高速铣削淬硬模具钢的工艺性和经济性研究

时间:2019-05-12 16:38:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高速铣削淬硬模具钢的工艺性和经济性研究》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高速铣削淬硬模具钢的工艺性和经济性研究》。

第一篇:高速铣削淬硬模具钢的工艺性和经济性研究

高速铣削淬硬模具钢的工艺性和经济性研究

高速加工机床及其刀具技术的最新发展使得在模具和零件制造领域实现“以切代磨”成为可能,用超硬刀具高速切削淬硬模具钢等难加工材料已得到越来越广泛的应用。由于模具或零件的高速切削加工可免除磨削或抛光等后续工序,因此精加工时如何保证工件最终表面质量同时将加工成本控制在可接受范围之内是研究人员关注的重要问题。本文在调查的基础上分析了用于高速铣削淬硬模具钢的整体硬质合金涂层立铣刀的切削性能和经济性,并给出了部分应用实例。

1.引言

高速切削加工(high-speed cutting, HSC)是先进制造技术的一个重要组成部分,其主要优点是可实现加工的高效率和高品质。近年来高速切削加工技术在世界主要经济发达国家(如德、英、美、意、日等)发展迅猛,这些国家生产的高速切削加工机床及辅、配、软、硬件几乎每年都以一个新台阶的速度更新换代,目前所能达到的性能指标已是令人瞠目。Micron、Jobs、Haas、Fpt、Dmg等世界著名机床公司近年来大力发展的快速更换主轴头技术使同一台机床能适应多种负载和速度要求(即所谓粗精加工同机“一次过”),在工件的定位、安装、传输等环节可节约大量的非加工时间。

机床主轴的高速旋转以及进给速度、加速度的相应提高,一方面可直接缩短加工时间,另一方面还因高速切削具有激振频率特别高、工作平稳、振动小的优势而有利于提高加工表面质量,即高速切削加工可作为模具和结构零件的最终加工,通过“以切代磨”或“以切代放电”来提高加工效率和加工质量(即勿需进行费时低效的后续磨削工序、模具电极电火花加工);工件还可先淬火后切削,直接将硬度高达65HRC的材料高速切削加工至最终尺寸。

高速切削加工的实现除需高速机床外还需配备适宜高速切削的刀具。根据2002年广东省国际模具高速加工技术研讨会上Micron、Jobs、肯纳飞硕等公司的特邀报告,近年来德国SGS、日本三菱(神钢)及住友、瑞士山特维克、美国肯纳飞硕等国外著名刀具公司都先后推出了各自的高速切削刀具,不仅有高速切削普通结构钢的刀具,还有能直接高速切削淬硬钢的陶瓷刀具等超硬刀具,尤其是涂层刀具异军突起,在淬硬钢的半精加工和精加工中发挥着巨大作用。

近年来我国(尤其华南地区)制造业发展迅速,模具和汽车、摩托车制造业发达,拥有高速切削机床的企业不断增多。然而,与高速切削机床和刀具技术的快速发展相比,这些企业在高速切削工艺、检测及应用软件等方面的技术还比较落后,与硬件不能配套,致使不少厂家进口的先进设备根本没有发挥其应有作用。一方面,主轴转速可达数万转的高速机床却一直只在几千转水平运行,具有高速精加工的条件却只用于粗加工和半精加工,可切削高硬材料的机床和刀具却只用来切削普通材料;另一方面,因工件材料与刀具、工艺配伍不当造成加工成本高昂甚至质量事故也时有发生。为了推广高速切削加工技术的发展,帮助企业合理应用高速切削加工设备与技术,很有必要对高速切削加工的工艺性与经济性问题进行深入探讨。

2.常用可淬硬模具钢及高速切削用立铣刀

2.1常用塑胶模具钢和热作钢

市场上常见的模具淬硬钢多用于制造塑胶模和锻造、压铸型腔模,主要供应商有瑞典一胜百(ASSAB)、香港龙记(LUNG KEE)、德国撒斯特(SAARSTAHIL)、日本大同(DAIDO)等公司。表1列出了部分塑胶模具钢和热作钢的品名与性能。传统的模具钢加工方法是先铣削后淬硬再磨抛,而用高速切削加工则可粗铣后淬硬再精铣,甚至可实现粗精铣同机一次完成。

