风电运营期风险

时间:2019-05-12 19:39:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《风电运营期风险》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《风电运营期风险》。

第一篇:风电运营期风险

风电场运营期风险分析

(一)风力发电机组的风险

风力发电机组主要由风叶、传动轴、轴承、齿轮箱、发电机及电控系统等组成,其中齿轮箱、电控系统的故障频率较大,风叶、传动轴、轴承、发电机的故障频率很小,但是风叶与发电机一旦发生事故,其损失就巨大。

1.齿轮箱常发生的事故:由于设计与制造原因,常常导致齿轮破损;也有由于润滑状况不良或检修不及时而导致齿轮破损。发生该事故时,一般对其他设备或零部件没有较大影响,但对发电量有较大影响。

2.电器系统常发生的事故:主要是由于电器线路发生短路或由于电气控制部分失灵,轻者导致线路断裂或电器元件烧毁,重者产生电火花导致火灾。该火灾一般无法扑灭,火灾损失结果为电器线路烧毁或导致风力发电机组受损。

3.风叶:绝大多数情况下不会出险,一旦出险将产生极大损失,如极强的暴风或龙卷风或沙尘暴有可能导致风叶变形或断裂;雷击也有可能导致风叶断裂。另外在一组(3片)风叶中,只要有任意1片风叶损坏,就必须一组(3片)全更换。一般风叶的损失约占整台风电机组的18%。

4.发电机:由于不同的生产厂家,其产品质量也不相同。

(二)电气控制系统的风险

风力发电机的就地控制采用计算机键盘、CRT画面和打印机进行人机对话方式,机舱内设有手动操作箱。主要电气设备设有手动操作和通过综合自动化系统,实现远程控制。电气控制系统中模块故障占风电场所发生故障的大部分。电气控制系统的故障一般不会导致其他机械设备的损失,但对正常发电会产生较大影响。

实务分析 □李建成

随着节能减排的推进,绿色能源受到了社会的关注,但在保险业来看,绿色能源存在着较高的风险,现结合风力发电和水力发电的情况来分析绿色能源企业运营期的风险,希望能有助于保险公司的业务人员和核保人员客观进行风险评价,制定与保险市场相适应的核保政策,引导业务人员有针对性地进行业务拓展。

水电站运营期风险分析

水电站枢纽主要由挡水建筑物、泄洪建筑物、引水建筑物及电站厂房四大部分组成。与其他建筑物相比具有如下显著特点:受自然条件(地形、水文、地质)约束强烈;受水影响大;工艺复杂;失事后果严重。

根据水电站特点和价值分布,溃坝和厂房损毁是水电站可能的最严重的损失后果,无论在建设期还是运营期,地震和洪水均有可能对其造成最严重的损失后果,另外如滑坡、泥石流也有可能导致溃坝和发电厂房的损毁。

水电站运行期涉及引水、泄水、发电等各部分的调度运行,梯级电站在汛期还需要对行洪进行联合调度。在一定的条件下,如果调度运行失误,可能导致水电站在正常设防标准内出现较大损失。

(一)财产损失风险

1.暴雨、山洪、雷击等自然风险。自然风险可能会造成供电设备等财产的损害。水电站存在暴雨、山洪等风险,一旦出险,可能会造成堤坝溃坝等损失。雷击可能会造成供电设备等财产的损害。

2.上游水库泄洪风险。由于水电站多位于河流下游,水坝或大坝抵御洪水的设计标准低,如上游泻水或泄洪,有可能导致水坝或大坝受损,严重危及整个电站。

3.机组的维护不够。如果对于机组维护疏忽,可能会导致机器设备故障,严重的存在线路老化以及防雷装置老化的问题,有可能引起火灾或爆炸。

(二)设备损坏风险

1.设计上的风险。由于设计当时、当地的客观条件,可能存在机组参数与电站实际参数不符。设计错误会导致水轮机处于非最优工况区运行,造成机组运行效率低,耗水量多,振动及噪声大,会给设备的正常运行带来隐患。

2.材质风险。有些水电站的水轮机加工质量差,缺陷多,久修不愈,长期带病运行,出力不足,安全可靠性差。

3.烧瓦事故风险。由于制造或安装质量较差,水轮发电机的推力轴承可靠性低,常导致烧瓦事故。4.泥沙带来的运行风险。据不完全统计,我国水电站中,约有1/3的水轮机存在空蚀和泥沙磨损问题,有些水轮机的大修间隔不到一年,导水叶和水轮机进水阀严重漏水,有的甚至难以正常开、停机。有的水轮机转轮叶片发生严重裂纹或断裂,不能保证安全运行。

5.维修力量不足的风险。有些水电站的维修人员配备不足,维修水平相对不够,因此对设备的维护不够,造成小型水电站的水轮发电机因运行时间长,定子、转子的绝缘故障,容易引发接地故障,威胁机组安全运行。

风电场运营期风险分析

(一)风力发电机组的风险 风力发电机组主要由风叶、传动轴、轴承、齿轮箱、发电机及电控系统等组成,其中齿轮箱、电控系统的故障频率较大,风叶、传动轴、轴承、发电机的故障频率很小,但是风叶与发电机一旦发生事故,其损失就巨大。

1.齿轮箱常发生的事故:由于设计与制造原因,常常导致齿轮破损;也有由于润滑状况不良或检修不及时而导致齿轮破损。发生该事故时,一般对其他设备或零部件没有较大影响,但对发电量有较大影响。

2.电器系统常发生的事故:主要是由于电器线路发生短路或由于电气控制部分失灵,轻者导致线路断裂或电器元件烧毁,重者产生电火花导致火灾。该火灾一般无法扑灭,火灾损失结果为电器线路烧毁或导致风力发电机组受损。

3.风叶:绝大多数情况下不会出险,一旦出险将产生极大损失,如极强的暴风或龙卷风或沙尘暴有可能导致风叶变形或断裂;雷击也有可能导致风叶断裂。另外在一组(3片)风叶中,只要有任意1片风叶损坏,就必须一组(3片)全更换。一般风叶的损失约占整台风电机组的18%。

4.发电机:由于不同的生产厂家,其产品质量也不相同。

(二)电气控制系统的风险

风力发电机的就地控制采用计算机键盘、CRT画面和打印机进行人机对话方式,机舱内设有手动操作箱。主要电气设备设有手动操作和通过综合自动化系统,实现远程控制。电气控制系统中模块故障占风电场所发生故障的大部分。电气控制系统的故障一般不会导致其他机械设备的损失,但对正常发电会产生较大影响。

第二篇:风电生产运营管理

能源公司风电生产运营管理

1、生产系统及生产机构的设置

生产指挥系统是风电场运行管理的重要环节,它的正常运转能有力地保证指挥有序,有章可循,层层负责,人尽其职,也是实现风电场安全生产,提高设备可利用率增加发电量的重要手段;更是严格贯彻落实各项规章制度的有力保证。风力发电作为一种新兴的发电企业形式,因其自身发展和生产性质的特点,还未形成一种象火电一样的较为统一和固定的组织机构形式,因此风电场的生产管理在机构设置上必须充分适应风力发电的行业特点,特别是大型风电场,必须要做到机构精干、指挥有力、工作高效。风电公司必须明确一名有业务能力的领导分管安全生产运营工作,主抓风机运行、设备维护、生产技术、计划、经济指标及科技方面的工作。在机构设置上可以成立一个大生产单位如运行部,负责风场的生产运行、消缺维护、安健环和各项技术及经济工作,配备部门经理、副经理(或经理助理)、专工、值长、运行维护员等管理和生产岗位。如果分细一点,可以成立安全生产技术部和风电场两个部门,配备部门经理、风场场长、专工、值长、运行维护员等管理和生产岗位。

