接给出了植树的图片,棵数、段数一目了然,不利于学生进行独立的、深入地思考。如果在动手之前,再补充一句:根据题目要求,你想怎么种?有几种种法?画一画线段图或者用手边的东西代替树摆一摆。再出示3种植法的图片,学生证实自己的考虑是全面的。这样的设计会使学生的印象更加深刻。借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有凭借,才能使得数学学习的思想方法真正得以渗透
五、反思:
1、通过自主探索的活动,让学生获得学习成功的体验,增进学好
数学的信心。
结合学生的年龄特点和教学内容,我设计了很多需要学生自主探索的活动。例如:在创设情境、导入新课的第2个小环节中“如果你是园林工人,你会怎么种?”,让学生自主探索出在一条路上植树时,有3种不同的情况:“两端都种”“两端都不种”“只种一端”;再如:在自主探究、建立模型这一环节中让学生自定路长和间距,通过画图的方法验证“间隔数”与“棵数”之间的规律。又如:在最后联系实际,综合练习时,我放手让学生自选习题进行解答。
2、渗透“以小见大”的数学思想方法,培养学生数学思维能力和解决问题的能力。
“授人以鱼不如授人以渔”,新课程理念有个更具“与时俱进”的显著特点是对渗透数学思想方法的关注。在本课的教学过程中,要充分利用学生想检验大数目时遇到困难,可引导通过“以小见大”来找规律加以验证,让学生通过观察、猜测、实验、推理与交流等活动。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。
教学过程是这样的:在学生已经掌握了两头都植的规律的探究方法后,让学生分组自主寻找两头都不植的规律,学生通过自己动手画,自己整理表格,很快就发现了其中蕴含的规律,产生了很强的成功感,同时也有了一份自信,极大的调动了学生积极性。
3、关注植树问题模型的拓展和应用,注意反映数学与人类生活的密切联系。
植树问题教学反思9
存在问题:
一、练习设计缺乏趣味性
题型设置太过单一(应用题),可挑选些填空题、选择题,让孩子们进行智力闯关,从而体验作业也是一种快乐。
二、细节的处理不够到位
要善于鼓励。轻松愉悦的课堂离不开学生的积极投入,更离不开老师由衷的鼓励。课堂中,我惦记着教学任务,也放不开自己,没能经常鼓励、赞美学生,好孩子可是夸出来的呀!
三、对学生估计过高
这节课还有不足的.地方,那就是我把学生估计过高,我以为只要学生弄懂了棵数与间隔数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为例题是给了全长和间距求棵树,但“做一做”却是给了间距和棵树求全长,属于逆向思维,所以,有好多同学就不知从何下手了,导致出错很多。其实就是在发现规律与运用规律间缺少了链接,应加强对规律的扩散教学,比如:得出规律时,可以总结一下“间隔数=棵数-1,路长=间隔数×间隔长”等知识的扩散。
植树问题教学反思10
《植树问题》是人教版新课程标准五年级上册“数学广角”的内容,这一单元主要内容就是植树问题,植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。
这样就把植树问题分成了三种情况,即:
(1)两端都种:植树的棵数=间隔数+1
(2)只种一端:植树的棵数=间隔数
(3)两端都不种:植树的棵数=间隔数—1。
在教学中,我注重了学生动手操作能力的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔之间的关系,既有趣味性又贴近学生的生活。
本节课的主要目标是向学生渗透复杂问题从简单入手和一一对应的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的方法,以此为基础,根据学生的认知规律。
我设计了以下几个环节:
一、通过课前活动,以植树为素材,从让学生初步认识间隔,感知间隔数与棵树的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的'认识。
反思整个教学过程,发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法,注重学生获取知识过程的体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。
因此,在教学过程中,我注重了对数形结合意识的渗透。直接例题导入,引导学生可以画图模拟实际栽树,通过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的关系,就此向学生渗透复杂问题简单化的思想,让学生自主选择短距离的路用画图的方式得出结果。这样把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。
但是我感觉在本节课的教学活动中还有不足的地方:
其一,在时间的分配上我前松后紧,在规律的寻找和简单应用中花费的时间有点长,以致后面的练习很仓促。
其二,条理不够清晰,简直成了教师在唱独角戏,学生参与面不广,没有很好地完成教学任务。
在今后的教学中我还要全面、深入的了解学生,充分做好多个方面的准备。
植树问题教学反思11
“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容,它原先是奥数知识,是少部分学有余的孩子学习的。而新课程改革后,该内容被选入课本,每个孩子都要参与学习。这时,我们该怎样去组织课堂教学呢?
