第一篇:高效音频功率放大器-模电课程设计
高效音频功率放大器
一、设计任务与要求
1、设计任务
设计并制作一个高效率音频功率放大器。功率放大器的电源电压为+5V(电路其他部分的电源电压不限),负载为8Ω电阻。
2、设计要求
(1)3 dB通频带为300~3400Hz,输出正弦信号无明显失真。(2)最大不失真输出功率≥1W。
(3)输入阻抗>10kΩ,电压放大倍数1~20连续可调。
(4)低频噪声电压(20kHz以下)≤10mV,在电压放大倍数为
10、输入端对地交流短路时测量。
(5)在输出功率500mW时测量的功率放大器效率(输出功率/放大器总功耗)≥50%。
3、设计说明
(1)采用开关方式实现低频功率放大(即D类放大)是提高效率的主要途径之一,D类放大原理框图如下图所示。本设计中如果采用D类放大方式,不允许使用D类功率放大集成电路。
图1 D类放大原理框图
(2)效率计算中的放大器总功耗是指功率放大器部分的总电流乘以供电电压(+5 v),制作时要注意便于效率测试。、(3)在整个测试过程中,要求输出波形无明显失真。
二、方案论证与比较
根据设计任务的要求,对本系统的电路的设计方案分别进行论证与比较。
1、高效率功率放大器
⑴ 高效率功放类型的选择
方案一:采用A类、B类、AB类功率放大器。这三类功放的效率均达不到题目的要求。方案二:采用D类功率放大器。D类功率放大器是用音频信号的幅度去线性调制高频脉冲的宽度,功率输出管工作在高频开关状态,通过LC低通滤波器后输出音频信号。由于输出管工作在开关状态,故具有极高的效率。理论上为100%,实际电路也可达到80%~95%,所以我们决定采用D类功率放大器。
图2 脉宽调制器电路
① 脉宽调制器(PWM)
方案一:可选用专用的脉宽调制集成块,但通常有电源电压的限制,不利于本题发挥部分的实现。
方案二:采用图2所示方式来实现。三角波产生器及比较器分别采用通用集成电路,各部分的功能清晰,实现灵活,便于调试。若合理的选择器件参数,可使其能在较低的电压下工作,故选用此方案。② 高速开关电路 a.输出方式
方案一:选用推挽单端输出方式(电路如图3所示)。电路输出载波峰-峰值不可能超过5V电源电压,最大输出功率远达不到题目的基本要求。
图3 高速开关电路 方案二:选用H桥型输出方式(电路如图4所示)。此方式可充分利用电源电压,浮动输出载波的峰-峰值可达10V,有效地提高了输出功率,且能达到题目所有指标要求,故选用此输出电路形式。
图4 高速开关电路
b.开关管的选择。为提高功率放大器的效率和输出功率,开关管的选择非常重要,对它的要求是高速、低导通电阻、低损耗。
方案一:选用晶体三极管、IGBT管。晶体三极管需要较大的驱动电流,并存在储存时间,开关特性不够好,使整个功放的静态损耗及开关过程中的损耗较大;IGBT管的最大缺点是导通压降太大。
方案二:选用VMMOSFET管。VMOSFET管具有较小的驱动电流、低导通电阻及良好的开关特性,故选用高速VMOSFET管。③ 滤波器的选择
方案一:采用两个相同的二阶Butterworth低通滤波器。缺点是负载上的高频载波电压得不到充分衰减。
方案二:采用两个相同的四阶Butterworth低通滤波器,在保证20kHz频带的前提下使负载上的高频载波电压进一步得到衰减。
三、主要电路工作原理分析与计算
1、D类放大器的工作原理
一般的脉宽调制D类功放的原理方框图如图 5 所示。图 6 为工作波形示意,其中(a)为 输入信号;(b)为锯齿波与输入信号进行比较的波形;(c)为调制器输出的脉冲(调宽脉冲);(d)为功率放大器放大后的调宽脉冲;(e)为低通滤波后的放大信号。
图5 D类放大器的工作原理
图6 D类放大器的工作波形示意图
2、D类功放各部分电路分析与计算(1)脉宽调制器
①三角波产生电路。该电路我们采用满幅运放TLC4502及高速精密电压比较器LM311来实现(电路如图7所示)。TLC4502不仅具有较宽的频带,而且可以在较低的电压下满幅输出,既保证能产生线性良好的三角波,而且可达到发挥部分对功放在低电压下正常工作的要求。载波频率的选定既要考虑抽样定理,又要考虑电路的实现,选择150 kHz的载波,使用四阶Bultterworth LC滤波器,输出端对载频的衰减大于60dB,能满足题目的要求,所以我们选用载波频率为150 kHz。
电路参数的计算:在5V单电源供电下,我们将运放5脚和比较器3脚的电位用R调整为2.5 V,8同时设定输出的对称三角波幅度为1 V(V=2V)。若选定R为100 kΩ,并忽略比较器高电
p-p
10平时R上的压降,则R的求解过程如下:
119
取R9为39 kΩ。
图7 三角波产生电路
选定工作频率为f=150 kHz,并设定R+R=20kΩ,则电容C的计算过程如下:
763对电容的恒流充电或放电电流为
则电容两端最大电压值为
其中T为半周期,T=T/2=1/2。Vf的最大值为2V,则
1c取C=220 pF,R=10kΩ,R采用20 kΩ可调电位器。使振荡频率在150 kHz左右有较大47
6的调整范围。
图8 比较器电路
②比较器。选用LM311精密、高速比较器,电路如图8所示,因供电为5V单电源,为给V+=V-提供2.5V的静态电位,取R12=R15,R13=R14,4个电阻均取10 kΩ。由于三角波Vp-p=2V,所以要求音频信号的Vp-p不能大于2V,否则会使功放产生失真。
⑵ 前置放大器电路
如图9所示。设置前置放大器,可使整个功放的增益从1~20连续可调,而且也保证了比较器的比较精度。当功放输出的最大不失真功率为1W时,其8Ω上的电压V=8V,此时送
p-p给比较器音频信号的V值应为2V,则功放的最大增益约为4(实际上,功放的最大不失真p-p功率要略大于1W,其电压增益要略大于4)。因此必须对输入的音频信号进行前置放大,其增益应大于5。
前放仍采用宽频带、低漂移、满幅运放TLC4502,组成增益可调的同相宽带放大器。选择同相放大器的目的是容易实现输入电阻R≥10kΩ的要求。同时,采用满幅运放可在降低电源