2、风电场运行的主要方式及风电场运行管理

风电场运行管理工作的主要任务就是提高设备可利用率和供电可靠性,保证风电场的安全经济运行和工作人员的人身安全,保证所发电能符合电网质量标准,降低各种损耗,力争多发电量,提高经济效益。生产管理工作中必须以安全生产为基础,以经济效益为中心,全面扎实地做好各项工作。

随着中国风电突飞猛进的发展,目前国内几大集团的风电场运行方式也不尽相同,各家也都在探索更好的风电生产管理模式。实际工作中采用的主要形式有;风电场业主自行运行维护和委托专业运行公司承包运行维护。对于大多数风电公司来说,从企业长远发展考虑,由各风电公司自行负责运行维护符合长远利益。风电场运行工作的主要内容包括两个部分,分别是风力发电机组的运行维护和场区升压变电站及相关输变电设施的运行及维护。风力发电机组的正常运行工作主要包括:监视风力发电机组的各项参数变化及运行状态,对发现异常变化的风机采取相应的处理措施,对风电场设备进行定期巡视。

3、风电场安全管理

安全管理是企业生产管理的重要组成部分,是一门综合性的系统科学。风电场因其所处行业的特点,安全管理涉及生产的全过程。必须坚持“安全生产。预防为主、综合治理”的方针,这是电力生产性质决定的。因为没有安全就失去了生产的基础,就没有经济效益。安全工作要实现全员、全过程、全方位的管理和监督,要积极开展各项预防性的工作,防止安全事故发生。工作中应严格按照电力行业标准执行。

风电场的安全管理工作的主要内容有:根据现场实际,建立健全安全监察机构和安全网:提高各级人员的安全意识;建立健全安全管理制度及预案,制定安全目标,落实安全生产责任制和行使安全监察职能。在机构设置上,通常讲生产单位应当设置专门的安全监察机构配备专门的安全管理人员,负责各项安全工作的实旌。同时安全生产需要全体员工共同参与,形成一个覆盖各生产岗位的安全网络组织,这是安全工作的组织保证。对风电公司来讲,因人员少,机构精减,不一定要设立专门的安全监察部门。但专职的安全管理人员必须配备,可配备一名懂生产的专职安全工程师,岗位安排在安全生产技术部或运行部,负责全公司的安健环工作。

风电场运行与其它发电厂运行有一定的区别,机组台数多而分散,有些机组可能要走很远的路,且需要登高作业,还要面对各种恶劣的天气,因此,风电场的安全管理十分重要。

1)安全登塔和逃生培训

(1)安全防坠装置:风电机组塔内梯子应有安全缆索或安全轨道,安全缆索或安全轨道应与人员防坠落装置相匹配。运行人员登塔必须使用安全带、戴安全帽、穿安全鞋、戴防滑手套。

(2)逃生装置:风电机组机舱内应配备逃生装置,并经常进行演练,确保在火灾及紧急情况下,人员能迅速逃离现场。

(3)风轮锁:为保证维修人员进行轮毂的维修安全,机组应配备机械锁定风轮装置以及偏航机构锁定措施和安全释放装置,任何运行及维护人员在进入轮毂之前都必须确保机械锁锁定风轮,以避免风轮转动所造成的人员和设备事故发生。

2)急救方法掌握和演练

塔内人员急救:一旦人员出现疾病发作,应按照急救须知要求,迅速采取急救措施,并迅速及时按照预先设定的人员救助方案,将人员输送到塔外,并送往医院进行救治。为做好人员急救工作,所有风电场人员应学习和掌握急救方法,经常开展模拟演练,确保在紧急情况下人员的急救能顺利进行,以最大限度抢救员工生命。

4、生产管理

1)风电场技术管理工作内容

风电场应注重生产技术管理工作。通常开展的技术管理工作有:

(1)做好各类技术方案、技术措施,这是保证风电场安全运行的基础。风电场各项生产活动的开展必须在技术上是可行的,然后才能进行实施;

(2)做好运行分析工作。风电场应根据场内风机及输变电设施的实际运行状况以及生产任务完成情况,按规定时间进行月度、季度、风电场运行分析报告。报告中应结合历年的报告及数据对设备的运行状况、电网状况、风资源变化情况以及生产任务完成情况进行分析对比,找出变化规律及原因,及时发现生产过程存在的问题,提出行之有效的解决方案,促进运行管理水平的提高;

(3)开展各项技术监督工作。风电场应开展绝缘、继保、电能质量、计量、金属等技术监督工作,以保证设备的正常运行,风电场还应加强生产计划管理,根据风资源和设备状况合理编制发电计划,安排设备的检修计划和材料费用计划。安全技术部或运行部门是公司发电计划主管部门,在规定的时间内,根据风电机组装机规模负责发电量计划的测算、编报工作。对发电量完成情况进行分析并对月度运行情况进行统计、分析和考核。检修计划管理部门负责编制公司生产设备的滚动检修计划及设备周期检修计划、技术改造或维护计划,并上报总公司和调度部门。做好各项计划管理工作对规范管理、降低成本和提高公司经济效益具有重要作用。

2)风电场的目标和计划管理

风电场生产中需要建立健全各项生产制度、生产目标管理、计划管理等,这里重点论述目标和计划管理。(1)目标管理:通过风电场员工每日的运行和检修工作,确保风电机组和变电设备的安全运行,其目的是最大限度地发掘设备潜力,并在保证设备安全运行的前提下,尽可能使发电量达到最大化。因此,需要制定切实可行的风电场生产管理目标。

生产管理目标的建立需要采取科学的方法,通常采取的方法有比对法、可研数据、平均法等。生产目标包括发电量、上网电量、综合场用电率、机组和变电设备可用率、非计划停机时间和平均故障时间,以及发电数据与气象、环境、机组状态、人员技术管理、备件供应、限电等多方面因素有关,而人员技术管理水平主要取决于设备可利用率、非计划停运时间等指标。发电量指标的确定应在可靠性管理水平后,根据气候趋势和环境情况综合进行科学预测,其它指标可在行业间制定对标标准,从而确定本风电场的指标水平。

(2)其它计划:风电场还应制定其它计划,如大修计划、计划检修、停机计划、技改计划等,这些计划应严格按照行业标准、厂家操作手册要求等进行编制。因此,必须结合实际运行检修需要进行编制,并在实际执行中严格控制。

5、风电场技术管理

1)技术标准、档案和数据管理

在风电场运行过程中,应做好设备档案管理、设备评级、设备责任到人管理体系建设,应定期进行运营分析、运行报表和技术经济分析,找出运行维护中设备存在隐患,进行消除和技术改造,并做好国家、行业生产运行中有关标准的贯彻执行工作,使风电场运行工作标准化制度化。

(1)技术标准管理

目前国内外制定了许多有关风机方面的标准,如ISO、IEC以及欧洲标准化机构、国内标准化机构,包括GB国家标准、DL电力行业标准以及机械行业标准等,以及在风电场、风电机组运行维护方面已发布的很多标准,如风力发电机组保护性措施-设计、运行和维护要求,电力行业标准如风力发电场安全规程、风力发电场运行规程、电业安全作业规程、风电场事故调查规程和风力发电场检修规程等,都应认真学习和执行这些标准,并在实际过程中严格实施。

(2)数据采集和报送管理

数据构成和采集存储:风电场运行数据主要是由风力资源、风电机组机械和电气参数、变电系统数据等组成。风电机组一般由实时(毫秒或秒级)、平均值(2分钟或10分钟)数据构成,为避免存储空间过大,多数厂商采取将实时高速采集的数据只显示不存储的策略,并经过对实时高速采集的数据,进行平均计算或预处理,然后再传入数据库存储在当地存储器上。