1、引导学生画图理解。
植树问题的思维有一定的复杂性,对于刚接触植树问题的四年级学生来说,则更有一定的难度了。所以,我觉得让学生画图来理解深化,更好一些。学生在画图的过程中,不仅可以很好的理解题意,找到其数量间的关系,而且能很好的培养其学习方法和思维习惯。让学生通过直观的观察初步感知三种情况:两端都栽“棵树=间隔数+1”,一端栽一端不栽“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。等学生找到规律后再解决这类问题就简单多了。
2、创设情境,让数学走近生活。
“数学来源于生活,而又服务于生活。”在学生初步感知植树问题的几种不同种法的基础上,创设与学生的生活环境和知识背景密切相关的、学生感兴趣的、以便能更好的理解与植树问题有关的生活题型,如插红旗,安路灯、排队做操等,让学生在具体生活中理解数学现象,并运用规律解决形式各异的生活问题,使学生深深地体会到数学的价值与魅力。
3、加强训练。
数学离不开训练,特别是对小学生,因为他们的忘性较大,很多的知识在课堂上学的很好,但时间一长,就会遗忘。这样,就要求教师注重平时的有意识的强化和训练,只有这样,才能加深理
4、这部分虽学得扎扎实实,但问题也存在着。
(1)针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的.能力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数-1,路长=间隔数X间隔长”等等知识的扩散。
(2)把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。我可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
植树问题教学反思12
《植树问题》是人教版五年级上册数学广角的内容。本节课我把两端都栽,只栽一端和两端都不载,三种种情况分别进行了统一讲解。
在教学中,以猜谜语的方式导入。然后引出间隔一词,让学生理解生活中的“空”在数学里叫间隔。在讲解过程中,我只讲解了在全长100米的小路,一边植树,每隔5米栽一棵,一共可以栽多少棵的问题?针对这一问题让学生大胆猜测,小组探究,究竟可以栽多少棵,小组汇报探究结果。根据小组汇报结果,发现棵树和间隔数之间的规律。针对不同类型题目进行巩固,最后指生谈收获。
优点:
本节课采用了小组探究,最终班里的各个小组都探究出最终三种情况,可见小组探究是合理有效的。
本节课使用了自己制作的小道具,形象直观,便于学生理解,以及发现规律。
本节课三种类型课程一起讲解,具有挑战性,也想让学生在探究过程中发现规律,体现学生的主体地位。在讲解时先讲解只栽一端的情况,通过道路展示,学生发现棵数和间隔数一一对应,也就是棵数=间隔数。通过这种情况,学生容易发现和归纳出另外两种,两端都栽和两端都不栽的情况,棵数和间隔数的关系。
关注植树问题和生活中的练习,注重植树问题在生活中的体现。例如:楼梯、挂灯笼、公交车站牌、斑马线等生活实际问题。
练习题的设置采用不同的类型,循序渐进,比较合理。
缺点:
在讲解过程中,因为要讲解三种情况,语速有点过快。不利于学生的思考,没有给学生足够的时间思考,没有面向全体学生。
在讲解时针对只栽一端和两端都不栽的情况,没有请学生举例说明你在哪里见过。数学源于生活,而我在讲解时忽略此处知识点和生活的联系。对于在栽一端情况,有道路的一端是湖等,对于两端都不栽的情况,可以结合实际,在教学楼之间植树。这样学生理解更深一层。
导入时间太短,应该增加,在导入的时候可以让学生多说,体现学生的主体地位。
整节课由于内容比较多,会感觉整体课堂进度比较快。应该在内容多的时候,让学生也不会有很赶的'感觉。
收获:
通过几次讲课,对于上课的时候大约有了一个控制。同时现在见到不同的学生和听评课的老师时,也不会存在紧张现象。教案自己反反复复看了好几遍也改了又改,一直没有发现在逻辑或者各个环节设计上有什么问题。当有其他教师在听课的时候,就发现处处存在问题。每一次讲课对我来说都是一次成长,一直都知道自己说话的语速比较快,自己面对的是小学生。在各个方面发展还不成熟,需要一定的时间。确实应该慢下来和学生加强沟通。我希望在我的课堂里的孩子都是自己探究去发现规律的。
植树问题教学反思13
本节课的内容是在学习两端都栽、两端都不栽的基础上进行教学的。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。
成功之处:
1.多种方法解答,拓展学生的思维。在例3的教学中,通过学生自主探索,发现四种解题方法如下:
方法一:黑色棋子+白色棋子=可以摆的棋子
19×2 + 17×2
=38+34
=72(个)
方法二:每边的个数×4边=可以摆放多少个
18 × 4 = 72(个)
方法三:每边能放个数×4-重复的4个=可以摆放的棋子
19×4 - 4
=76-4
=72(个)
方法四:每边看作17个,有4边,再加上四个角的4个。
17×4 +4
=68+4
=72(个)
通过这几种方法的展示,让学生不仅仅局限于一种解题思路,而是根据自己的实际水平选择适合的方法,利用培养学生思维的灵活性和拓展性。
2.不拘泥于课件的使用。在例3的教学中,虽然每种解法都制作了课件,但是在实际的教学中发现利用在黑板实际画图,分析每一种解法,更加有利于学生对此解法的`分析,利用学生对每种解法的理解。
不足之处:
在拓展解题思路的同时,相应地就减少了练习的时间,导致练习量不足。
再教设计:
每种解法不再利用课件进行展示,在黑板上画图进行分析和理解,减少课件制作上的费时费力。
植树问题教学反思14
我所执教的是教材第117页的内容,主要教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。这节课我完全受柏继明老师的手与数学思想所影响,今天做一节关于《植树问题》的数学课,我的设计初衷是希望学生可以自始至终都围绕着手来研究这一典型问题,让学生明白点与间隔的关系。学生开始似乎可以依据小手来了解点与间隔的关系。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。
一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的.个数与空格数之间是相差1的。使学生直观认识并总结出了间隔和植树棵数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
二、关注植树问题模型的拓展和应用
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:
(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如公共汽车站的事件,上楼问题等都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。以图片的形式让孩子们了解生活中与植树问题相似的现象,