表1几种常用塑胶模具钢和热作钢

商品名――标准――特性与用途――表面硬度ASSAB S136;S316H――AISI 420ESR――防酸不锈蚀,耐磨性高,热处理尺寸变化小;适合于PVC、PP、EP、PC、PMMA塑胶模具,高温回火后可作高抛光度镜面塑胶模――低温回火HRC50~55,高温回火HRC34~38SAARSTAHL(SSE)GS2344EFS;GS2344ESR――AISI H13――优良的红硬性、高温冲击强度、高温耐磨性和抗热冲击龟裂性,可作挤压、压铸、热锻和高温冲裁工具――180~300℃淬硬至HRC52LKM2311;LKM2312――AISI P20――硬度均匀,加工性能良好,芯部韧性好,可作高级预硬塑胶模――HRC53~36DAIDO NAK80――AISI P21 modified ESR――变形小,易研磨抛光,长期使用可维持高精度,可用作高硬度高镜面模具――供货时HRC37~41,可淬硬至约HRC60

2.2高速切削淬硬钢常用立铣刀

本文主要讨论用于高速切削的整体硬质合金PVD涂层立铣刀(可切削硬化钢的其它刀具如CBN和陶瓷刀具等不是本文研究重点)。

(1)刀具涂层:能用于高速切削淬硬钢的刀具涂层主要有(Ti,Al)N或(Ti,C)N,刀具基体为超细颗粒硬质合金。(2)铣刀主要形式:用于高速切削淬硬钢的整体立铣刀主要形式有常规2刃和多刃球头刀、长颈球头刀、2刃锥面球头刀、2刃带圆弧头平底刀、长颈带圆弧头平底刀、2刃直角平底刀和多刃直角平底刀等。

在我国市场上淬硬钢常用立铣刀的主要供应商有:日本神钢(KOBELCO)、日本三菱(MITSUBUSHI),日本UNIMAX、日本日立(HITACHI)、日本住友(SUMITOMO ELECTRIC)、德国SGS、美国肯那飞硕(KENNAMITAL)以及韩国和以色列的涂层刀具厂商,国内企业也推出了正在开发试用的产品。

3.加工淬硬钢用高速立铣刀的工艺性

本文以三菱公司几款(Ti,Al)N超硬涂层整体硬质合金精加工立铣刀为例,介绍高速立铣刀的切削性能和工艺参数。对这些刀具均推荐采用干切削(空气冷却)和顺铣工艺。

①直径0.2~6mm 2刃直角平底立铣刀:常用于切沟槽。工件硬度小于HRC45时,轴向切深不大于0.1D(刀径D小于2mm)~0.2D(D大于2mm);工件硬度大于HRC45时,对应于刀径D小于0.5mm、小于2mm和2mm以上,轴向切深分别不大于0.02D、0.05D和0.1D。②直径1~6mm 4刃直角平底立铣刀:常用于侧面精加工。工件硬度小于HRC45时,轴向切深不大于1.5D,径向切深不大于0.1D(刀径D小于3mm)~0.2D(刀径D大于4mm);工件硬度大于HRC45时,轴向切深不大于刀径D,径向切深不大于0.05D。③R0.1~3mm 2刃球头立铣刀:常用于曲面精加工。轴向切深不大于0.1R,径向切深0.2~0.4R。

高速加工时,上述刀具的切削速度和进给速度随工件硬度和刀径不同而变化:随着工件硬度增大,刀具的转速尤其是进给速度降低;随着刀径增大,刀具的转速降低但线速度相对较高,进给速度也相应增大(参见表2)。

表2推荐切削条件

2刃球头立铣刀:工件硬度<45HRC时:R1-R2-R3:转速(r/min):35000-25000-20000;进给量(mm/min):1200-1800-2200工件硬度45~55HRC时:R1-R2-R3:转速(r/min):25000-17000-13000;进给量(mm/min):800-900-10002刃直角平底立铣刀:工件硬度<45HRC时:直径0.5mm-2mm-6mm:转速(r/min):40000-10000-3500;进给量(mm/min):240-400-400工件硬度45~55HRC时:直径0.5mm-2mm-6mm:转速(r/min):30000-8000-2700;进给量(mm/min):120-120-1204刃直角平底立铣刀:工件硬度<45HRC时:直径1mm-3mm-6mm:转速(r/min):12000-5300-3200;进给量(mm/min):100-200-360工件硬度45~55HRC时:直径1mm-3mm-6mm:转速(r/min):8900-3200-2000;进给量(mm/min):45-85-150