数据传送:风电机组多用串口通讯,以以太网方式进行数据传送,数据被传送到风电场的服务器上,然后再将数据传送到集团的服务器上进行统一管理。

中央控制系统:中央控制系统包括现场风电机组集中监视和控制系统,以及远方风电场数据监控(控制)系统和数据统计、处理、报表和分析系统。中央控制系统的优劣对于提高风电场运行维护管理水平至关重要,系统不仅显示风电场中机组运行实时数据和统计数据,以及控制机组启停等操作信号,同时可根据运行维护数据反映风电场管理水平、设备状态以及设备可能存在的缺陷等问题。

2)风电场数据管理

对于风电场来说,除风电机组运行监控外,还应包括电气系统运行和维护工作。变电系统中的运行控制内容、风资源数据应与机组监控内容整合在一起,包括测风塔风资源数据、变电系统运行参数监控、SVC系统、变压器有载调压控制、场内外电能系统计量等,此外还包括关口表计量和远方数据采集等工作。

(1)数据报送体系:风电场风电机组、变电系统的运行维护数据应通过通讯系统实时上传到集团公司的网络系统中来,进行统一和显示和数据分析处理。

(2)数据后期分析:上传的数据应形成各种报表,如日报、月报、年报、检修报表、电能及损耗报表、可靠性报表等,为提高设备可靠性和经济性,检验前期设计的正确性,运行数据的后期分析十分重要。通过对后期数据的对比,可以分析设备选型是否正确,如风轮直径、塔架高度、机组性能以及风场微观选址的正确性,如尾流、地形等对风力发电的影响。

(3)数据趋势分析:通过对风电机组运行数据的分析,可以得到机组性能的变化趋势,根据变化趋势可以对风机的工作情况进行系统分析,例如根据关键部位的温度变化趋势和振动参数的变化趋势,通过专家分析或运行软件计算,可以确定设备是否需要进行检修。

通过对不同型号机组和不同位置机组的功率趋势曲线分析,可以了解机组是否存在传感器故障、安装角不当、过功率控制、偏航控制策略等问题。

6、设备检修和维护管理 1)设备检修管理

风电场设备的管理是指对风机和配电装置从安装、运行、管理等各个环节,全面管理且保证设备正常运行的一种科学方法。对设备的管理一是要以设备可靠性管理为重点,减少设备停运时间,提高可利用率。二是要开展设备安全管理评价,进一步分析预测机组可能发生的事故及其概率的高低,并对潜在危险因素的受控程度进行评价,提高反事故工作的预见性,达到超前控制、减少或消灭设备发生事故的可能,把预防为主的工作落实到实处。

提高检修质量,加大技术改造力度,也是提高设备可靠性的一个重要内容。设备检修工作主要内容由变电站相关输变(下)电设备的预防性试验和设备检修等组成;变电站相关输变电设备半年期和一年期设备维护工作的预防性试验和检修专业性较强,需要的试验仪器和设备较多,可以委托附近有资质的电力单位进行,但风机的日常巡查和缺陷处理可由风电公司的生产或点检人员自行解决。

在开展各类设备检修工作的同时,可以探索设备状态检修工作。设备状态检修即运用综合性的技术手段,准确掌握设备运行状态,预测设备故障发生和发展情况,并借助技术经济的分析,综合进行设备检修决策和设备管理的一种先进检修模式。设备状态检修通过对设备的结构特点、运行情况、试验结果等方面综合分析,以确定设备是否需要进行检修,以及在检修中需要进行哪些项目。对于运行状态良好的设备,可以延长设备检修周期,从而节省大量的人力、物力和财力。

2)设备维护管理(1)设备维护的分类

风电场中风电设备维护可以分为日常维护、定期维护、事故检修和状态检修等。由于风电场设备分散的特点,风电设备检修单一风电场的运检合一模式逐步在改变,风电设备检修装备和技术方法也在不断进步。其中,检修模式包括集中检修、区域检修和专业性检修;技术装备包括检测仪器和检修设备;检修方法包括专业检修队伍、自主运行检修和厂商维护检修。

(2)风电设备维护管理方法

·主动型预防维护:过去我国风电场维护检修主要是每年2次的定期维护,以及机组出现故障时进行的修理,我们称之为“被动式检修”,缺点是当发现故障时,设备部件已经损坏甚至已严重损坏,由此将造成风电场严重的经济损失,特别是随着机组容量的增加,这种损失会越来越大。因此,我们应提倡主动式维护检修,以便早期发现设备事故隐患,并根据部件运行状态,合理安排设备检修时间,以减小故障引起的损失。

采用状态监控进行风电机组运行状态趋势分析,需在设备关键部位安装电气传感器,同时进行测量数据传输,数据经分析计算,并与设定值比对后决定是否报警或停机。有关数据的监控应包括:各关键部位的温度变化、功率变化、振动变化,偏航对风变化、变桨角度、润滑油品污染情况等在线检测。

对于检测的各种数据应实时进行记录,并建立运行数据库,以便供今后的数据分析,同时可定期发布各机组状态和故障分析报告,供决策部门进行使用。

·风电机组故障诊断:风电机组经常出现各种故障,如何准确和及时判断设备故障原因,是保证机组正常发电的关键。风电机组各部件来自不同的生产厂家,往往运行检修人员没有部件的详细资料,机组一旦出现故障就会束手无策,除逐步提高现场人员技术水平和经验外,以下系统有助于设备故障分析和诊断。

技术分析专家系统:借助于各种技术手段迅速找到故障部位(如通过听、闻、看、摸等方法或采用仪器检测如温度、压力、状态等参数),采用排除法和对比法,准确判断设备的运行状况,并采取相应的检修措施。

风电设备故障判断:故障主要类型有机械类、电气类、通讯类和计算机类。通过对故障原因的分析,找到故障点后,需要对故障原因做出基本判断,如故障原因是否间隙过大、润滑缺少、密封破坏、油脂失效、冷却或加热系统故障、经常过功率和雷电损坏等。

(3)故障缺陷诊断处理技术管理

设备故障的出现可能是偶然的,其原因可能是部件本身有问题,也可能是这个部件在加工、运输、安装、调试过程中的质量问题。如果故障不是普遍问题,只是批次生产性的问题,可通过改进后整批更换。因此,故障处理有些需要厂商进行处理,有些在风电场可以修复,有些则需要专业厂的专业人员进行解决。

大部件(特殊)修理:风电机组中叶片、齿轮箱、发电机等大部件的损坏,会造成设备长时间停机,经济损失较大。这些损坏的部件需要送到专业厂家进行修理,部件经过修理后,应进行出厂前检测,部件回装时应进行调整和重新试车。发电机故障:发电机主要出现的故障是短路、轴承损坏等,下列问题是导致发电机损坏的主要原因:转子断条、放电造成轴承表面微点蚀、局部过热和绝缘破坏等。

齿轮箱故障:齿轮箱是风电机组中最常出故障的部件,主要故障有轴承损坏、齿面微点蚀、断齿等,损坏的原因除设计和制造质量外,齿轮油失效和润滑不当也是齿轮箱最常见故障的原因。

齿轮箱故障的早期诊断:齿轮箱早期故障可能仅仅发生在齿轮或轴承表面。齿轮表面材料的疲劳损伤会引起运转噪音和工作温度的变化。因此,经常巡视检查齿轮箱噪音和温度的变化,有助于早期发现齿轮箱故障。有条件的风电设备应采取对振动状态的检测,并通过频谱分析来判断设备是否已产生疲劳破坏。

金属表面疲劳破坏:如果设备疲劳破坏已经发生,在多数情况下,由于设备表面材料的脱落,致使润滑油中会出现金属颗粒,如果总不注意油品中的杂质,甚至有可能造成杂质阻塞油标尺,使风机检查人员在已缺油的情况下误以为不缺油。因此,应通过不断检查润滑油中金属微粒的变化,也可以有助于早期发现齿轮箱损坏,这时风电场人员应尽快安排设备检修,并尽可能在机舱内不拆卸齿轮箱的情况下,处理损伤表面或更换已损坏的部件。