不足:
我依然出现了课堂调控差的问题,学生能够理解我出示的第一个有关植树问题的铺垫问题,我也总结了植树问题的间隔数×间隔长度=全长的公式,因此,在出示例一后,就急于让学生自己独立完成。而学生对于公式中的各部分名称可能还不是很熟悉,因此,公式变形困难,需要教师还要讲解的地方教师反而放手了。
植树问题教学反思15
这学期的教研活动快要结束了,也就意味着这学期也即将结束。今天上午数学组没有课的老师都听了我讲的一节数学课,也是四年级下册第八单元《数学广角》的植树问题,现对教学的反思总结如下:
一、导入
课前活动时,我选择学生的小手为素材,引入植树问题的学习。让学生清晰地看出手指的个数与空格数之间是相差1的。使学生直观认识并总结出了手指数与间隔数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
二、引导探究,发现“两端要种”的树的棵数和间隔数之间的关系
1、小组合作,自由探究,发现规律
提示学生可以借助线段图来帮忙学习,让部分优生能顺利发现并总结规律
2、简单验证,总结规律。
棵数=间隔数+1
间隔数=棵树-1
3、例题学习,例题拓展,让学生明确两端和两边的概念区别
4.应用规律,解决问题。
这里我一共借用了课本练习的一道题:一个求车站的个数,目的是让他们利用所学植树问题的知识来解决生活中的数学问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。
本以为自己设计的教案考虑到了学生的生活经验,结合生活实际,重视了数学思维培养,方法的渗透,是可行的,学生们应该是能够掌握的。可是在实际的教学过程中,在“棵数”时还是跃跃欲试的'学生们到求路长时一个个都感动困难重重。到后来参与的总是那几个平时成绩比较优秀的学生。看来这样的设计很难顾及全体学生的发展,这与我的设计有关,如果再上这种课,我一定要再认真设计教案,已达到教学目标。
当然,再好的设计在实践中都会有不如意的地方。在以后的教学中在生生、师生互动的过程中不断开发课程资源,完善自我。
第五篇:植树问题教学反思
植树问题教学反思
植树问题教学反思 篇1
《植树问题》是人教版第八册的“数学广角”的内容。在植树问题的教学中,解题不是主要的教学目的,主要的任务是向学生渗透数学思想和方法,如:数形结合、化繁为简、植树模型、一一对应和化归等数学思想方法。在与南雅小学教研同行中我执教了《植树问题》第一课时内容。现对该课作如下反思:
1、异中求同,构建模型、解决问题。
“数学来源于生活,而又应该为生活服务”学生在探究完两端都种的植树问题后,让学生从生活实际中的手指、教室的灯、桌子的摆放、路灯的安装、站队等问题,直观地认识生活中的许多事例看上去跟植树问题毫不相似,但是只要善于观察、分析题中的数量关系,就明白它与植树问题的数量关系很相似,从而构建植树模型。并根据植树模型,应用所学知识解决生活中的实际问题,使学生充分感受数学知识来源于生活,又回归于生活。
2、动手操作,观察对比,发现规律。
通过画线段图在“20米、30米、40米的小路上植树的动手操作,使课堂成为充满活力的自己空间,从而激发学生的思维,让他们积极地去探究,使学生完整的体验“植树”这一实践活动。
从学生的展示来看,虽然得出的间隔数,棵数不相同。但通过观察对比发现:不同中存在共性,即:两端都栽,“植树的棵数=间隔数+1”的规律。
3、渗透思想,掌握方法,体验价值。
著名的数学家波利维亚说过“学习任何知识的最佳途径是由学生自己去发现”。因为这种发现理解最深刻,也最容易掌握其中内在规律的联系。通过在画图求解的.过程中,让学生觉得画到100米很麻烦,产生另辟蹊径的念头,引导学生得出可以先从简单的问题研究起,发现规律后再来解决复杂的问题。从而渗透了化繁为简、数形结合、建模、一一对应和化归等数学思想方法。
在教学过程中还渗透了“猜想——化繁为简——画图验证——得出结论——应用结论”的思考方法和将复杂问题——简单问题——发现规律——解决问题的研究方法。使学生体验到“抽象问题直观化”,“复杂问题简单化”等基本策略在解决问题的过程中所发挥的重要作用和价值。
4、分析学情,研究教材,突出关键。
实际上,少数几个提前学习的学生掩盖了一个事实:更多的学生在学习前并不知道“间隔数”,丝毫没有考虑平均分的结果是什么,只是受问题的影响,认为每隔5米栽一棵,算出来一定是栽了20棵树,再加上“一边”“两端”的“搅和”,才出现20棵、21棵、22棵等多种答案。我认为全长、间隔长和间隔数是一种“铁三角”关系,而棵数和间隔数只是“单线联系”。
前者是主体,后者只是在间隔数的基础上,由于两端的种法不同而进行的“微调”。因此,只注重间隔数与棵数的关系,而忽略前面的主体显然是不妥的。
在这两层关系之间,间隔数起着“桥梁”的作用。因此,教学的关键是:讲清楚为什么“全长÷间隔长=间隔数”和“棵数=间隔数+1”。
5、教学实践,出现问题,找寻原因。
虽然原班教师说我充分调动了学生的积极性,但我认为:由于本人性格原因和缺乏儿童语言,在调动学生的学习积极性方面还做得不够理想。教学中,缺乏教学机智,贪多求全,不能见好就收。
如:学生在做倒数第二道巩固题时,离下课时间还有两分钟,我为了体现练习的层次性,将最后一题(拓展题)也让学生完成,导致时间不够。
课后一位听课老师对我说:我以为学生在做完倒数第二道巩固题,你就要进行课堂小结的,最后一题(拓展题)不出现该课也很完整。因此,在课堂艺术上我还要向同行多多学习。
植树问题教学反思 篇2
《植树问题》是智慧广场中的内容,主要是向学生渗透有关植树问题的一些思想方法,通过现实生活中一些实际问题,让学生发现规律,然后再用发现的规律解决生活中的一些实际问题。植树问题分为两端都栽、两端都不栽、一端栽一端不栽三种情况。本节课教学的是植树问题中的第一种情况,即两端都栽的问题。反思整个教学过程,我认为有以下几点做得比较好:
一、关注学生的学习起点
学生是数学学习的主人,教师作为学生学习的组织者、引导者与合作者,应及时关注学生学习的起点。在教学过程中,我通过对五指的手指个数与手指缝之间关系的探究,在直观形象的手指演示中让学生初步感知棵数与间隔数的关系。本课伊始,我首先出了个谜语:“一棵树,五个叉,不长叶子不长花,能写能做还会画,就是不会开口讲讲话。”随后让学生观察自己的.手指,引导学生得出:五个手指有4个间隔,4个手指有3个间隔,3个手指有2个间隔,2个手指有1个间隔。使学生清楚地看出手指的个数与间隔数之间是相差1的。接下来又通过做快速问答的游戏,使学生加深认识了植树问题中间隔数和棵数的关系,为下面的学习做了铺垫,同时学生的学习兴趣也被激发了起来。由此可见,我们在教学中一定要关注学生的学习起点,放低起点,这样才会收到事半功倍的效果。
二 、注重学生的自主探索
在探索新知这个环节,是这样设计的:
快乐探究:
在20米长的小路一边等距离植树,两端要栽,可以怎样栽树苗?