4.淬硬钢高速铣削的经济性

目前不同厂商生产的(Ti,Al)N涂层硬质合金立铣刀其切削性能有较大差异,市场价格也有很大不同(与其它涂层刀具相比,其价格都比较贵)。直径2mm以下的小直径立铣刀售价为100~400元/支,直径4~φ8mm立铣刀售价约为200~700元/支。通常随着刀具直径的增大,铣刀价格也升高(铣刀最大直径可达20mm)。

刀径较大的(Ti,Al)N涂层硬质合金立铣刀高速加工淬硬材料时其强度基本可满足要求,但用小直径刀具高速加工窄槽时铣刀则易断易损。由于(Ti,Al)N涂层硬质合金立铣刀磨损后一般不能进行重磨,因此刀具成本较高;在用于某些模具加工时,刀具成本甚至占到模具总制造成本的12%左右。

用高速铣削法加工模具可能带来的优点有:节省加工时间,减少加工工序,提高生产率,降低加工成本,改善加工质量。

据分析,用传统方法加工型腔模具的成本分布大致为:粗加工占12%,半精加工和精加工各占25%,后续手工修磨占16%,调试占22%。而采用高速铣削法,可大大提高精加工效率,取消或者减少后续手工修磨工序;如果采用粗精加工同机“一次过”工艺,甚至粗加工和半精加工时间也可大大缩短(比电火花加工快得多)。

加工实例:

①用Mikron(米克朗)公司HSM400加工中心采用“粗、精加工一次过工艺”加工修枝剪锻模(HRC52),总耗时194分钟(型腔内外粗铣66分钟,球头刀型腔内外半精铣10分钟,球头和平底刀30000r/min高速精铣94分钟,后续修整24分钟),最终加工表面粗糙度Ra0.5μm。②HSM400加工中心采用“粗、精加工一次过工艺”加工注塑模(HRC54),总加工时间为468分钟。粗加工采用4~6刃粗铣刀(直径2~8mm),转速20000~8000r/min,进给速度1500~2600mm/min;半精铣和精铣用2刃球头刀(直径0.8~1.5mm),转速36000r/min,进给速度1000~1600mm/min。③表3给出的是MMC(三菱)KOBELCO(神钢)的小直径超硬涂层立铣刀使用实例。

表3 MITSUBISHI MSTAR小直径超硬涂层立铣刀使用实例刀具――工件――工艺特性――切削条件――加工效果2刃球头刀(R1.5mm)――热锻模,材料SKD61(HRC47)――切深0.05~0.1mm的半精加工、精加工――切速:94m/min,进给:0.1mm/tooth,回转速度:10000r/min,进给速度:2000mm/min,干切削――每把刀具的寿命从原先可切200m增至近600m4刃直角立铣刀(直径6mm)――塑料模,S55C――模具型腔侧面精加工,切深0.6×6mm――切速:50m/min,进给:0.04mm/tooth,回转速度:2650r/min,进给速度:212mm/min,干切削――加工50m后,后刀面磨损高度从原先的0.25mm减小到0.15mm

5.结语

迅速发展的高速切削加工机床和刀具技术使淬硬模具的“粗、精加工同机一次过”工艺的应用成为可能,切削加工可作为淬硬模具和结构零件的最终加工,实现“以切代磨抛”或“以切代放电”。因此应用高速铣削加工模具可能带来节省加工时间、减少加工工序、提高生产率、降低加工成本、改善加工质量等诸多好处。

目前可用于高速加工淬硬模具钢的立铣刀主要是超细颗粒硬质合金(Ti,Al)N涂层立铣刀。由于这类刀具价格比较高,而且因其不可重磨、性脆和使用中对受热均匀的要求较高等,其加工工艺与经济适应性尚需深入探讨研究,以充分发挥高速铣削的优势。同时,各企业也应根据自身具体情况制定适宜的高速加工技术应用策略。