(4)备品备件管理

风电场做好设备运行维护工作的目标是能够将绝大多数故障进行自行修复,这就有必要建立设备维护的备品备件库。通过备件仓储和物资管理,检修人员可迅速获得备件支持,及时进行更换,恢复设备运行。解决备件问题有以下几种方法:

修理:配备修理用的设备、检测仪器、常用的零件和图纸资料,对部件进行修理。

替代:采用厂家认证过的国内部件替代相同型号的原有部件,可迅速使设备故障进行排除。

物流:修复备件可通过备件库团购、网络虚拟库、门对门服务等方式进行解决。

设备的现场修理及在机舱内的更换:为避免大型吊车的巨额费用,设备应尽可能在机舱内修理。在有可能的情况下,现场修理可以采用机舱内维修吊车和移动检修作业平台。

(5)技术监督管理

风电技术监督应涉及风电场基建、运行维护的全过程,从工程设计、设备选型、制造、安装、调试、试生产到设备运行、检修、技术改造和风机退役鉴定等管理全过程中实施全面质量管理,其中包括机械和电气设备的性能检测,节能与环境保护、电能质量、保护与控制系统、自动化、信息及电力通讯系统等方面的技术监督。

技术监督就是对风电场设备健康水平、运行安全、风电质量、经济运行等方面的重要参数、性能和指标进行的监督、检查、调整及评价的过程。

风电场的技术监督包括:风电场输变电系统和风电机组的技术监督。风电机组的技术监督除上述内容外,还应包括机组振动监督和螺栓金属监督,安全监督应包括安全链和试验等内容。

6、技术人员的培训管理

针对目前风电场新员工较多的情况,应加强员工的技术、安全、管理制度方面的技能培训,并根据风电场野外、高空作业的特殊条件,进行适当的专项培训,如登高作业培训、逃生训练和急救培训,同时应对机械设备和电气设备的原理、结构、操作等方面的知识进行培训,使员工在正式进入风电场之前,就具备最基本的电气安全知识、电力法律法规、技术基础知识、动手操作能力等方面的知识和基本技能,以避免工作中发生人身和设备事故。

1)岗前培训

岗前培训包括基本原理学习、安全培训和登高训练等内容。2)专业培训

专业培训包括机电理论和动手操作的培训,同时还应增加仿真培训和安全案例分析方面的培训。

3)考核

风电场应定期组织员工进行安全和技能的考核,如进行安全规程、技术理论和技术操作方面的考核,并根据考核结果竞争上岗。

7、风电运营成本管理 1)降低生产成本方法 风电场应加强风成本的预算管理。预算管理应详细包括设备大修、技改、零购、管理费用、定检计划等内容。严格执行计划管理,维持预算管理的刚性,加强备件和工具器管理及检修管理,努力做到修必修好的原则。

2)节能降耗管理

通过电能损耗分析可以得到不同时期、不同风速下电厂电能的损耗规律,以指导节能降耗措施的制定,提高风电场的功率因数,降低无关能源损耗,提高经济效益。

8、特殊环境对风电场生产运营管理的影响及应对措施 1)气候影响

(1)低温影响:我国风电场所处的地区均为三北地区和东南沿海地区。北方风电场多处于高寒地区,有相当一部分风电场冬季最低温度低于-30℃,应采取抗低温措施,确保减少设备停机时间,提高发电量。

设备抗低温措施包括:采用抗低温油品,在最低气温低于-30℃的地区,应考虑流动性高的抗低温型油品,避免由于油品流动性差导致部分旋转部件缺少润滑油的现象发生。

提高设备材料抗低温脆性问题:气温低于-30℃地区运行时,主要要考虑主轴、塔筒钢材抗低温脆性问题。

采用低温型叶片:气温在低于-30℃的地区,叶片运行固有频率会发生变化,应采取低温型叶片。

采用耐低温元器件和部分控制元器件。常温元器件在低温环境中可能产生误动作现象,也有可能产生损坏,因此应采用耐低温电控元器件或采用电加热器进行防冻处理。

(2)冰雪影响

个别北方地区风电场机组在冬季运行时会发生叶片结冰现象,包括南方个别山顶的风电场,也有些冰冻发生在风速传感器上,可造成风电机组停机的现象,需要采取以下措施进行预防:

加热除冰:通过设置加热器,用管道将热风送到叶片根部并进入到叶片内部。除冰剂除冰:通过采用高空作业设备,在不破坏叶片表面材料的情况下,用除冰剂喷射到冰面进行除冰。风速仪采用带加热器的设备。

(3)台风影响:台风是我国东南沿海风电场要认真面对的自然气象灾害。根据每日的天气预报,实时掌握台风的路径,提前采取相应的措施,包括机组防台技术措施,采用抗台风设计机组,加强地基和塔筒强度设计,并确保工程施工质量等措施。

2)地理条件影响

风电机组一般周边环境比较复杂,如周围有山区、森林、悬崖、海滨滩涂等复杂地形和障碍物,会引起气流畸变,造成空气湍流、切变以及尾流现象,进而影响风电机组的输出性能,更严重的是湍流、切变以及尾流会造成设备损坏,甚至影响设备使用寿命。

复杂地形对风电机组运行的影响:对于地形复杂、邻近森林以及其它障碍物的风电场,设备运行中应对气流畸变可能对风电设备造成的影响给予充分的重视。这就需要加大对风电系统机械传动部件的检查,如齿轮表面、轴承、力矩限位器等部件,应重点检查齿轮表面是否有微点蚀和润滑油中金属微粒有无变化,同时加强对机组功率特性输出曲线的检查分析。以下原因影响功率曲线形状,最终影响设备发电量:阵风过大,风轮响应滞后,气流紊乱,造成风轮上气流来流方向改变,对风的响应不够敏感,可以在设备控制中进行适当调整。

3)气候影响因素的应对措施

(1)高原低空气密度对风电设备的材料、散热和元件影响

高原地区由于海拔较高和空气密度较低,风电场中风电设备运行会受到材料老化和表面疲劳的影响。夏季设备长时间和大负荷运行,使机舱散热在高原条件下与低海拔地区有所不同。因此,应加强对机舱内散热能力的控制,对电控元件(如开关)在高原空气稀薄地区所产生的影响认应采取必要的措施。

(2)高原空气密度对发电的影响

由于夏季和冬季空气密度有较大的差异,风能密度发生变化会使机组功率输出受到影响,应采取叶片安装角度定期调节以及控制策略的变化、失速点调整等措施,在确保设备不发生超发的前提下,尽可能做到发电性能的优化。

4)机组发电场用电问题

为避免机组在低温环境中运行出现问题,系统需增加加热元件,其中包括风速仪、机舱、齿轮箱和齿轮油、冷却器和油管、控制器(必要时包括轮毂)等部位加热。因此,机组用电功率加大,将增加风电场的用电量,同时在机组设计中,在考虑机舱操作空间的基础上,应尽可能考虑结构紧凑和密封性能良好的机舱,以避免过大的风电场用电。

5)风电机组性能下降问题的应对措施

风电机组经过一定时期运行后,部分机组由于各种问题导致性能下降,如不采取措施将导致发电量的下降和部件的损坏,影响机组使用寿命。通过对机组运行数据的分析包括功率曲线分析,可以发现机组可能存在的问题,并在风电场检修时进行解决。