设计了一个表格
全长(米) 间隔(米) 线段图 间隔数(个) 棵数(棵)
1、把上表补充完整。
2、“两端要栽”的时候,我发现:棵树比间隔数
我能用等式表示棵数与间隔数之间的数量关系:
棵数=
学生通过自己动手画图,很快就发现了其中蕴含的规律。展示环节,我让展示小组的学生利用展示台给大家展示,学生指着自己画的线段图边讲解边说,让其他同学清楚地看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。改变间距后,段数和棵数相应也发生了变化。
通过自学,小组交流,小组展示,学生很容易的得出了在两端栽的情况下棵数与间隔数之间的关系是:总长÷间距=间隔数,棵数=间隔数+1。整个学习过程都是学生自主探索的结果。学生把整个分析、思考、解决问题的过程全部自己展示了出来。在这一过程中,学生积极思考,大胆尝试,主动探索,也体验到了成功的喜悦和学习的乐趣。
三、关注植树问题模型的拓展和应用
规律总结出来了,我并没有就此罢手,而是让学生找生活中的类似现象,使学生认识到生活中的许多事例看上去跟植树问题毫不相干,但是只要善于观察题中的数量关系,就明白它与植树问题的数量关系很相似,如计算公共汽车从起点站到终点站所行的距离及爬楼梯问题。求路边的电线杆、排座位、在路两旁安装路灯、插彩旗等等,目的是让他们利用所学植树问题的知识来解决生活中的数学问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值。
四、渗透数形结合的思想,培养学生借助图形解决问题的意识
数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。本着这个思想我在让学生理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的能力。练习环节,我还设计了我们平时熟悉的钟声,让学生听钟声,在听到基础上用线段图画出钟声和他们之间的时间的间隔。学生在听、画之后初步感受了间隔数和棵数之间的关系。同时,通过画图,降低了此题的难度。再如:在解决锯木头问题时,通过成语“一刀两断”引出“一刀两段”,结合线段图,清楚地使学生理解间隔数总是比端点数少,使用数形结合的方法,在增加学生学习兴趣的同时,植树中棵树和间隔数之间的关系便迎刃而解。
存在问题:
把学生估计过高,以为只要学生弄懂了棵数与间隔数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎预料,因为例题是给了全长和间距求棵树,但“做一做”却是给了间距和棵树求全长,属于逆向思维,所以,有好多同学就不知从何下手了,导致出错很多。其实就是在发现规律与运用规律间缺少了链接,应加强对规律的扩散教学,比如:得出规律时,可以总结一下“间隔数=棵数-1,路长=间隔数×间隔长”等知识的扩散。
植树问题教学反思 篇3
《植树问题》是人教版义务教育教科书五年级数学上册第七单元数学广角的内容。这一内容主要涉及到的知识点有:两头植、两头都不植、封闭情况下的植树问题(一头植和一头不植)这三种情况。我选取的是第一课时两端种植,怎样才能让学生即能学会,还要学的轻松呢,我反复研读教材,两端其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想.模型思想,同时使学生感悟到应用数学模型解题所带来的便利。我这节课重点教学两端都栽的植树问题,主要目标是向学生渗透复杂问题从简单入手,奇妙运用数形结合的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。
一、通过自主探索的活动,渗透“以小见大”的数学思想方法,培养学生数学思维能力和解决问题的能力。
整节课设计基于我班学生实际情况,课前创设情境让学生欣赏美丽的风景,同时引导学生明确要学习的内容,紧接着引出例题,探讨植树问题,同时改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解段数+1,建立起深刻、整体的表象,提炼出植树问题解题的方法。可引导通过“以小见大”数形结合来找规律加以验证,让学生通过观察、猜测、实验、推理与交流等活动。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。这节课的.设计依据了认知规律:通过例题感知间隔,以例题为载体突破教学重点难点,以生活中植树问题的应用为探讨对象,了解植树问题实质,多角度应用拓展。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。
二、关注植树问题模型的拓展和应用,反映数学与生活的密切联系。
“植树问题”通常是指沿着一定的路线,这条路线的总长度被“树”平均分成若干间隔,由于路线不同、植树要求不同,路线被分成的间隔数和植树棵数之间的关系就不同。现时生活中类似的问题还有很多,如安装路灯、设立公交车站等等。让学生从中悟出植树问题的模型它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。在学生已经自主地寻找到植树中前两种的规律后,我适时的提出在我们的生活中有没有类似植树的情况呢?通过学生的举例,让他们进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。整节课,大多数学生的思维表现的很活跃。
三、本节课的不足:
1、把学生对于段数+1应做更多的探究,部分学生并没有理解这个知识点,只会运用,应再多加讨论,让学生明白其中的原因。
2、一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,以至课堂中还有很多不足之处,期待日后调整改进。
教学是一门遗憾的艺术,虽然这节课我很尽心尽力,但也留下了很多遗憾,新的教法的一种大胆的尝试过程,总在摸索中不断完善。在准备这节课时我参考了很多资料,学习了很多方法,为的是让这节课的遗憾能少一些。我把握每一个细节,问题及时解决,站在学生的角度去思考问题,使得数学学习的思想方法得到深度的渗透。
植树问题教学反思 篇4
《植树问题》是人教版新课程标准五年级上册“数学广角”的内容,这一单元主要内容就是植树问题,植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。