第二篇:锂离子电池论文:磷酸亚铁锂-硬碳锂离子电池的工艺及电化学性能研究

锂离子电池论文:磷酸亚铁锂/硬碳锂离子电池的工艺及电化学性能研究

【中文摘要】自从锂离子电池被成功研制并商业化以来,锂离子电池以其循环寿命长、工作电压高、安全性好、无记忆效应等特点越来越受到人们的青睐和重视。然而,锂离子电池电化学性能的好坏与其所使用的正负极材料、导电剂、粘结剂、电解液、隔膜等有着密切的关系。磷酸亚铁锂(LiFePO4)因其具有原料丰富、比容量高、结构稳定、安全性好等优点成为了一种比较有潜力的锂离子电池正极材料。同时,可以作为锂离子电池负极材料的硬碳(hard carbon, HC),由于其无规则的排序具有较高的容量、优良的循环性能和较低的造价等特性,使得人们对其产生了极大的兴趣。本文将LiFePO4与硬碳组合成LiFePO4/HC电池,从正极材料所用的导电剂和粘结剂等工艺方面对LiFePO4/Li半电池及LiFePO4/HC全电池的电化学性能影响进行研究,并将LiFePO4/HC电池和LiFePO4/石墨(AGP-3)电池的电化学性能进行比较,得出如下结论:1.对于LiFePO4/Li半电池,使用Super P Li做导电剂时,电池的电阻相对更小,在0.2 C和1 C的放电倍率下,电池的放电平台都比使用乙炔黑做导电剂时更为平稳,且比容量更大。在1 C放电倍率下经过150个循环后,电池容量的保持率要相对更稳定。循环伏安测试表明所使用的LiFePO4材料本身的循环可逆性较好,这与LiFePO4颗粒间存在的碳纳米管提高了其导电性可能有很大的关系。2.对于LiFePO4/HC全电池,同样我们得出使用Super P Li

做导电剂时,电池的电阻相对更小且比容量更大。倍率性能测试显示,使用Super P Li做导电剂时电池的倍率性能更加优越,但是,可能由于所使用的粘结剂PVDF粘结性能不够好,使得电池在10 C的放电倍率下比容量很低。同时,与LiFePO4/Li半电池相比,全电池的电阻值要小,放电曲线没有出现平台且在1 C放电倍率下循环150次后电池的容量保持率要高。3.使用水性粘结剂SBR和油性粘结剂PVDF制得LiFePO4极片,将其与金属锂片组合成LiFePO4/Li电池。在0.2 C的放电倍率下,使用两种粘结剂体系电池的放电平台(约3.38 V)都较为平稳,放电比容量基本相等,其中水性粘结剂SBR体系其比容量稍低一些,当电池放电倍率为1 C时,使用水性粘结剂SBR时,电池的首次和第2次放电比容量都比使用油性粘结剂PVDF时要高。从交流阻抗和循环寿命测试我们得知,使用水性粘结剂时电池的阻抗值更小,其Rct值为89.68Ω,在1 C的放电倍率下,经过150个循环后,电池容量的保持率要相对更稳定,其保持率为65%。4.使用两种粘结剂后,LiFePO4/HC电池在0.2 C的放电倍率下,油性粘结剂体系的LiFePO4/HC电池的首次放电比容量要高于水性粘结剂体系,但随着循环的进行油性粘结剂体系的放电比容量会呈下降趋势,而水性粘结剂体系则会呈现一定的上升趋势。当电池在1 C的放电倍率下进行放电时,与半电池测试结果相同,水性粘结剂体系电池的放电比容量要高于油性粘结剂体系且容量保持率要好,保持率为97.9%。倍率性能测试显示,水性粘结剂体系电池的大倍率性能要好于油性粘结剂体系。此外,使用水性粘结剂时电池的阻抗值更小,其Rct值为5.08Ω,且无

论哪种粘结剂全电池的阻抗值都要比半电池小。5.使用硬碳做负极时电池的倍率性能要好,电池在1 C的充放电倍率下进行充放电时,LiFePO4/AGP-3和LiFePO4/HC电池的放电比容量值分别为0.2 C倍率下的84.3%和91.0%,在1 C和2 C的放电倍率下,LiFePO4/AGP-3电池的放电比容量要稍高于LiFePO4/HC电池,但是当电池的放电倍率为5 C和10 C时,LiFePO4/HC电池的放电比容量值却要高于LiFePO4/AGP-3电池。6.电池使用硬碳和石墨材料做负极时阻抗值相差不大,LiFePO4/HC电池的Rct值稍小一些。1 C的放电倍率下,LiFePO4/HC电池的循环寿命要比LiFePO4/AGP-3电池长。此外,与正负极材料的半电池相比,在10 C的放电倍率下,LiFePO4/HC全电池的循环寿命要远远长于半电池,经过2450个循环后电池的放电比容量才降为首次的60%。