(1)机组存在问题:包括失速效果不理想、偏航对风策略不佳、风向计磨损功松动、过功率、低温停机和尾流影响等。

(2)应对问题的措施:经常检查风速计和风向计等传感器,发现损坏应及时进行更换或修理;叶片污染应及时进行清洗;叶片安装角度应定期进行调整。

第三篇:风电基础知识

叶轮

风电场的风力机通常有2片或3片叶片,叶尖速度50~70m/s,具有这样的叶尖速度,3叶片叶轮通常能够提供最佳效率,然而2叶片叶轮仅降低2~3%效率。甚至可以使用单叶片叶轮,它带有平衡的重锤,其效率又降低一些,通常比2叶片叶轮低6%。尽管叶片少了,自然降低了叶片的费用,但这是有代价的。对于外形很均衡的叶片,叶片少的叶轮转速就要快些,这样就会导致叶尖噪声和腐蚀等问题。更多的人认为3叶片从审美的角度更令人满意。3叶片叶轮上的受力更平衡,轮毂可以简单些,然而2叶片、1叶片叶轮的轮毂通常比较复杂,因为叶片扫过风时,速度是变的,为了限制力的波动,轮毂具有翘翘板的特性。翘翘板的轮毂,叶轮链接在轮毂上,允许叶轮在旋转平面内向后或向前倾斜几度。叶片的摆动运动,在每周旋转中会明显的减少由于阵风和剪切在叶片上产生的载荷。

叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝构成的。对于小型的风力发电机,如叶轮直径小于5米,选择材料通常关心的是效率而不是重量、硬度和叶片的其它特性。对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。

世界上大多数大型风力机的叶片是由GRP制成的。这些叶片大部分是用手工把聚脂树脂敷层,和通常制造船壳、园艺、游戏设施及世界范围内消费品的方法一样。其过程需要很高的技术水平才能得到理想的结果,并且如果人们对重量不太关心的话,比如对于长度小于20米的叶片,设计也不很复杂。不过有很多很先进的利用GRP的方法,可以减小重量,增加强度,在此就不赘述了。玻璃纤维要较精确的放置,如果把它放在预浸片材中,使用高性能树脂,如控制环氧树脂比例,并在高温下加工处理。当今,出现了简单的手工铺放聚脂,通过认真地选择和放置纤维,为GRP叶片提供了降低成本的途径。

偏航系统

风力机的偏航系统也称为对风装置,其作用在于当风速矢量的方向变化时,能够快速平稳地对准风向,以便风轮获得最大的风能。

小微型风力机常用尾舵对风,它主要有两部分组成,一是尾翼,装在尾杆上与风轮轴平行或成一定的角度。为了避免尾流的影响,也可将尾翼上翘,装在较高的位置。

中小型风机可用舵轮作为对风装置,其工作原理大致如下:当风向变化时,位于风轮后面两舵轮(其旋转平面与风轮旋转平面相垂直)旋转,并通过一套齿轮传动系统使风轮偏转,当风轮重新对准风向后,舵轮停止转动,对风过程结束。

大中型风力机一般采用电动的偏航系统来调整风轮并使其对准风向。偏航系统一般包括感应风向的风向标,偏航电机,偏航行星齿轮减速器,回转体大齿轮等。其工作原理如下:风向标作为感应元件将风向的变化用电信号传递到偏航电机的控制回路的处理器里,经过比较后处理器给偏航电机发出顺时针或逆时针的偏航命令,为了减少偏航时的陀螺力矩,电机转速将通过同轴联接的减速器减速后,将偏航力矩作用在回转体大齿轮上,带动风轮偏航对风,当对风完成后,风向标失去电信号,电机停止工作,偏航过程结束。

风机的发电机

所有并网型风力发电机通过三相交流(AC)电机将机械能转化为电能。发电机分为两个主要类型。同步发电机运行的频率与其所连电网的频率完全相同,同步发电机也被称为交流发电机。异步发电机运行时的频率比电网频率稍高,异步发电机常被称为感应发电机。

感应发电机与同步发电机都有一个不旋转的部件被称为定子,这两种电机的定子相似,两种电机的定子都与电网相连,而且都是由叠片铁芯上的三相绕组组成,通电后产生一个以恒定转速旋转的磁场。尽管两种电机有相似的定子,但它们的转子是完全不同的。同步电机中的转子有一个通直流电的绕组,称为励磁绕组,励磁绕组建立一个恒定的磁场锁定定子绕组建立的旋转磁场。因此,转子始终能以一个恒定的与定子磁场和电网频率同步的恒定转速上旋转。在某些设计中,转子磁场是由永磁机产生的,但这对大型发电机来说不常用。

感应电机的转子就不同例如,它是由一个两端都短接的鼠笼形绕组构成。转子与外界没有电的连接,转子电流由转子切割定子旋转磁场的相对运动而产生。如果转子速度完全等于定子转速磁场的速度(与同步发电机一样),这样就没有相对运动,也就没有转子感应电流。因此,感应发电机总的转速总是比定子旋转磁场速度稍高,其速度差叫滑差,在正常运行期间。它大概为1%。

同步发电机和异步发电机

将机械能转化为电能装置的发电机常用同步励磁发电机、永磁发电机和异步发电机。同步发电机应用非常广泛,在核电、水电、火电等常规电网中所使用的几乎都是同步发电机,在风力发电中同步发电机即可以独立供电又可以并网发电。然而同步发电机在并网时必须要有同期检测装置来比较发电机侧和系统侧的频率、电压、相位,对风力发电机进行调整,使发电机发出电能的频率与系统一致;操作自动电压调压器将发电机电压调整到与系统电压相一致;同时,微调风力机的转速从周期检测盘上监视,使发电机的电压与系统的电压相位相吻合,就在频率、电压、相位同时一臻的瞬间,合上断路器将风力发电机并入系统。同期装置可采用手动同期并网和自同期并网。但总体来说,由于同步发电机造价比较高,同时并网麻烦,故在并网风力发电机中很少采用。

控制监测系统

风力机的运行及保护需要一个全自动控制系统,它必须能控制自动启动,叶片桨距的机械调节装置(在变桨距风力机上)及在正常和非正常情况下停机。除了控制功能,系统也能用于监测以提供运行状态、风速、风向等信息。该系统是以计算机为基础,除了小的风力机,控制及监测还可以远程进行。控制系统具有及格主要功能:

1、顺序控制启动、停机以及报警和运行信号的监测

2、偏航系统的低速闭环控制

3、桨距装置(如果是变桨距风力机)快速闭环控制

4、与风电场控制器或远程计算机的通讯

风机传动系统

叶轮叶片产生的机械能有机舱里的传动系统传递给发电机,它包括一个齿轮箱、离合器和一个能使风力机在停止运行时的紧急情况下复位的刹车系统。齿轮箱用于增加叶轮转速,从20~50转/分到1000~1500转/分,后者是驱动大多数发电机所需的转速。齿轮箱可以是一个简单的平行轴齿轮箱,其中输出轴是不同轴的,或者它也可以是较昂贵的一种,允许输入、输出轴共线,使结构更紧凑。传动系统要按输出功率和最大动态扭矩载荷来设计。由于叶轮功率输出有波动,一些设计者试图通过增加机械适应性和缓冲驱动来控制动态载荷,这对大型的风力发电机来说是非常重要的,因其动态载荷很大,而且感应发电机的缓冲余地比小型风力机的小。

异步发电机

永磁发电机是一种将普通同步发电机的转子改变成永磁结构的发电机,常用的永磁材料有铁氧体(BaFeO)、钐钴5(SmCo)等,永磁发电机一般用于小型风力发电机组中。

异步发电机是指异步电机处于发电的工作状态,从其激励方式有电网电源励磁发电(他励)和并联电容自励发电(自励)两种情况。电网电源励磁发电:是将异步电机接到电网上,电机内的定子绕组产生以同步转速转动的旋转磁场,再用原动机拖动,使转子转速大于同步转速,电网提供的磁力矩的方向必定与转速方向相反,而机械力矩的方向则与转速方向相同,这时就将原动机的机械能转化为电能。在这种情况下,异步电机发出的有功功率向电网输送;同时又消耗电网的无功功率作励磁作用,并供应定子和转子漏磁所消耗的无功功率,因此异步发电机并网发电时,一般要求加无功补偿装置,通常用并列电容器补偿的方式。