这样就把植树问题分成了三种情况,即:
(1)两端都种:植树的棵数=间隔数+1
(2)只种一端:植树的棵数=间隔数
(3)两端都不种:植树的棵数=间隔数—1。
在教学中,我注重了学生动手操作能力的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔之间的关系,既有趣味性又贴近学生的生活。
本节课的主要目标是向学生渗透复杂问题从简单入手和一一对应的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的方法,以此为基础,根据学生的认知规律。
我设计了以下几个环节:
一、通过课前活动,以植树为素材,从让学生初步认识间隔,感知间隔数与棵树的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法,注重学生获取知识过程的体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的.机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。
因此,在教学过程中,我注重了对数形结合意识的渗透。直接例题导入,引导学生可以画图模拟实际栽树,通过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的关系,就此向学生渗透复杂问题简单化的思想,让学生自主选择短距离的路用画图的方式得出结果。这样把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。
但是我感觉在本节课的教学活动中还有不足的地方:
其一,在时间的分配上我前松后紧,在规律的寻找和简单应用中花费的时间有点长,以致后面的练习很仓促。
其二,条理不够清晰,简直成了教师在唱独角戏,学生参与面不广,没有很好地完成教学任务。
在今后的教学中我还要全面、深入的了解学生,充分做好多个方面的准备。
植树问题教学反思 篇5
“植树问题”是人教版四年级下册第八单元的内容,本单元通过现实生活中一些常见的实际问题,借助线段图等手段让学生发现一些规律,抽取出其中的数学模型,然后在用发现的规律来解决生活中的简单实际问题。
本单元的植树问题分为三种类型:两端都栽、两端不栽、在一条首尾相接的封闭曲线上植树。我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单情境入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。反思整个教学过程,我认为我执教的这节课整体是成功的。
第一、预习安排得比较巧妙。从学生熟悉的手指切入,理解什么叫间隔,手指数与间隔数的关系,转化为树与间隔数的关系,得出:棵树=间隔数+1。
第二、教学环节设计由浅入深。在学习完例题后的检测中我先设计了一个和例题基本一样的题型(课本下面的做一做)让学生练习,这道题告诉我们的信息是“2的街道两旁路灯,每个50安一盏”问题是“一共安装多少盏”它一方面检测学生对刚学习的知识是否掌握,另一方面检测学生是否认真审题。另外设计了一个求棵树的变式练习,在最后的拓展环节中又设计了一个求间隔数的练习题,整个环节给人一种稳步高升的感觉。充分体现了数学的'由浅入深、由易到难的思想。
再次,学生学习的积极性较高。本节课学生预习较充分,对新知有了一定的认识,学习起来相对容易些,比如再找棵数与间隔数之间的关系时,一方面有了预习题的基础,再加上充分的预习,学生很快就得出了他们之间的关系,所以很快解决了检测的题,留下的遗憾就是学生审题不认真,只注意到了单位的不统一,没有注意“两旁”一次,方法对了,缺少了一半。后来的练习在提醒学生认真审题后,学生的积极性更高,争先恐后要求上台展示。
这节课虽不错,但问题也存在着。
一、学生在展示时语言表达不够完整。在说思路时总说半截话,需要教师的提醒在说完整,导致说的解题思路不够清晰,因此在今后学生手思路时要求学生按顺序;第一步、第二步、第三步......,一步一步来说。
二、在拓展训练中引导不到位。求路长,实际还是先求“间隔数”,没让学生弄明白。
三、总结规律时本人在复述时叙述不完整,没有强调“两端都栽”这个前提条件。这也说明,本人在语言叙述中也存在问题,也折射出本人数学思维的不严密,也导致学生的课堂语言出现问题。这也是本人应该深思的,更应该改进的。
植树问题教学反思 篇6
“植树问题”是新课程标准实验教材四年级下册的资料,本课安排“植树问题”的目的在于向学生渗透复杂问题从简单入手的思想。
教材将植树问题分为几个层次:两端都栽、两端不栽、环形状况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助资料的教学发展学生的思维,提高学生必须的思维潜力。
我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。我在十几年前仅接触过一年小学数学教学,今参加赛课,感觉个性好,反思整个教学过程,我认为我执教的这节课整体是成功的。
首先,设计流畅简单易懂。
整节课设计基于我班学生实际状况,课前创设情境使学生明确要学习的资料,紧之后引出例题探讨植树问题,不规定间距,同时改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在那里改小数据,有利于学生的思考,主要照顾后20℅的学生。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。这节课的设计依据了认知规律:透过例题感知间隔,以例题为载体突破教学重点难点,以生活中植树问题的应用为探讨对象,了解植树问题实质,多角应用拓展植树问题的认识。整节课条理清晰、层次分明、浅显易懂,始终围绕重点资料进行难点的突破。
其次,注重实践体验探究。
教学中,我创设了情境,向学生带给多次体验的机会,注重借助图形帮忙学生理解建构知识。在教学过程中,我时刻对数形结合意识的渗透。教学中我先激励学生自己做设计,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧之后提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面自己设计的植树问题:间隔2米、4米、10米,而栽树的棵数比段数(间隔数)多1。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