i电压时仍能正常放大,取V=V/2=2.5V,要求输入电阻R大于10kΩ,故取R=R=51kΩ,+
cc
i
12则R=51/2=25.5kΩ,反馈电阻采用电位器R,取R=20kΩ,反相端电阻R取2.4kΩ,则前
i
43置放大器的最大增益Av为
图 9 前置放大器电路
调整R使其
4考虑到前置放大器的最大不失真输出电压的幅值V<2.5V,取V
om的音频最大幅度V<(V/A)=2/8=250mV。超过此幅度则输出会产生削波失真。
imom
v⑶ 驱动电路 如图10所示。器并联运用以获得较大的电流输出,送给由晶体三极管组成的互补对称式射极跟随器驱4.220 1 1 34 + = + = RR Av增益约为 8,则整个功放的电压增益从 0~32 可调。om=2.0V,则要求输入 将 PWM 信号整形变换成互补对称的输出驱动信号,用 CD40106 施密特 触发动的输出管,保证了快速驱动。驱动电路晶体三极管选用2SC8050和2SA8550对管。
⑷ H桥互补对称输出电路对VMOSFET的要求是导通电阻小,开关速度快,开启电小。因输出功率稍大于1W,属小功率输出,可选用功率相对较小、输入电容较小、容易快速驱动的对管,IRFD120和IRFD9120 VMOS对管的参数能够满足上述要求,故采用之。实际电路如图11所示。互补PWM开关驱动信号交替开启Q和Q或Q和Q,分别经两个4阶Butterworth
67滤波器滤波后推动喇叭工作。
图 10 驱动电路
图 11 H 桥互补对称输出及低通滤波电路
⑸ 低通滤波器
本电路采用4阶Butterworth低通滤波器(如图11)。对滤波器的要求是上限 频率≥20 kHz,在 通频带内特性基本平坦。采用了电子工作台(EWB)软件进行仿真,从而得到了一组较佳的参数:L1=22μH,L2=47μH,C1=l.68μH,C2=1μH。19.95 kHz处下降2.464 dB,可保证20 kHz的上限频率,且通带内曲线基本平坦;100 kHz、150 kHz处分别下降48 dB、62 dB,完全达到要求。
四、系统测试及数据分析
1、测试使用的仪器
2、测试数据
(1)最大不失真输出功率测试数据如下表所示:
⑵ 通频带的测量测试数据如下表所示
由表看出通频带BW0.7≈fH≈20 kHz,满足发挥部分的指标要求。⑶ 效率的测量测试数据如下表所示:
⑷ 测量输出功率200mW时的最低电源电压测量结果:Vcc=4.12 V。
3、测量结果分析
①功放的效率和最大不失真输出功率与理论值还有一定差别,其原因有以下几个方面: a.功放部分电路存在的静态损耗,包括PWM调制器、音频前置放大电路、输出驱动电路及 桥输出电路。这些电路在静态时均具有一定的功率损耗,实测结果其 5V 电源的静态总电流约为30 mA,即静态功耗 P 损耗=5× =1 mW。那么这部分的损耗对总的效率影响很大,特别对小功率输出时影响更大,这是影响效率提高的一个很重要的方面。
b.功放输出电路的损耗,这部分的损耗对效率和最大不失真输出功率均有影响。此外,H桥的互补激励脉冲达不到理想同步,也会产生功率损耗。
五、进一步改进的措施
1、尽量设法减小静态功耗
①尽量减小运放和比较器的静态功耗。实测两个比较器(LM311)的静态电流约为 15 mA,这部分损耗就占了静态损耗的一半功率。这是由于在选择器件时几个方面不能完全兼顾所 致。若选择同时满足几方面要求的器件,这部分的功耗是完全可以大幅度降低的。②我们选用的 VMOSFET 管的导通电阻还不是很小,若能换成导通电阻更小的 VM0SFET 管,则整个功放的效率和最大不失真输出功率还可进一步提高。③低通滤波器电感的直流内阻需进一步减小。
六、结束语 对于本系统设计,有些指标还有待于进一步提高。例如,在功放效率、最 功率等方面还有较大的潜力可挖,这些都有待于我们
择来进一步完善。大不失真输出 通过对电路的改进和对元器件的最佳选
第二篇:模电课设报告 音频功率放大器
1.设计思路
此次课程设计要求我们做一款音频功率放大器,通过在网上查找资料,我们发现TDA203是一款性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA2030在内的几种。
TDA2030集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。TDA2030集成电路的第三个特点是外围电路简单,使用方便。现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑封大功率管,这就给使用带来不少方便。
TDA2030在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%)、在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。该电路可供低频课程设计选用。
武汉理工大学《模拟电子技术基础》课程设计
2.电路选择
通过学习模电,我们对OCL、OTL和BTL功率放大电路有的一定的认识,经过比较,我们决定选择其一进行设计。下面是对三个功放电路的比较及介绍:
2.1 OCL电路简介:
OCL电路称为无输出电容功放电路,是在OTL电路的基础上发展起来的。主要特点:1采用双电源供电方式,输出端直流电位为零;由于没有输出电容,低频特性很好扬声器一端接地,一端直接与放大器输出端连接,因此须设置保护电路;
2具有恒压输出特性;允许选择4Ω、8Ω或16Ω负载; 3最大输出电压振幅为正负电源值,额定输出功率约为 /(2RL)2.2 OTL电路简介:
OTC称为无输出变压器功放电路。是一种输出级与扬声器之间采用电容耦合而无输出变压器的功放电路,它是高保真功率放大器的基本电路之一,但输出端的耦合电容对频响也有一定影响。