2、并联电容器自励发电:并联电容器的连接方式分为星形和三角形两种。励磁电容的接入在发电机利用本身的剩磁发电的过程中,发电机周期性地向电容器充电;同时,电容器也周期性地通过异步电机的定子绕组放电。这种电容器与绕组组成的交替进行充放电的过程,不断地起到励磁的作用,从而使发电机正常发电。励磁电容分为主励磁电容和辅助励磁电容,主励磁电容是保证空载情况下建立电压所需要的电容,辅助电容则是为了保证接入负载后电压的恒定,防止电压崩溃而设的。

通过上述的分析,异步发电机的起动、并网很方便且便于自动控制、价格低、运行可靠、维修便利、运行效率也较高、因此在风力发电方面并网机组基本上都是采用异步发电机,而同步发电机则常用于独立运行方面。

偏航系统的设计

根据调向力矩的大小,可以进行齿轮传动部分的设计计算。当驱动回转体大齿轮的主动小齿轮的强度不能满足时,可选用两套偏航电机---行星齿轮减速器分置于风轮主轮的两侧对称布置,每个电机的容量为总容量的一半。齿轮传动计算可按开式齿轮传动计算,其主要的磨损形式是齿面磨损失效,如调向力矩较大,除按照弯曲强度计算之外,应计算齿面接触强度。

值得注意的是,大多数风机的发电机输出功率的同轴电缆在风力机偏航时一同旋转,为了防止偏航超出而引起的电缆旋转,应该设置解缆装置,并增加扭缆传感器以监视电缆的扭转状态。位于下风向布重的风轮,能够自动找正风向。在总体布置时应考虑塔架前面的重量略重一些,这样在风机运行时平衡就会好一些。

电机的切换

根据风速决定是选择小发电机并网发电,还是选择大发电机空转,若风速低于8米/秒,则小发电机并网运行且风机运行状态切换到“投入G2”。如果风速高于8米/秒,则选择“空转G1”运行状态。

投入G2:

小发电机接触器闭合,发电机并网电流由可控硅控制到350A。一旦投入过程完成,可控硅切除,风机切换到“运行G2”状态。

风电投入小发电机发电,如果平均输出功率在某一单位时间内太低,这是小发电机断开且风机切换到“等待重新支转”的状态。如果平均输出功率超过了限定值110KW,则小发电机切除,风机运行状态切换到“G1空转”。

G1空转:

风机等待风速达到投入大电机的风速,一旦达到这个风速则风机就切换到“投入G1”状态。

投入G1:

大发电机的接触接通。发电机的并网电流由可控硅将其限定在350A。投入过程一结束,可控硅切除,风机切换到“运行G1”状态。

运行G1

风机的大电机投入发电,如果功率输出在一定的时间内少于限定值80KW,大发电机切除,风机的运行状态切换到“切换G11-G12”状态。

切换G1-G2

大发电机的接触器切除小发电机的接触器接通,可控硅将发电机的电流限定到700A,一旦投入过程完成,可控硅切除,风机转为“运转G2”状态。

等待再投入

如果小发电机的出力小于限定值,则此运行状态动作。此状态下,小发电机的接触器被切除,如果风速有效,风机就切换到“投入G2”状态,如果风速低于限定值,风机将切换到“空转G2”状态。

风机工作状态之间转变

风机工作状态之间转变

说明各种工作状态之间是如何实现转换的。

提高工作状态层次只能一层一层地上升,而要降低工作状态层次可以是一层或多层。这种工作状态之间转变方法是基本的控制策略,它主要出发点是确保机组的安全运行。如果风力发电机组的工作状态要往更高层次转化,必须一层一层往上升,用这种过程确定系统的每个故障是否被检测。当系统在状态转变过程中检测到故障,则自动进入停机状态。

当系统在运行状态中检测到故障,并且这种故障是致命的,那么工作状态不得不从运行直接到紧停,这可以立即实现而不需要通过暂停和停止。

下面我们进一步说明当工作状态转换时,系统是如何动作的。

1.工作状态层次上升

紧停→停机

如果停机状态的条件满足,则:

1)关闭紧停电路;

2)建立液压工作压力;

3)松开机械刹车。

停机→暂停

如果暂停的条件满足,则,1)起动偏航系统;

2)对变桨距风力发电机组,接通变桨距系统压力阀。

暂停→运行

如果运行的条件满足,则:

1)核对风力发电机组是否处于上风向;

2)叶尖阻尼板回收或变桨距系统投入工作;

3)根据所测转速,发电机是否可以切人电网。

2.工作状态层次下降

工作状态层次下降包括3种情况:

(1)紧急停机。紧急停机也包含了3种情况,即:停止→紧停;暂停→紧停;运行→紧停。其主要控制指令为:

1)打开紧停电路;

2)置所有输出信号于无效;

3)机械刹车作用;

4)逻辑电路复位。

(2)停机。停机操作包含了两种情况,即:暂停→停机;运行→停机。

暂停→停机

1)停止自动调向;

2)打开气动刹车或变桨距机构回油阀(使失压)。

运行→停机

1)变桨距系统停止自动调节;

2)打开气动刹车或变桨距机构回油阀(使失压);

3)发电机脱网。

(3)暂停。

1)如果发电机并网,调节功率降到。后通过晶闸管切出发电机;

2)如果发电机没有并入电网,则降低风轮转速至0。

(三)故障处理

工作状态转换过程实际上还包含着一个重要的内容:当故障发生时,风力发电机组将自动地从较高的工作状态转换到较低的工作状态。故障处理实际上是针对风力发电机组从某一工作状态转换到较低的状态层次可能产生的问题,因此检测的范围是限定的。

为了便于介绍安全措施和对发生的每个故障类型处理,我们给每个故障定义如下信息:

1)故障名称;

2)故障被检测的描述;

3)当故障存在或没有恢复时工作状态层次;

4)故障复位情况(能自动或手动复位,在机上或远程控制复位)。

(1)故障检测。控制系统设在顶部和地面的处理器都能够扫描传感器信号以检测故障,故障由故障处理器分类,每次只能有一个故障通过,只有能够引起机组从较高工作状态转入较低工作状态的故障才能通过。

(2)故障记录。故障处理器将故障存储在运行记录表和报警表中。

(3)对故障的反应。对故障的反应应是以下三种情况之一:

1)降为暂停状态;

2)降为停机状态;

3)降为紧急停机状态。

4)故障处理后的重新起动。在故障已被接受之前,工作状态层不可能任意上升。故障被接受的方式如下:

如果外部条件良好,一此外部原因引起的故障状态可能自动复位。一般故障可以通过远程控制复位,如果操作者发现该故障可接受并允许起动风力发电机组,他可以复位故障。有些故障是致命的,不允许自动复位或远程控制复位,必须有工作人员到机组工作现场检查,这些故障必须在风力发电机组内的控制面板上得到复位。故障状态被自动复位后10min将自动重新起动。但一天发生次数应有限定,并记录显示在控制面板上。

如果控制器出错可通过自检(WATCHDOG)重新起动。

第四篇:风电知识

风电知识

前言

我国风能资源十分丰富,它是一种干净的可再生能源,风力发电产业发展前景非常广阔。

它的作用原理;以风作为原动力,风吹动风轮机的叶轮,转化为机械能,叶能通过增速箱齿轮带动发电机旋转,转化为电能,送入电网。它的优势;不需要燃料,无污染,运行成本低。

风电概述 主要零部件

发电机 电控柜 制动器 增速机 主轴

液压站 工装 外齿式回转支撑 偏航电机

各零部件主要功能

主轴; 将风能转向力传递给增速箱

偏航系统; 通过控制技术,使机舱旋转至迎风方向的机枸。

增速机; 增速机在各齿轮不同传动比的作用下将主轴的低转速提高到发电机所需的高转速 发电机; 将机械能转化为电能。

偏航坏; 刚度,强度要好,用来支撑整个动力系统,但不能太重。变桨柜系统;通过控制技术,调整叶片角度,使风能利用最优化。制动系统;根据风力,风速需要,风机可以减速或停机。