再次,联系生活拓展思维。
有好处的学习是学生在具体情景中体验自主建构,体验和建构是学生学习的关键。体验是建构的基础,没有体验,建构就没有好处。体验是学生从旧知向隐含的新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能到达继续建构学习的水平。所以,这节课我多次向学生带给体验的.机会,而且创设能够激发学生共鸣的情境。从自身、教室、做操、楼房等身边熟悉的事物,引发学习兴趣,产生共鸣,激发探究欲望。
这节课虽扎扎实实,但问题也存在着。
一、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的潜力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,能够说说“间隔数=棵数—1,路长=间隔数X间隔长”等等知识的扩散。
二、把握每一个细节,问题即时解决,站在学生的角度去思考问题。
比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,就应思考学生的知识构建,学生的知识认知一般是在具体情景中透过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部到达继续建构学习主题的水平。我能够利用线段图或者实例来帮忙学生学习。让学生有能够凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
植树问题教学反思 篇7
《植树问题》是人教版义务教育课程标准实验教科书四年级下册中数学广角的内容。数学广角作为人教版新增的内容之一侧重点是让学生在掌握知识的同时向学生渗透一些常用的数学思想和方法。如何把抽象的数学思想方法很好地渗透在环节在教学中使学生在“润物细无声”中深刻体验到数学思想方法的价值这是我在教学设计时着重思考和要解决的问题。一节课实施下来有成功之处也有不足之处。现做一个简单的小结与反思。
成功之处:
一、教学设计有深度、有厚度。
教学设计分两条线走:一条线以构建学生知识结构为线索,使学生对植树问题的认识经历了“生活问题——猜想验证——建立模型”不断数学化的过程,较好地实现了由生活中的具体问题过渡到相应的“数学模式”,为上升到更抽象的数学高度奠定了基础。然后又让学生运用模型解决问题,把数学化的东西又回归于生活,也让学生再一次体会数学与生活的密切联系。另一条线以渗透数学思想方法为线索。
对于植树问题的探究,不仅让学生通过画线段图、摆学具的方式自主探究、寻找,而且结合线段图、摆学具,让学生理解了为什么两端都种时,棵数会比间隔数多1,多的1指的是哪一棵树。让学生不仅要知其然,还要知其所以然。
由反复的修改,让我深刻地体会到了对教材研究的重要性,明白了“教师对教材看得有多深,才能使你的课堂有多厚”的道理。也让我知道了自己今后应该努力的方向。
二、敢于放手让学生去探究,体现学生的主体地位。
整堂课,我都比较注重学生的主体地位。因为我知道,只有学生自己想学、愿学,才能主动地学,并把学到的东西内化为自己的'知识。
因此对于重点部分的引入,即探究两端都种时,棵数与间隔数之间究竟有什么关系,我先让学生通过自己的猜测得到答案。当几种答案产生冲突时,再引导学生探究,这样更容易激发学生的探究欲望,激活学生的主体意识。
而后的探究部分我就放手让学生去做,教师给予适当的指导,让学生在自主探索中掌握用线段图探究植树问题规律的方法。由此把方法内化为自己的东西,为下节课自主寻找另外两种植树问题的规律时,学生就比较轻松愉快了。
三、注重教学思想的渗透和学习方法的传授。
在整个教学的过程中,我都很注重数学思想方法的渗透。比如:当学生用一个线段图证明规律时,适时点拨。用一个线段图就能证明它是普遍存在的规律吗?再画几个试试(以小组为单位,分组研究)。交流时,让不同的学生说出用不同间隔的线段图得到同一个规律,实际就是向学生渗透不完全归纳法。在展示交流部分,通过对比10个间隔与2个间隔的线段图的难易,对比画一棵树和用
一个点表示一棵树的难易,让学生体会简化的思想。通过找生活中的植树问题,并解决生活中的植树问题,让学生体会化归的思想。
对于学习方法的传授,整节课都特别重视线段图的运用。
当然,这节课也有许多的不足之处,列举几条:
一、教学时间安排欠妥。有的教学内容没有来得及出示,有的内容讲解比较仓促。练习巩固时间不充分,没有检测时间,使教师没有及时掌握每个学生的学习情况,心中没底。
二、本节课,我本想借助一一对应的思想去突破本节课的难点,可是没有深入去理解植树问题中所蕴含的一一对应思想。所以,感觉得出的规律有些牵强、抽象,没有达到水到渠成的效果,没有把一一对应的思想与植树规律结合在一起,没有很好地突破难点。
三、对学生评价这块显得能力不足。对于学生的评价如何做到即准确又有深度,还要具有启发性,这是我还得努力学习的方向。
四、数学课关键在于“说”,以说促思,以说引思,这样可以了解学生的思维过程是否正确,以便教师及时调控课堂,改变教学策略,但是,为了能够完成教学任务,明知道应该让学生多说,但是由于时间问题,就把学生说的权利剥夺了,而去进行下面的教学内容,这是我一贯的通病,我争取改正,把更多的时间和空间留给学生,让学生真正成为课堂的主人。
总之,一堂课下来,发现自己真的还有那么多的不足之处。反思自己,今后还应加强学习,学习理论知识、学习优秀课例,特别应该针对自己的不足之处,运用于实际教学之中,逐步完善、改正。希望能通过自己一点一滴的积累和改进提高自己的业务水平和调控、处理课堂生成的能力,使自己能不断进步、不断发展。
植树问题教学反思 篇8
《植树问题》是人教版新课程标准实验教材五年级上册“数学广角”的内容,曾经被演绎出了许多经典课例。因此在教学准备阶段,我认真地研读了很多课例,发现在诸多课例中,存在着这样一个共同的特点:任课教师都特别重视关于“植树问题”的三种不同类型的区分,即所谓的“两端都栽”“只栽一端”与“两端都不栽”。普遍采用了“学生独立探究(或分组探究)、反馈交流、教师总结&rdq