主要特点:1采用单电源供电方式,输出端直流电位为电源电压的一半;
2输出端与负载之间采用大容量电容耦合,扬声器一端接地; 3具有恒压输出特性,允许扬声器阻抗在4Ω、8Ω、16Ω之中选择。
2.3 BTL电路简介:
BTL称为平衡桥式功放电路。它由两组对称的 OTL或OCL电路组成,扬声器接在两组OTL或OCL电路输出端之间,即扬声器两端都不接地。
主要特点有:可采用单电源供电,两个输出端直流电位相等,无直流电流通过扬声器,与OTL、OCL电路相比,在相同电源电压、相同负载情况下,BTL电路输出电压可增大一倍,输出功率可增大四倍,这意味着在较低的电源电压时也可获得较大的输功率,但是,扬声器没有接地端,给检修工作带来不便。经过认真考虑,我们决定选择OTL电路图来进行制作。
武汉理工大学《模拟电子技术基础》课程设计
3.电路的分析
3.1 电路原理图
图3.1 TDA2030电路
3.2 工作原理分析
(1)电路放大部分
放大电路的输入信号:
...XidXXi,基本放大电路的增益(开环增益):
fA=。XX..o,反馈系数FXfXo..,负反馈放大电路的增益(闭环增益):
A.XX..o。
Fidi由上述公式联立得:
A,所以负反馈放大电路对信号的增益为
A1AF.。=
F。A.X..oVSFK。XA.。式子表明引入负反馈后,放大电路的闭环增益FA.为无反
Fs2
武汉理工大学《模拟电子技术基础》课程设计
A。1AF越大闭环增益下降的越多,所以馈时的开环增益A的1AF。。。11AF是衡量反馈程度的重要指标,负反馈放大电路所有性能的改善程度都与AF有关。图3.1所示电路中的R6(150 K)与R5(4.7K)电阻决定放大。。器闭环增益,R4电阻越小增益越大,但增益太大也容易导致信号失真。(2)音量调节部分
可调电阻R2通过调节电阻大小来调节音量大小。(3)电路保护部分
两个二极管IN4001接在电源与输出端之间,是防止扬声器感性负载反冲而影响音质。还可以防止电路短路时电流对放大器造成影响。电容C7滤掉了直流成分,保证了交流负反馈。C6(0.1uF)电容与R6(1)的电阻是对感性负载(喇叭)进行相位补偿来消除自激。(4)输出部分
大电容C6起到隔直通交的作用,滤除输出信号中的直流信号。
3.3 元件参数选择与计算
(1)根据闭环增益计算方法,选取R5和R6时应增大他们之间的比例,所以选R6为150 K,而R5太小会造成失真,所以选取4.7 K。
(2)输出部分的滤波电容应尽量选择大电容以使输出中的直流分量尽可能多的被滤除。这里选取2200Uf的电容。
(3)由于TDA2030的工作电压不超过22V,所以这里的二极管选取IN4001即可,其反向击穿电压为50V,符合电路要求。
武汉理工大学《模拟电子技术基础》课程设计
4.电路调试与运行
焊接:在焊接电路之前,先检查各个元件的好坏,并及时更换不合格的元件。再由孔距确定元件的安装方式,电阻器采用卧式安装,涤纶电容、电解电容采用立式安装,并都要求津贴电路板。插装TDA2030芯片时务必小心,脚全部插进去后再焊接,并注意与散热片的孔位吻合。各焊点加热时间及用锡量要适当。防止虚焊、假焊及短路。焊后要剪去多余的引脚并检查所有的焊点。确认无误后才可以通电测试。同时还要注意电源变压器初次级与开关及电路板的接线不得有误。芯片要用自攻螺丝与散热片相连。
测试:通电测试全部器件及插件焊接完后经过认真仔细检查后方可通电测试。组装:分别焊接完电路放大部分、音量调节部分、电路保护部分和输出部分后,进行各部分之间的连接。
武汉理工大学《模拟电子技术基础》课程设计
5.电源部分设计
5.1 电源设计图
5.2 电源设计图原理
(1)首先利用变压器将220V交流电压变为12V交流电压。(2)较低交流电压经过由四个二极管IN4001直流电压。(3)利用2200Uf的大电容进行滤波,随后可得到直流电压。(4)在负载R上可得到直流稳定电压。
武汉理工大学《模拟电子技术基础》课程设计
6.元件清单
集成运放:TDA2030 可调电阻:50 1 电阻: 1 1 4.7K 1 100K 3 150K 1 极性电容:1u 1 10u 22u 2200u 无极性电容:0.1u 二极管:IN4001
1 2 1 1 2 6
武汉理工大学《模拟电子技术基础》课程设计
7.电路制作过程中遇到的问题
1、第一次接通电路时,芯片发热因发热过高而烧毁,经检查电路无连接故障,所以可以认定是散热片过小的原因,更换散热片后接通电路则电路正常运行。
2、调节电位器发现音量增大或减小到一定程度时便不再增大或减小,这与电位器的阻值有关,使得调节至一定范围后效果不够显著。
3、开始焊接电路时使用了普通变阻器,结果发现由于其他原件的存在使得变阻器的调节十分麻烦,后来改用音频变阻器,使得调节变得简单。
4、在电路运行过程中,有时会听到声音忽大忽小,经检查是由于输入及输出端接触不良造成的,处理后让输入输出端稳定即可消除以上情况。
武汉理工大学《模拟电子技术基础》课程设计
8.心得体会
通过这次课程设计,加强了我们动手、思考和解决问题的能力。在整个设计过程中,我们通过这个方案包括设计了一套电路原理和PCB连接图,和芯片上的选择。这个方案总使用了TDA2030 在设计过程中,经常会遇到这样那样的情况,就是心里想老着这样的接法可以行得通,但实际接上电路,总是实现不了,因此耗费在这上面的时间用去很多。我觉得做课程设计同时也是对课本知识的巩固和加强,由于课本上的知识太多,平时课间的学习并不能很好的理解和运用各个元件的功能,而且考试内容有限,所以在这次课程设计过程中,我们了解了很多元件的功能,并且对于其在电路中的使用有了更多的认识。
平时看课本时,有时问题老是弄不懂,做完课程设计,那些问题就迎刃而解了。而且还可以记住很多东西。比如一些芯片的功能就,通过动手实践让我们对各个元件映象深刻。所以这个期末测试之后的课程设计对我们的作用是非常大的。制作PCB时,我发现只有细心才能做到完美,首先是线的布局上既要美观又要实用和走线简单,还有电路板的大小,兼顾到方方面面去考虑是很需要的,否则只是一纸空话。