机舱壳;采用玻璃钢制成,覆盖于机组动力系统外,起保护作用。紧固件等;将各个零部件固定在设计位置,必需适应于极限负载。

工装;便于装配,运输。

因为风机常在风沙,暴雨,盐雾,潮湿,-30~40摄氏度中环境中安放,所以要有较强的野外适应性。这对各零部件的强度、刚度、稳定、疲劳、磨擦、力矩等因素提出了很高的要求。若某一方面出了问题,都有可通造成安全事故。

为此,为了满足以上要求,我们对各种材料都进行了严格的要求,对各种连接紧固件都要按求打好力矩。力矩大小好下;

风电设备安装常见技术问题

1.1 螺栓联接问题

螺栓、螺母联接是风电行业的一种最基本最常用的装配,联接过紧时,螺栓在机械力的长期作用下容易产生金属疲劳,发生剪切或螺牙滑丝等联接过松的情况,使部件之间的装配松动,引发事故。

1.2 振动问题

风机叶片在风力作用下转动时,带动主轴,主轴将风能转向力传递到增速机,增速机在各齿轮不同传动比的作用下将主轴的低转速提高到发电机所需的高转速从而带动发电机,发电机则完成能由机械能转换成电能的工作,在这一系列的动作过程中,还有许多辅助零部件与其配合完成发电工作(如回转支撑,偏航系统,变桨柜系统,制动系统)。在这一系列过程中各系统在相互配合工作过程中必产生大的振动。主轴与增速箱发电机同心度等问题。1.4 电气设备问题

1)安装隔离开关时动、静触头的接触压力与接触面积不够或操作不当,可能导致接触面的电热氧化,使接触电阻增大,灼伤、烧蚀触头,造成事故。

(2)断路器弧触指及触头装配不正确,插入行程、接触压力、同期性、分合闸速度达不到要求,将使触头过热、熄弧时间延,导致绝缘介质分解,压力骤增,引发断路器爆炸事故。

(3)电流互感器因安装检修不慎,使一次绕组开路,将产生很高的过电压,危及人身与设备安全。

(4)有载调压装置的调节装置机构装配错误,或装配时不慎掉入杂物,卡住机构,也将发生程度不同的事故。

(5)主变压器绝缘破坏或击穿。在安装主变吊芯和高压管等主要工作时,不慎掉入杂物(如螺帽、钥匙等,这些情况在工程实践中并不罕见),器身、套管内排水不彻底,密封装置安装错误,或者在安装中损坏,都会使主变绝缘强度大为降低,可能导致局部绝缘破坏或击穿,造成恶性事故。

(6)主变压器保护拒动。主变压器内部或出线侧发生短路、接地事故,而保护拒动、断路器不跳闸,巨大的短路电流不仅使短路处事故状态扩大,也使主变内部温度骤升,变压器油迅速汽化、分解,成为高爆性的可燃物质,这可能发生主变爆炸的恶性事故。主变的紧急事故油池和其他消防设施都是针对这种可能性设计的。2 机电设备安装技术相关改善办法

2.1 严格施工组织设计及设备、设施选择

施工组织设计和设备、设施选择是经有关科技人员共同研究商定的,通过技术计算和验算,定有其使用价。为了防止螺栓过紧或过松按工艺要求打好力矩、涂好螺纹锁固,二硫化钼。2.2 按预定计划开展安装工作

每一项机电设备安装工作顺序都有其科学性。一个安装工程的计划排队是经过多方面的考虑,经过技术论证排出的,是有科学根据并有一定指导性的,不要随便改动,以免造成工程进度连续不上无法完成工作。

2.3 对安装工作要总体布置、统一安排

发电机分为两个主要类型。同步发电机运行的频率与其所连电网的频率完全相同,同步发电机也被称为交流发电机。异步发电机运行时的频率比电网频率稍高,异步发电机常被称为感应发电机。

感应发电机与同步发电机都有一个不旋转的部件被称为定子,这两种电机的定子相似,两种电机的定子都与电网相连,而且都是由叠片铁芯上的三相绕组组成,通电后产生一个以恒定转速旋转的磁场。尽管两种电机有相似的定子,但它们的转子是完全不同的。同步电机中的转子有一个通直流电的绕组,称为励磁绕组,励磁绕组建立一个恒定的磁场锁定定子绕组建立的旋转磁场。因此,转子始终能以一个恒定的与定子磁场和电网频率同步的恒定转速上旋转。在某些设计中,转子磁场是由永磁机产生的,但这对大型发电机来说不常用。

感应电机的转子就不同例如,它是由一个两端都短接的鼠笼形绕组构成。转子与外界没有电的连接,转子电流由转子切割定子旋转磁场的相对运动而产生。如果转子速度完全等于定子转速磁场的速度(与同步发电机一样),这样就没有相对运动,也就没有转子感应电流。因此,感应发电机总的转速总是比定子旋转磁场速度稍高,其速度差叫滑差,在正常运行期间。它大概为1%。

同步发电机和异步发电机

将机械能转化为电能装置的发电机常用同步励磁发电机、永磁发电机和异步发电机。同步发电机应用非常广泛,在核电、水电、火电等常规电网中所使用的几乎都是同步发电机,在风力发电中同步发电机即可以独立供电又可以并网发电。然而同步发电机在并网时必须要有同期检测装置来比较发电机侧和系统侧的频率、电压、相位,对风力发电机进行调整,使发电机发出电能的频率与系统一致;操作自动电压调压器将发电机电压调整到与系统电压相一致;同时,微调风力机的转速从周期检测盘上监视,使发电机的电压与系统的电压相位相吻合,就在频率、电压、相位同时一臻的瞬间,合上断路器将风力发电机并入系统。同期装置可采用手动同期并网和自同期并网。但总体来说,由于同步发电机造价比较高,同时并网麻烦,故在并网风力发电机中很少采用。

控制监测系统

风力机的运行及保护需要一个全自动控制系统,它必须能控制自动启动,叶片桨距的机械调节装置(在变桨距风力机上)及在正常和非正常情况下停机。除了控制功能,系统也能用于监测以提供运行状态、风速、风向等信息。该系统是以计算机为基础,除了小的风力机,控制及监测还可以远程进行。控制系统具有及格主要功能:

1、顺序控制启动、停机以及报警和运行信号的监测

2、偏航系统的低速闭环控制

3、桨距装置(如果是变桨距风力机)快速闭环控制

4、与风电场控制器或远程计算机的通讯

风机传动系统

叶轮叶片产生的机械能有机舱里的传动系统传递给发电机,它包括一个齿轮箱、离合器和一个能使风力机在停止运行时的紧急情况下复位的刹车系统。齿轮箱用于增加叶轮转速,从20~50转/分到1000~1500转/分,后者是驱动大多数发电机所需的转速。

齿轮箱可以是一个简单的平行轴齿轮箱,其中输出轴是不同轴的,或者它也可以是较昂贵的一种,允许输入、输出轴共线,使结构更紧凑。传动系统要按输出功率和最大动态扭矩载荷来设计。由于叶轮功率输出有波动,一些设计者试图通过增加机械适应性和缓冲驱动来控制动态载荷,这对大型的风力发电机来说是非常重要的,因其动态载荷很大,而且感应发电机的缓冲余地比小型风力机的小。