【英文摘要】Since lithium ion batteries have been successfully investigated and commercialized, they attract people’s attention for their properties such as long cycling life, high voltage, security, no memory effort.However, the electrochemical performance of lithium ion battery is affinitive with its cathode and anode materials, conductive agent, binder, electrolyte, separator et al.Lithium iron phosphate(LiFePO4)has been considered as a promising lithium ion battery because of its rich raw materials, high capacity, stable structure, safety et al.As well, hard carbon(HC)with

an inordinance structure which can be used for an anode material of lithium ion battery has been attracted people’s interest for its high capacity, excellent cycling performance and low cost et al.In this thesis, we have developed a lithium ion battery-LiFePO4/HC using LiFePO4 as cathode and hard carbon as anode to study the conductive agent and binder influence of the electrochemical properties of LiFePO4/Li half cell and LiFePO4/HC full cell.In addition, we compared the electrochemical performance of LiFePO4/HC battery and LiFePO4/graphite(AGP-3).Through the experiments, we got the following conclusions:1.For LiFePO4/Li half cell, using Super P Li as conductive agent, the resistance of battery was smaller.At 0.2 C or 1 C rate, the discharge voltage plateau of the cell using Super P Li as the conductive agent was more stable than that of using acetylene black.After 150 cycles at 1 C rate, the capacity retention of the cell using Super P Li as conductive agent was higher.Cyclic voltammetry indicated that the LiFePO4 material has a good cyclic reversibility, which may be caused by the good conductivity results from the carbon fibers among LiFePO4 particles.2.For LiFePO4/HC full cell, we also got the conclusion that using Super P Li as conductive agent, the resistance of the cell was smaller and the capacity

of it was higher.Rate performance test has shown that the cell using Super P Li as conductive had better rate performance, however, the discharge capacity of the cell was small at 10 C rate neither using Super P Li or acetylene black as conductive agent, which maybe due to the the unsatisfactory bond performance of the PVDF binder.Comparing with the LiFePO4/Li half cell, the resistance of the full cell was smaller and the capacity retention was higher after 150 cycles at 1 C rate.3.We have used a water binder(SBR)and an oiliness binder(PVDF)to make LiFePO4 cathode electrode, and assembled with lithium metal composing to LiFePO4Li lithium ion battery.Both of the water-based binder system and the oil-based binder system, the discharge voltage plateau(about 3.38 V)of the cell were stable and the discharge capacity were almostly the same at 0.2 C discharge rate, however, the water-based binder system was a little lower.While at the discharge rate of 1 C, in the water-based binder system, the first and second discharge capacity of the cell was higher than that of the oil-based binder system.From the results of the EIS and cycle life tests demonstrated that the cell with water-based binder system had a smaller resistance with Rct equates to 89.68Ωand had better capacity retention which was 65% after 150 cycles at 1 C

discharge rate.4.We had used two binders to assemble LiFePO4/HC full batteries, the initial discharge capacity of the cell with oil-based binder system was higher than the water-based binder system in the charge-discharge process at 0.2 C rate.However, as cycles proceed, the discharge capacity of the cell with oil-based binder system was decreased, while, the discharge capacity of the cell with water-based binder system had a little increased.As the same as the results of LiFePO4/Li half cell tests, the discharge capacity of the cell with water-based binder system was higher than the cell with oil-based binder system, and its capacity retention was higher which was 97.9%.Rate performance test indicated that the cell with water-based binder system had a better rate performance.In addition, the water-based binder system had smaller resistance whose Rct was 5.08Ω, however, whatever the binder we used, the resistance of the LiFePO4/HC full cell was smaller than the LiFePO4/Li half cell.5 The rate performance of the cell using hard carbon as anode was better.When the cells charge-discharge cycling at 1 C rate, the initial discharge capacity of the LiFePO4/AGP-3 and LiFePO4/HC was 84.3% and 91.0% of the discharge capacity at 0.2 C rate.The discharge capacity of LiFePO4/AGP-3 cell was a little higher than