同时我认为我们的工作是一个团队的工作,团队需要个人,个人也离不开团队,必须发扬团结协作的精神。某个人的离群都可能导致导致整项工作的失败。课程设计中只有一个人知道原理是远远不够的,必须让每个人都知道,否则一个人的错误,就有可能导致整个工作失败。团结协作是我们实习成功的一项非常重要的保证。而这次实习也正好锻炼我们这一点,这也是非常宝贵的。
通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,这毕竟第一次做的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固。
武汉理工大学《模拟电子技术基础》课程设计
参考文献
[1] 胡宴如.模拟电子技术.北京:高等教育出版社,2000 [2] 胡宴如.高频电子线路.北京:高等教育出版社,1998 [3] 汪建宇.电类专业英语.北京:机械工业出版社,2005 [4] 杨志亮.Protel 99 SE原理图设计.西安:工业大学出版社,2002 [5] 方建中.高频电子实验.浙江:浙江大学出版社,2001 [6] 张庆双.电子元件的选用与检测.北京:机械工业出版社,2002
第三篇:模电课程设计仿真 音频放大电路
电子科技大学
设计题目:学生姓名:教师姓名:《模拟电路基础》电子线路应用设计报告
功率放大电路 学号:
日期: 2016.12.27
1、设计任务
设计要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗RL=8Ω。
性能指标:频率:20Hz~20kHz 输出功率:≥8W 放大倍数:30dB 失真:≤10%
2、电路原理
2.1 电路整体方案 2.1.1 方案的确定及论证
一、OCL互补对称功率放大器
图 2.1.1-1 OCL电路
如图所示放大电路是由两个射极输出器组成的,T1和T2分别为NPN型管和PNP型管,两管的材料和参数相同(即特性对称),且电源由对称的双电源+VCC和-VCC提供。
图中,两管基极没有偏置电流,静态损耗为0,电路工作在乙类状态,信号从基极输人,从射极输出,RL为负载,输出端没有耦合电容。所以,把图4-35所示的电路称为无输出电容的功率放大电路,简称OCL电路。静态时,UEQ=UBQ=0 输入电压的正半周:+VCC→T1→RL→地 输入电压的负半周:地→RL→T2→-VCC OCL电路的输出功率的计算公式如下:
最大输出功率:
转换效率:
二、用集成器件实现
TDA2030集成功放芯片:
TDA2030是德律风根生产的音频功放电路,采用V型5脚单列直插式塑料封装结构。该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。并具有内部保护电路。
图 2.1.1-2 TDA2030芯片
TDA2030管脚功能: 1脚是正相输入端; 2脚是反向输入端; 3脚是负电源输入端; 4脚是功率输出端; 5脚是正电源输入端。
图 2.1.1-3 TDA2030芯片
图 2.1.1-4 TDA2030典型参数
TDA2030特点: 1.开机冲击极小。2.外接元件非常少。
3.TDA2030输出功率大,Po=18W(RL=4Ω)。4.采用超小型封装(TO-220),可提高组装密度。
5.内含各种保护电路,因此工作安全可靠。主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。
6.TDA2030A能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。
运用集成芯片TDA2030完成音频功率放大电路的设计,能够更好地达到设计任务和要求。2.1.2 整体电路
整体电路设计:使用TDA2030加少量外围元件,输入端使用高通滤波。
图 2.1.2-1 音频功放电路
2.2 各部分电路原理
一、输入部分
图 2.2-1 输入部分电路
R3是直流平衡电阻,同时与C3构成高通响应,用以滤除低频信号。
二、放大部分
图 2.2-2 放大部分电路
R1、R2和C2构成负反馈电路,决定电路的电压增益及低端截止频率。Au=R1/R2
三、输出部分
输出部分负载为扬声器,阻抗RL=8Ω。
四、保护部分
图 2.2-3 保护部分电路
R4和C7可以稳定频率,防止电路自激。D1、D2用以保护集成块 2.3 电路参数选择依据
阐述电路整体方案、各部分电路原理和电路参数选择依据
3、电路仿真和结果
根据要求,仿真软件选用multisim,在软件中连接电路如图4.1所示:
图 3-1 电路仿真图
一、波特图输出
图 3-2 波特图
由图可以看出,其仿真的结果,在20Hz-20kHz内中后段的波形放大能力基本保持不变化,且放大倍数约为30dB。符合题目要求。
二、输出功率
图 3-3 输出回路上探针数据 图 3-4 输出功率图
输出功率为8.662W,≥8W,满足要求。
三、失真分析
图 3-5 失真分析图
失真为0.014%,≤10%。满足要求。
选择的器件及其参数
给出部分和整体电路仿真截图,给出仿真结果及结论。
4、电路加工及测试(可选)
阐述制作电路(画图、焊接)的过程及注意事项,给出PCB版图、实物图。阐明所用的测试仪表、测试方法,给出测试结果。在最后,针对这次DIY,也有些收获和感悟。其中最重要的一点就是功放单点接地的问题!一定得慎之慎之处理处理不好功放会有底噪。
图中R1、R2是输入落地电阻,C2是直流反馈电容,接地点是小信号地,标记为蓝色,;C3、C4、C6、C7是退耦电容,接地端标记为红色,属电源地。正确的接地方式为:三个小信号接地点可混合在一条地线上,四个电源地汇集为另一条地线,电源地与小信号地在总接地点处汇合,除总接地点外,两种地不得有其他连通点。
5、问题解答
1、为什么共射放大电路不宜用作功率放大电路?