uo;的模式进行教学。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。同时在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。
通过对教材和各种相关的教学资料的深入解读,我认为“植树问题”就教学而言,可分为两个不同的教学目标:
一、明确引出“间隔数”与“棵数”这两者的关系,突出“一一对应”的思想,并以此为基础分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,使学生真正理解棵数与间隔数的关系。
二、总结出相关的计算公式“总长÷间距=间隔数”,并通过公式帮助学生更好地去掌握这一解题模式。
反思整个教学过程,我认为这节课在以下几个方面还是处理得比较好:
1、这节课主线明朗清晰,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。
2、我注重教学内容的整体处理,对教材进行了整合和重构,设计的例题是一个开放性的题目,开放性的设计,使课堂成为充满活力的'自由空间,从而激发学生的思维,让他们积极地去探究,使学生完整的体验“植树”这一实践活动,让学生比较系统地认识到在直线上植树有三种情况,即两端都栽;两端都不栽;只栽一端。
3、植树问题的思维有一定的复杂性,对于刚接触植树问题的四年级学生来说,则更有一定的难度了。所以,我让学生根据示意图用算式来表示出植树的棵数,学生在列式计算的过程中,通过直观的观察初步感知三种情况:两端都栽“棵树=间隔数+1”,只栽一端“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。之后,再引导学生用“一一对应”的思想,举起右手比划比划,分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,从而真正理解这三种情况下,棵数与间隔数的关系。
4、学生列式计算出三种栽法的棵数后,我引导学生思考:这三种情况,我们在列式计算棵数时,第一步都是先求什么,怎样求?通过学生的小组讨论后得出:要求棵数,得先求间隔数,并清楚地总结出相关的计算公式“总长÷间距=间隔数”,通过公式帮助学生更好地去掌握这一解题模式。
5、注意反映数学与人类生活的密切联系。巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。
我感觉这节课的不足之处有以下几点:
1、数学的思想方法是数学的灵魂。本册安排“植树问题”的目的之一就是向学生渗透复杂问题从简单入手的思想,本节课没有让学生体验到“复杂问题简单化”的解题过程。
2、一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,以至课堂中还有很多不足之处,期待日后调整改进。
3、对课堂的生成问题处理还不够灵活,不能进行很好的利用。
在今后的教学中,希望能通过自己一点一滴的积累和改进,提高自己的业务水平和调控、处理课堂生成的能力,在不久的将来,能看到更棒的自己。
植树问题教学反思 篇9
我在上完这节课后有以下思考:
1、在探究活动中培养学生学习兴趣
植树问题是数学中一个独立的单元,其内容和生活联系非常密切。这一课我们不仅是要教给学生知识,更重要的是要学生领悟研究复杂问题可以从简单问题入手。因此我设计了一道数字较大的问题,让学生通过画图来解决,在画图过程中学生就会发现没法解决。从而启发学生可以自己选择数字小的来画一画。从而让学生领悟解决复杂问题要先想简单的。而且,可以在这种与平常不一样的'活动中,获得真实感知和学习经验,更有利于培养学生学习数学的兴趣。
2、在探究过程中感受数学
课程标准特别强调:数学活动必须向学生提供充分的从事数学活动的机会,帮助他们在自主探究和合作交流过程中获得广泛的数学活动经验。整节课,每一环节我都设计让学生动手操作,合作交流。学生在不断的操作和交流中,经历了观察、发现和感受的全过程;学到了解决问题的方法,并获得了更深层次的情感体验。
本节课上的非常顺利,效果也不错。但总觉得有些程序化,在引导学生思考和操作的过程中,对学生规定的有些死。如果在探究两种栽树方法的规律时,再大胆的放手让学生自主的去探究,效果可能会更好些。
植树问题教学反思 篇10
植树问题是人教版第八册数学广角中的一个新内容。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。
教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,不仅仅使学生熟练解决与植树问题相类似的实际问题,还要借助内容的教学发展学生的思维,提高学生的思维能力。
反思整个教学过程,我认为我执教的这节课整体是成功的。
首先,设计流畅简单易懂。整节课设计基于我班学生实际情况,课前创设情境使学生明确要学习的内容,紧接着引出例题探讨植树问题。我改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里改小数据,有利于学生的思考,主要照顾后20℅的学生。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。整节课条理清晰、层次分明、浅显易懂,始终围绕重点内容进行难点的突破。
其次,注重实践体验探究。教学中,我创设了情境,向学生提供多次体验的机会,注重借助图形帮助学生理解知识。在教学过程中,我想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的`问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
这节课虽扎扎实实,但问题也存在着。
一、学生能够找到简单植树问题的规律“棵数=间隔数+1”,却无法运用这个规律求路长的问题。因为学生的认知起点与知识结构逻辑起点存在差异,以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。
二、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。
由于植树问题的情况复杂,还要学生多加练习,巩固知识。
植树问题教学反思 篇11