LiFePO4/HC cell at 1 C rate or 2 C rate, however, on the contrary, the discharge capacity of LiFePO4/HC was higher when charge-discharged at 5 C or 10 C rate.6.The resistance was almost the same when using hard carbon or graphite as anode, and the resistance of LiFePO4/HC was a little lower.The cycle life of LiFePO4/HC cell was longer than that of LiFePO4/HC cell, besides, the cycle life of the LiFePO4/HC full cell was longer than the LiFePO4/Li and HC/Li half cell, with its discharge capacity retention of 60% after 2450 cycles at 10 C rate.【关键词】锂离子电池 磷酸亚铁锂 硬碳 导电剂 粘结剂 【英文关键词】lithium ion battery lithium iron phosphate hard carbon conductive agent binder 【目录】磷酸亚铁锂/硬碳锂离子电池的工艺及电化学性能研究摘要3-511-3911-12

ABSTRACT5-7

第1章 绪论1.1 引言111.2 锂离子电池的发展历程

1.4 1.3 锂离子电池的结构与工作原理12-14锂离子电池正极材料的研究进展14-32极材料的选择要求15-17料19-22材料23-32

14-15

1.4.1 锂离子电池正

1.4.2 钴系正极材料

1.4.4 锰系正极材1.4.6 铁系正极1.4.3 镍系正极材料17-191.4.5 钒系正极材料22-23

1.5 锂离子电池负极极材料的研究进展

32-3534-351.5.1 碳材料32-341.5.2 金属氧化物

1.7 1.6 锂离子电池导电剂的研究进展35-36锂离子电池粘结剂的研究进展36-37目的和内容37-38

1.8 本论文的主要研究

第2

1.9 本论文的创新之处38-39

2.1 实验试剂章 实验试剂与方法及原理39-4839-40组装40-42备4142-442.2 实验主要仪器40

2.3 电极的制备及电池的2.3.2 负极的制

2.3.1 正极的制备40-412.3.3 电池的组装41-422.4.1 扫描电子显微镜分析

2.4 物理性能表征42-43

2.4.2 透射

2.4.4 粒2.5.1 恒流

2.5.3 电子显微镜分析43径分析43-44

2.4.3 X射线衍射测试432.5 电化学性能测试

44-48充放电池测试44-46交流阻抗测试47-48

2.5.2 循环伏安测试46-47第3章 导电剂对LiFePO_4/Li及

3.1 引言483.2.1 负极极片的制备LiFePO_4/HC电池性能的影响48-61极片的制备及电池的组装48-494849

3.2 3.2.2 正极极片的制备48-493.3 LiFePO_4材料的表征49-51

3.2.3 电池的组装3.3.1 扫描电子显

3.3.3 3.4.1 不同

3.4.2 微镜分析49-50XRD测试50-51

3.3.2 透射电子显微镜分析503.4 电化学性能测试51-59导电剂对LiFePO_4/Li半电池电化学性能的影响51-56不同导电剂对LiFePO_4/HC全电池电化学性能的影响56-593.5 本章小结59-61

第4章 粘结剂对

LiFePO_4/Li及LiFePO_4/HC电池性能的影响61-74614.2 极片的制备及电池的组装

61-62

4.1 引言4.2.1 负极极4.2.3 电池片的制备61-62的组装6263-72

4.2.2 正极极片的制备624.3 材料的表征62-634.4 电化学性能测试4.4.1 不同粘结剂对LiFePO_4/Li半电池电化学性能

4.4.2 不同粘结剂对LiFePO_4/HC全电池电化

4.5 本章小结

72-74

第5章 的影响63-68学性能的影响68-72LiFePO_4/HC及LiFePO_4/AGP-3电池的电化学性能研究74-8574-765.1 引言74

5.2 材料的表征

74-75

5.2.2 透射5.3 电化学5.3.2 循环5.3.4 倍5.4 本5.2.1 扫描电子显微镜分析电子显微镜分析75-76性能测试76-83伏安测试79-80率性能测试81-82章小结83-8585-8688-100

5.2.3 粒径分析76

76-79

5.3.1 充放电测试

5.3.3 交流阻抗测试80-815.3.5 循环寿命测试82-83第6章 结论与展望

85-87

6.1 结论参考文献6.2 展望86-87致谢87-88

攻读学位期间的研究成果

下载高速铣削淬硬模具钢的工艺性和经济性研究word格式文档
下载高速铣削淬硬模具钢的工艺性和经济性研究.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