共射主要用于放大电压信号,其输出功率和效率都很低;而功放不仅需要有放大的电压信号,还需要有放大的电流信号,只有电压信号和电流信号都足够大,才能满足功放的要求,所以共射放大不宜用作功率放大电路。
2、TDA2030使用时对电路有什么要求? TD2030使用时类似于集成运放,需要用负反馈电路。
3、如何实现电路的实物制作?
根据电路图绘制PCB→将PCB文件导出为PDF文档格式,采用1:1导出→将PDF打印到菲林上,采用实际大小打印→将打印好PCB菲林平铺在感光板上,准备曝光→用11W的日光台灯曝光约15分钟→曝光完毕后用显影液进行显影→准备好腐蚀溶液进行腐蚀→腐蚀结束,钻孔,准备焊接→焊接元件
6、总结
通过此次的课程设计,我增进了对功率放大电路的了解、掌握了音频功率放大电路的基本设计方法,对于仿真软件Multisim也用得更加得心应手,此外我还新学会了利用软件Altium Designer绘出PCB版图。同时对于模电的课程的内容也有了更加深刻的认识。
电子设计和需要扎实的理论基本功,同时也需要有一定的动手能力。理论加上实践,才能做等更好。
从选择题目到开始着手去做,我才发现自己的模电知识掌握得并不牢固,于是花了很多时间去读教材相关内容,包括基本放大电路的知识,多级放大器,放大电路的反馈和功率放大器等章节,总算是有了大概的想法和思路。而后便查阅各种论文和书籍资料,浏览各样的电子、电工论坛,看到别人的一些见解和讨论,启发了我的思路。最终发现了TDA2030的集成运放具有很大的优点,便想用集成运放来实现。我选择了TDA2030典型电路中的双电源电路来实现,并揣摩该电路的设计思路和意图,最终看出了其中的道理。之后便是应用仿真软件来实现。
制作实物电路图又是一次挑战。首先我询问了一些搞电子设计的同学如何实现实物,得知要先绘出PCB布线再印制、最终把元件焊上去并调试。软件Altium Designer的使用对我来说又是一项新鲜事物,我不断尝试,学会了如何利用软件布线。学校开放实验室给了我们很大的支持和鼓励,元件的找寻以及板子的印制都不再成为困扰我们的问题。我在没课的时候就呆在那里焊板子,最终做出了实物。
虽然我做出来的电路满足了设计要求,但是我仍觉得有些遗憾,那就是这个电路图我是直接用的TDA2030典型电路,并没有在此基础上做什么改进和变化。我想,以后我要更加注重模电这样的课程的学习,掌握扎实的基础,才有创新思考的能力。同时我也认识到,电子设计也需要有一定的动手能力。理论加上实践,才能做得更好。
电路设计、仿真、加工、测试过程中的收获和体会,对课程的理解,对实际电路的认识等等。
说明:正文小四号宋体。图表采用五号宋体,图表分别按顺序编号。
表1 选用的元器件型号和数量 图1 xxx仿真电路图
参考文献
[1].[2].[3].[4].童诗白,华成英.模拟电子技术基础[M].第四版.北京:高等教育出版社,2006.周文.浅谈TDA2030集成音频功率放大器的制作[J].课程教育研究,2013,(2).朱李明.线性集成电路——TDA2030A[J].集成电路应用,1986,(3).张燕玉,陈国志.实用OCL集成音频功率放大器的分析方法[J].科技资讯,2010,(3).[5].芮新芳,朱朝霞,牛耀国.使用Altium Designer Winter 09设计印刷电路板之常见问题及使用技巧[J].电脑与电信,2011,(9).[6].吴中华.Altium Designer 10使用快速入门[J].电子制作,2012,(6).