“数学广角”的教学目标的主要是让学生体验知识的形成过程和感悟数学思想方法,义务教育教科书第七单元数学广角——植树问题,主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,借助线段图等手段让学生从中发现规律,抽取出其中的数学模型,然后再用发现规律来解决生活中的简单实际问题。具体到本单元时,教师应从实际问题入手,引导学生在解决问题的分析、思考过程中逐步发现隐含于不同的情形的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的应用。
在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线如圆形。即使是关于最基本的一条线段上的植树问题,也可以有不同的情形。如两端都要栽,一端栽另一端不栽,两端都不栽。而在封闭曲线上的植树问题可以转化为在一条线段上的植树问题中的“一端栽另一端不栽”的`情况。在本节课的教学中,我针对数学广角的特殊要求,把重点放在在了两端都栽的问题上,让学生通过经历两端都栽的问题掌握研究的方法,指导发现问题的结论,从而为植树问题的后续研究做好铺垫。
本课我在教学设计上突出了少就是多,慢就是快的原则。导入时让学生通过观察自己的手发现其中的秘密,认识间隔和棵数之间简单的关系,通过课件介绍生活中与间隔有关的问题就是植树问题。然后借助图表、线段等方法,渗透把复杂问题简单化的原则,进行小数据研究发现其中的规律。在学生借助图表、线段及自己的思考过程进行全班交流,使两端都栽的植树问题规律特别明显,充分理解了两端都栽的问题明确棵数=间隔数+1。而后经过各种各样的梯度训练,让学生经历敲钟、电线杆、车站等各种与两端都栽的植树问题有关的其他问题,然后提升到间隔数、总长、间距等之间的复杂关系解决上,建立完整的解决问题的体系。
本节课中不足的问题有:设计中的重点部分是让学生在亲历知识形成的过程中,独立思考交流,总结方法。我在让学生交流的时间上给的不够,学生没有达到充分的内化知识,不能很好的展示其中的关系,在梯度训练中的变式练习就明显感到有的孩子吃力了。在学生的学习过程中如何把握好时间,把话语权交给学生,适时智慧引导,才能够让学生乐于参与有方法,不断拓宽长知识。
本节课我重视了课堂中的设计想把简单做扎实,我觉得只有基础扎实了,才会有更高更远的风景。
植树问题教学反思 篇12
存在问题:
一、练习设计缺乏趣味性
题型设置太过单一(应用题),可挑选些填空题、选择题,让孩子们进行智力闯关,从而体验作业也是一种快乐。
二、细节的处理不够到位
要善于鼓励。轻松愉悦的课堂离不开学生的积极投入,更离不开老师由衷的鼓励。课堂中,我惦记着教学任务,也放不开自己,没能经常鼓励、赞美学生,好孩子可是夸出来的.呀!
三、对学生估计过高
这节课还有不足的地方,那就是我把学生估计过高,我以为只要学生弄懂了棵数与间隔数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为例题是给了全长和间距求棵树,但“做一做”却是给了间距和棵树求全长,属于逆向思维,所以,有好多同学就不知从何下手了,导致出错很多。其实就是在发现规律与运用规律间缺少了链接,应加强对规律的扩散教学,比如:得出规律时,可以总结一下“间隔数=棵数-1,路长=间隔数×间隔长”等知识的扩散。
植树问题教学反思 篇13
画图理解加强训练:
植树问题的思维有一定的复杂性,对于刚接触植树问题的四年级学生来说,则更有一定的难度了。所以,我觉得让学生画图来理解深化,更好一些。学生在画图的过程中,不仅可以很好的理解题意,找到其数量间的关系,而且能很好的培养其学习方法和思维习惯。让学生通过直观的观察初步感知三种情况:两端都栽棵树=间隔数+1,一端栽一端不栽棵树=间隔数,两端都不栽棵树=间隔数-1。等学生找到规律后再解决这类问题就简单多了。
数学离不开训练,特别是对小学生,因为他们的忘性较大,很多的知识在课堂上学的很好,但时间一长,就会遗忘。这样,就要求教师注重平时的有意识的强化和训练,只有这样,才能加深理。
走近生活把握细节:
数学来源于生活,而又服务于生活。在学生初步感知植树问题的几种不同种法的基础上,创设与学生的生活环境和知识背景密切相关的、学生感兴趣的、以便能更好的'理解与植树问题有关的生活题型,如插红旗,安路灯、排队做操等,让学生在具体生活中理解数学现象,并运用规律解决形式各异的生活问题,使学生深深地体会到数学的价值与魅力。
把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
植树问题教学反思 篇14
《植树问题》是新人教版小学五年级数学上册数学广角的内容。本节课是第一课时,是植树问题中比较简单的情况。教学目标和教学重点都是引导学生发现两端都栽时,棵数比间隔数多1,渗透化繁为简、一一对应的数学思想。教学难点是理解这一规律 。
为了突出重点,探究新知环节,我分了五个层次进行:第一个层次,同桌合作,模拟在20米的小路一旁植树的过程,思考棵数与什么有关;第二个层次,独立操作,模拟在25米的小路一旁植树的过程,感知棵数与间隔数的关系;第三个层次,根据前两次的经验,不操作,画线段图,探究在30米的小路一旁植树的情况,验证棵数与间隔数的关系;第四个层次,想象在35米的小路一旁植树,计算出要栽多少棵;第五个层次,观察比较,找出四个题目中的'相同点。通过五个层次的教学,学生不难发现“间隔数+1=棵数”这一规律,同时渗透“化繁为简”这一重要数学方法。突破“理解这个规律”这一难点时,我提示:“植树问题能不能也看成是两种物体的一一间隔排列呢?”。
在老师的引导下,学生思考后,自己说出用分组的方法,把每组中两种量一一对应起来。接着,老师因势利导,学生发现如果一组一组的分,正好分完,则数量相等;如果有剩余,则数量就是相差1,帮助学生理解间隔数+1=棵数。从学生学习状态、课堂交流来看,达到了本节课的目标,实现本节课的预期目的。
本节课的还有很多足之处:
1、学生回答问题不准确,甚至出错,我觉得是老师组织语言不严密,问题的指向性模糊,备学生不太充分等多方面的原因造成的。学生有时一脸茫然,有时不知所措。
2、课堂条理还需改进,有遗漏的环节,有强调不足的情况,也有不必要重复的话语。
3、因担心时间超时,在教学过程中,不予理睬学生的答非所问,而急于得到只符合老师想要的答案。
有遗憾的课才是真实的课,才是更有价值的课。我会以每节课为起点,在需要努力的方面下功夫,需要改进的地方多揣摩,从一点一滴做起,使自己的课堂日趋完美,上得精彩,少留遗憾。