第四篇:模电课程设计论文-音频功放电路
序
号
课 程 论 文
课程名称 论文题目 学 院 专业班级 学 号 姓 名 联系方式
模电课程设计 音频功率放大电路
2013 年 6 月 10 日
一、设计题目:
音频功率放大电路
二、设计任务与要求:
要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8。
指标:频带宽50HZ~20kHZ,输出波形基本不失真;电路输出功率大于8W;输入灵敏度为100mV,输入阻抗不低于47K。
三、原理电路设计:
根据题目要求“用晶体管和集成运放设计音频功率放大路” 得知要用晶体管和集成运放来完成设计。因此我选择用集成运放组成前级放大电路,用晶体管组成后级放大电路,前级放大电路主要实现电压放大,后级主要实现电流放大。
前级放大蒂电路必须由低噪声、高保真、高增益、快响应、宽带音响集成电路构成。符合上诉条件的集成电路有:M5212、NE5532、NE5534等,本系统选择NE5532,因为众多的运放相比,NE5532具有高精度、低噪音、高阻抗、宽频带等优良性能,被称为“运放之皇”。这种运放的高转速可大大改善电路瞬态性能,较宽的带宽能保证信号在低、中、高频段均能不失真输出,使电路的整体指标大大提高。
后级放大电路采用AB推免放大电路,因为推免放大电路可以有效消除交越失真。而AB推免放大电路主要有OTL和OCL,本设计选择OCL电路,因为OCL电路的低频特性比OTL电路好。再者考虑到功率放大对功率要求较高,所以在OCL电路的基础上采用复合管形式。
整体电路如下,元件:
NE5532
晶体管: BC547
BC557
TIP41 TIP42
电阻:
3K
4.7K
300K
260K
电容:
470u(有极性)
100u(有极性)
100n 电位器:
10K
二极管
1N4148
元件的选择:
TIP41、TIP42最大Ic为6A,功率65W符合电路要求。R7与C2有相位补偿作用。电容C1、C5可以避免电源的自激荡。R3与D1组成偏置电路。NE5532的输出端通过R10与NE5532的反相输入端相接组成负反馈,调节电压放大倍数。
四、电路测试:
输出不失真波形:
频带宽:1.639Hz~55.69KHz,符合题目要求。
最大不失真输出电压时波形:
如图,峰峰值为21.932V,根据,Uo为峰峰值,得最大输出功率为15.03W符合题目要求。
通过实验教程的方法测得输入阻抗为50.009千欧,符合输入阻抗要求。
实际测量:
如图,最大峰峰值为24V,基本符合输出功率大于8W要求。
五、总结
优点:
1、采用NE5532集成运放和晶体管来制作,完全符合题意。采用运放之皇NE5532,能大大改善指标。
2、采用OCL电路,可以消除交越失真,且采用复合管形式,可以提高电流放大系数。
3、频带宽大。
4、电路布局合理,无外接电线,整体性好。缺点:
1、输出功率不够大。
2、电路发热较厉害,传输效率低。
3、电路较复杂,成本偏高。改进:
1、针对输出功率不够,考虑换成TDA2030来组成前级放大。
2、为电路加保护电路,在NE5532的电源端加二极管进行保护。心得体会:
通过这次课程设计使我进一步学习了相关的模电知识,加深了对课本知识的印象,意义重大。通过课程设计让我学到了很多课本上学不到的知识,开阔了我的眼界,掌握了一些作为电子专业学生所必须的技能。通过焊接电路板使我的焊接技术得到了提高,让我懂得如何合理地布线,如何使得电路板看起来更美观。在设计过程中让我体会到做什么事情都要有耐心、有恒心,要学会坚持,不能怕麻烦,要有越挫越勇的精神,更重要的是要对自己有信心。当然通过这次课程设计我也发现了自己很多的不足,比如总是拘于一下无关紧要的小节问题,导致我的进程很慢,还发现自己缺乏钻研精神,有时做事马虎等。总之,通过这次课程设计我受益匪浅,不过有点遗憾的是自己的作品不理想,性能指标不够,不管怎样我还是学到了很多东西。
六、参考资料:
1、童诗白、华成英,《模拟电子技术基础》
2、康华光,《电子技术基础》模拟部分
3、赵淑范
王宪伟,《电子技术实验与课程设计》 百度网站、电子发烧友、豆丁网等相关网站
第五篇:模电课程设计
河南理工大学万方科技学院
模拟电子课程设计
对讲机放大电路的设计
专业班级 :电气13-3 姓
名 :何水源
学
号 :1316301140
一 设计方案
1.确定前置级电路方案:
①根据总的电压放大倍数,确定放大电路的级数,实际电路中,为使放大电路的性能稳定,都引入了一定深度的负反馈,所以,放大倍数应留有一定余量。②.根据输入,输出阻抗及频率响应等方面的要求,确定晶体管的组态(共射,共基,共基)及静态偏置电路。
③.根据三种耦合方式(阻容耦合,变压器耦合,直接耦合)的不同特点,选用合适的耦合方式。本电路级间耦合采用阻容耦合方式。
本电路电压增益为100倍,考虑到电路的输入电阻不很高(ri>15K),输出阻抗也不太低,负载取得电流也不太大(RL=2K),因此前置级电路采用共射极电路。由于单级放大器的电压增益为35db左右,两级放大器的增益为65db左右,考虑到要引入一定深度的负反馈(一般为1+AF=10左右),而电路的增益要求为100倍,所以前置级用两级共射极电路组成。静态偏置采用典型的工作点稳定电路。
2.确定功率放大器电路方案:
功率放大器的电路形式很多,有双电源的OTL互补对称功放电路、单电源供电的OTL功放电路、BTL桥式推勉功放电路和变压器耦合功放电路等。这些电路各有特点,可根据要求和具备的实验条件综合考虑,做出选择。
本方案的输出功率较小,可采用单电源供电的OCL功放电路,OTL功率放大器由推动级、输出级组成。推动级采用普通的共射极放大电路,输出级由互补推动输出,工作在甲乙类状态下,得到较大的输出功率。
图1-4是一个OTL功放电路,T4是前置放大级,只要适当调节Rp,就可以使IRH、UB5和UB6达到所需数值,给T5、T6 提供一个合适的偏置,从而使A点电位UA=UC6=VCC/2。
当Ui=Uimsinwt时,在信号的负半周,经T4放大反相后加到T5、T6基极,使T6截止、T5导通,这时有电流通过RL,同时电容C5被充电,形成输出电压Uo的正半周波形,在信号的正半周,经T4放大反相后加到T5、T6基极,使T5导通、T6截止,则已充电的电容C5起着电源的作用,并通过RL,和T5放电,形成输出电压Uo的负半周波形。当Ui周而复始变化时,T5、T6交替工作,负载RL上就可以得到完整的正弦波。
为使输出电压达到最大峰值UCC/2,采用自举电路的OTL功放电路。
当Ui=0时,UA=VCC/2,UB=VCC-iR11R2,电容C3两端电压UC3=UB-UA=VCC/2-iR11R2。当R11C4乘积足够大时,则可以认为UC4基本为常数,不随Ui而变化。这样,当Ui为负半周时,T5导通,UA向更正的方向变化。由于B点电位UB=UC4+UA,B点电位也将自动随着A点电位升高。因而,即使输出电压Uo幅度升的很高也有足够的电流通过T5基极,使T5充分导电。这种工作方式叫“自举“,意思是电路本身把UB提高了。
四、计算原件参数
依据基本设计方案计算元件参数
电路方案确定以后,要根据给定的技术要求进行元件参数的选择。在确定元件参数时,可以先从后级开始,根据负载条件确定后级的偏置电路,然后再计算前级的偏置电路,进一步由放大电路的频率特性确定耦合电容和旁路电容的电量,最后由电压放大倍数确定负反馈网络的参数。1).确定电源电压 Vcc应满足要求:
Vcc 〉2Vom+VE+VCES Vom= 1.4V VE为三极管发射极电压,一般取1~3V,VCES为晶体管饱和压降,一般取1V。
2.前置放大级参数确定 a)确定T2级的参数
集电极电阻R8,发射极电阻R9,T3型号,基极偏置电阻R6、R7。
Vcc-VCEQ2=ICQ2 R8+VE2 VCEQ2= ICQ2 VCEQ2 > Vom+VCES R9=VE2/ICQ2 指标中,RL=2KΩ,取VE2=3V,VCES=1V; 确定R8=3.5KΩ,R9=1.5KΩ,取标称值,R8=3.3KΩ,R9=1.5KΩ,则静态值ICQ=2mA,VCEQ2=2.4V。确定T2级三极管参数:
晶体管的选取主要依据晶体管的三个极限参数: BVCEO > 三极管c-e间最大电压VCEmax ICM>三极管工作时的最大电流ICmax PCM > 三极管工作时的最大功耗PCmax VCE最大值为: VCE2max=Vcc IC2的最大值为: IC2max =2ICQ2 T2的最大功耗为:PCmax= VCEQ2 · ICQ 因此T2的参数应满足: BVCEO > 12V ICM>2ICQ2 = 4mA PCM > VCEQ2 · ICQ2 = 4.8mW 选用3DG系列小功率三极管,β2=80。确定T2级基极电阻参数: 选取原则:
1.基极电压VB2越稳定,则电路的稳定性越好,需满足IR > > IB 2.IR不能过大,否则R6、R7的值太小。会增加电源的消耗;使第二级的输入电阻降低,从而使第一级的放大倍数降低。
为了使VB2稳定同时第二级的输入电阻又不致太小,按下式选取IR的值: IR=(5 ~ 10)IBQ 硅管 IR=(10 ~ 15)IBQ 锗管
本电路选用硅管,取 IR= 5 IBQ,则:
T1级发射极、集电极电阻及静态工作点:
因为T1级是放大器的输入级,其输入信号比较小,放大后的输出电压也不大,所以对于第一级失真度和输出幅度的要求比较容易实现,主要考虑如何减小噪声,三极管的噪声大小与工作点的选取有很大关系,减小静态电流对降低噪声是有利的,但对提高放大倍数不利,所以静态电流不能太小。在工程计算中,一般对小信号的输入级都不详细计算,而是凭经验直接选取: I CQ1 = 0.1~1 mA 硅管
I CQ1 = 0.1~2 mA 锗管 本电路选用硅管,取IR=5IBQ
取标称值R1=12K,R4=56,R5=5.6K。T1级三极管参数:
BVCEO > 12V,ICM > 0.5 mA,PCM > 1.5 mW 选用3DG—三极管可以满足要求。确定T1级基极电阻参数: 取IR= 10 IBQ1,VE1 = 3V
耦 合 电 容 : 2 ~ 10 μF 发射极旁路电容: 150 ~ 200 μF
d)反馈网络的计算 Rf = 100R4-R4=5.5K 取Rf = 5.6K,Cf=10μF
根据上述的计算结果,得到电路图1-6,可将电路仿真,如不能达到设计要求,修改电路使其达到设计要求。然后将仿真后的电路实际安装调试。
五、对讲机的安装
(1)熟悉电路元件,发对讲机装配零件,检查和熟悉各种零件 周二,老师首先让我们熟悉对讲机的电路图和熟悉电路元件,这一天的工作是相对轻松的,仅仅是熟悉电路图和学习使用常用电子仪器仪表,和识别检测常用的电子元件。
这一天最重要的就是常用电子元件的识别和检测。我们常见的电子元件就是电阻、电容、二极管和三极管。电阻上的色带是就是电阻的色环标记法,通过色环来表示电阻的大小,有效数字、倍率和允许误差。现在见到的电阻的色环有四道和五道的,四道环的有效数字是前两道环所代表,而五道环是由前三道所代表。接着识别电容器,电容用于交流耦合、滤波、隔断直流、交流旁路和组成振荡电路等,电容的标注分为直接标注和色标法。通过学习,我明白了直接标注的电容是用数字直接表示电容量,不标单位。标注1~4位整数时,其单位是pF,标注为小数时,其单位是µF。也有用三位数字表示容量大小,默认单位是pF,前两位是有效数字,第三位是有效倍率(10m),当第三位是9时,则对有效数字乘以0.1。而色标法则同电阻器的标注。检测电容的方法是利用电容的充放电特性,一般用万用表电阻档测试电容的充放电现象,两只表笔触及被测电容的两条引线时,电容将被充电,表针偏转后返回,再将两表笔调换一次测量,表针将再次偏转并返回。用相同的量程测不同的电容器时,表针偏转幅度越大说明容量越大。测试过程中,万用表指针偏转表示充放电正常,指针能回到∞,说明电容没短路,可视为电容完好。现在说明在模拟电路中常见的二极管,通常二极管有整流、检波、稳压、发光、发电、变容、和开关二极管等。检测二极管我们利用的是二极管的正向导电性,正向导通反向截止,可以判断管子的好坏。最后说明三极管的识别和检测,很明显,一般的三极管就是三个管脚,很容易识别,所以识别三极管重要的是识别三极管是NPN或PNP型,以及各管脚所代表的极性。而这些的判断都需要使用万用表。判断极性:对圆柱型三极管,若管脚处接头有突出物,则将管脚冲上,顺时针依次为EBC极若没有突出物,则管脚根处间隙较大的两跟管脚对向自己,顺时针依次为EBC极。对半圆型三极管,将管脚向上,半圆向自己,顺时针为EBC极。判断三极管的类型:在基于以上极性判断的前提下,NPN管,基极接黑表笔,测得电阻较小。PNP管正好相反。以上就是我对常用电子元件的识别和检测方法。
(2)焊接各种零件并交对讲机
周二下午,我们就真正进入到电子技术实习的操作中去了,以前虽然接触过电烙铁,但毕竟很少有实际操作过,总是怀有几分敬畏之心。而电子电路主要是基于电路板的,元器件的连接都需要焊接在电路板上,所以焊接质量的好坏直接关系到以后制作对讲机的成败。因此对电烙铁这一关我们是不敢掉以轻心的。
最终我们在这一天的实习中,焊接了十几个元件,起初没经验,将电阻立得老高,这样既不美观也不牢靠容易形成虚焊,之后有了经验就采取卧式法,既美观又牢靠,只是拆卸时稍微麻烦,需要别人帮忙。焊接时虽然胆战心惊,但还是总结出了心得,就是焊锡要用一点点下去,电烙铁要在锡水熔化后产生光亮就拿开,这样就能焊出光亮圆滑的焊点了。将他们插好后就依次拆卸下来,先焊接电阻,再焊接电容,焊接电容时一定要特别注意电容的正负极。然后是三极管,焊接时注意三极管的极性,管脚要放入相应位置。另外,由于这次课程设计使用的电路板并不是印刷好的电路板,所已焊接时电路板上元件的连接要用导线来连接,这就要求我们在焊接之前就要先把原件布局好。焊接完电路板的电子元件后,就要处理电源同电路板的连接,这需要我们引出导线以方便接下来的调试和数据测量。
六、调试方法
1.仿真调试步骤:通过仿真测试,如不能达到设计要求,则应修改电路,使其满足要求。
⑴使用仿真软件画出电路原理图,标出节点。
⑵对电路进行直流分析,判断放大电路及功放级的电路状态。⑶对电路进行交流分析,通过对不同节点的分析观察其幅频特性和相频特性是否满足设计要求。
⑷对电路进行瞬态分析(示波器),观察放大级输出的波形,波形不失真,输出电压、失真度、带宽等指标达到要求。
2.实际电路调试
在仿真的基础上,焊好电路并检查无误后,即可进行调试。如果设计正确,前置放大级一般不必调整就可以正常工作。3.OTL输出级的简单调整方法: ①调解Rp使A点电位为Vcc/2。②调解R13使ICQ4、5 =(5 ~ 10)m A 其中 1)、2)两步要反复调解,直到达到要求为止。经上述调试后,放大器就能正常工作。按图1-1 接好线路,K拨在图中位置,对着Y2讲话时,Y1处应能听到Y1放出的清晰、宏亮的声音。当K拨到另一位置时,对着Y1讲话时,Y2处应能听到Y1放出的清晰、宏亮的声音。
最后需要说明的是,如按图1-1 接好线路后,扬声器中有广播电台的声音,则应放在放大器的输入端与地之间接一电容,其容量为0.01μF,也可由试验确定。
七、实际电路测量数据: 信号源电压:Us=10mV 输入电压:Ui=9.66mV
输入电阻:Ri=[Ui/(Us-Ui)]R=34.7K 前置级输出电压:Uo1=0.975V 放大倍数:Av=Vo1/Ui=97.5 频宽:29Hz~~2.03MHz 输出电压:Uo=2.43V 三极管各极电压:
T1:VEQ=2.8V;VBQ=3.4V;VCQ=6V T2:VEQ=2.7V;VBQ=3.3V;VCQ=5.6V T3:VEQ=5V;VBQ=5.7V;VCQ=12V T4:VEQ=2.1V;VBQ=2.8V;VCQ=5.8V T5:VEQ=6.2V;VBQ=6.8V;VCQ=12V T6:VEQ=6.4V;VBQ=5.8V;VCQ=0V
八、所用仪器设备 1.计算机及电路仿真软件。2.信号发生器。3.示波器。4.稳压电源。5.稳压电源。6.晶体管毫伏表。7.万用表。
九、心得体会
一周的课程设计在充忙的生活中很快过去了,经过一周的课程设计的学习,我已经自己能制作一个对讲机,这其中的兴奋是无法用言语表达的。学习模电这段时间也是我们一学期最忙的日子,不仅面临着期末考试,而且中间还有一些其他科目的实验,本周必须完成模电的课程设计。任务对我们来说,显得很重。为了较好的完成模电的课程设计,我经常放学好在实验室加班。相关知识缺乏给学习它带来很大困难,为了尽快掌握它的用法,我照着原理图学习视频一步一步做,终于知道了如何操作。通过这次设计,我懂得了学习的重要性,了解到理论知识与实践相结合的重要意义,学会了坚持、耐心和努力,这将为自己今后的学习和工作铺展了道路。另外,课堂上也有部分知识不太清楚,于是我又不得不边学边用,时刻巩固所学知识,这也是我作本次课程设计的一大收获。
十、参考资料: 电子技术基础(模拟部分)康华光 高等教育出版社 模拟电子技术基础 童诗白 华成英 高等教育出版社 模拟电子技术课程设计 电气工程系 中原工学院电子电工教研室
电子线路课程设计 华永平华南大学出版社 电子技术基础实验与课程设计 高吉祥 电子工业出版社 电工电子技术实习与课程设计 华荣茂 电子工业出版社