异步发电机

永磁发电机是一种将普通同步发电机的转子改变成永磁结构的发电机,常用的永磁材料有铁氧体(BaFeO)、钐钴5(SmCo)等,永磁发电机一般用于小型风力发电机组中。

异步发电机是指异步电机处于发电的工作状态,从其激励方式有电网电源励磁发电(他励)和并联电容自励发电(自励)两种情况。

1电网电源励磁发电:是将异步电机接到电网上,电机内的定子绕组产生以同步转速转动的旋转磁场,再用原动机拖动,使转子转速大于同步转速,电网提供的磁力矩的方向必定与转速方向相反,而机械力矩的方向则与转速方向相同,这时就将原动机的机械能转化为电能。在这种情况下,异步电机发出的有功功率向电网输送;同时又消耗电网的无功功率作励磁作用,并供应定子和转子漏磁所消耗的无功功率,因此异步发电机并网发电时,一般要求加无功补偿装置,通常用并列电容器补偿的方式。

2、并联电容器自励发电:并联电容器的连接方式分为星形和三角形两种。励磁电容的接入在发电机利用本身的剩磁发电的过程中,发电机周期性地向电容器充电;同时,电容器也周期性地通过异步电机的定子绕组放电。这种电容器与绕组组成的交替进行充放电的过程,不断地起到励磁的作用,从而使发电机正常发电。励磁电容分为主励磁电容和辅助励磁电容,主励磁电容是保证空载情况下建立电压所需要的电容,辅助电容则是为了保证接入负载后电压的恒定,防止电压崩溃而设的。

通过上述的分析,异步发电机的起动、并网很方便且便于自动控制、价格低、运行可靠、维修便利、运行效率也较高、因此在风力发电方面并网机组基本上都是采用异步发电机,而同步发电机则常用于独立运行方面。

偏航系统的设计

根据调向力矩的大小,可以进行齿轮传动部分的设计计算。当驱动回转体大齿轮的主动小齿轮的强度不能满足时,可选用两套偏航电机---行星齿轮减速器分置于风轮主轮的两侧对称布置,每个电机的容量为总容量的一半。齿轮传动计算可按开式齿轮传动计算,其主要的磨损形式是齿面磨损失效,如调向力矩较大,除按照弯曲强度计算之外,应计算齿面接触强度。

值得注意的是,大多数风机的发电机输出功率的同轴电缆在风力机偏航时一同旋转,为了防止偏航超出而引起的电缆旋转,应该设置解缆装置,并增加扭缆传感器以监视电缆的扭转状态。位于下风向布重的风轮,能够自动找正风向。在总体布置时应考虑塔架前面的重量略重一些,这样在风机运行时平衡就会好一些。

电机的切换

根据风速决定是选择小发电机并网发电,还是选择大发电机空转,若风速低于8米/秒,则小发电机并网运行且风机运行状态切换到“投入G2”。

如果风速高于8米/秒,则选择“空转G1”运行状态。

投入G2:

小发电机接触器闭合,发电机并网电流由可控硅控制到350A。一旦投入过程完成,可控硅切除,风机切换到“运行G2”状态。

风电投入小发电机发电,如果平均输出功率在某一单位时间内太低,这是小发电机断开且风机切换到“等待重新支转”的状态。如果平均输出功率超过了限定值110KW,则小发电机切除,风机运行状态切换到“G1空转”。

G1空转:

风机等待风速达到投入大电机的风速,一旦达到这个风速则风机就切换到“投入G1”状态。

投入G1:

大发电机的接触接通。发电机的并网电流由可控硅将其限定在350A。投入过程一结束,可控硅切除,风机切换到“运行G1”状态。

运行G1

风机的大电机投入发电,如果功率输出在一定的时间内少于限定值80KW,大发电机切除,风机的运行状态切换到“切换G11-G12”状态。

切换G1-G2

大发电机的接触器切除小发电机的接触器接通,可控硅将发电机的电流限定到700A,一旦投入过程完成,可控硅切除,风机转为“运转G2”状态。

等待再投入

如果小发电机的出力小于限定值,则此运行状态动作。此状态下,小发电机的接触器被切除,如果风速有效,风机就切换到“投入G2”状态,如果风速低于限定值,风机将切换到“空转G2”状态。

风机工作状态之间转变

风机工作状态之间转变

说明各种工作状态之间是如何实现转换的。

提高工作状态层次只能一层一层地上升,而要降低工作状态层次可以是一层或多层。这种工作状态之间转变方法是基本的控制策略,它主要出发点是确保机组的安全运行。如果风力发电机组的工作状态要往更高层次转化,必须一层一层往上升,用这种过程确定系统的每个故障是否被检测。当系统在状态转变过程中检测到故障,则自动进入停机状态。

当系统在运行状态中检测到故障,并且这种故障是致命的,那么工作状态不得不从运行直接到紧停,这可以立即实现而不需要通过暂停和停止。

下面我们进一步说明当工作状态转换时,系统是如何动作的。

1.工作状态层次上升

紧停→停机

如果停机状态的条件满足,则:

1)关闭紧停电路;

2)建立液压工作压力;

3)松开机械刹车。

停机→暂停

如果暂停的条件满足,则,1)起动偏航系统;

2)对变桨距风力发电机组,接通变桨距系统压力阀。

暂停→运行

如果运行的条件满足,则:

1)核对风力发电机组是否处于上风向;

2)叶尖阻尼板回收或变桨距系统投入工作;

3)根据所测转速,发电机是否可以切人电网。

2.工作状态层次下降

工作状态层次下降包括3种情况:

(1)紧急停机。紧急停机也包含了3种情况,即:停止→紧停;暂停→紧停;运行→紧停。其主要控制指令为:

1)打开紧停电路;

2)置所有输出信号于无效;

3)机械刹车作用;

4)逻辑电路复位。

(2)停机。停机操作包含了两种情况,即:暂停→停机;运行→停机。

暂停→停机

1)停止自动调向;

2)打开气动刹车或变桨距机构回油阀(使失压)。

运行→停机

1)变桨距系统停止自动调节;

2)打开气动刹车或变桨距机构回油阀(使失压);

3)发电机脱网。

(3)暂停。

1)如果发电机并网,调节功率降到。后通过晶闸管切出发电机;

2)如果发电机没有并入电网,则降低风轮转速至0。

(三)故障处理

工作状态转换过程实际上还包含着一个重要的内容:当故障发生时,风力发电机组将自动地从较高的工作状态转换到较低的工作状态。故障处理实际上是针对风力发电机组从某一工作状态转换到较低的状态层次可能产生的问题,因此检测的范围是限定的。

为了便于介绍安全措施和对发生的每个故障类型处理,我们给每个故障定义如下信息:

1)故障名称;

2)故障被检测的描述;

3)当故障存在或没有恢复时工作状态层次;

4)故障复位情况(能自动或手动复位,在机上或远程控制复位)。

(1)故障检测。控制系统设在顶部和地面的处理器都能够扫描传感器信号以检测故障,故障由故障处理器分类,每次只能有一个故障通过,只有能够引起机组从较高工作状态转入较低工作状态的故障才能通过。

(2)故障记录。故障处理器将故障存储在运行记录表和报警表中。

(3)对故障的反应。对故障的反应应是以下三种情况之一:

1)降为暂停状态;

2)降为停机状态;

3)降为紧急停机状态。

4)故障处理后的重新起动。在故障已被接受之前,工作状态层不可能任意上升。故障被接受的方式如下:

如果外部条件良好,一此外部原因引起的故障状态可能自动复位。一般故障可以通过远程控制复位,如果操作者发现该故障可接受并允许起动风力发电机组,他可以复位故障。有些故障是致命的,不允许自动复位或远程控制复位,必须有工作人员到机组工作现场检查,这些故障必须在风力发电机组内的控制面板上得到复位。故障状态被自动复位后10min将自动重新起动。但一天发生次数应有限定,并记录显示在控制面板上。

如果控制器出错可通过自检(WATCHDOG)重新起动。

第五篇:风电规范

风电标准

一、风电标准体系建设

随着风电产业的快速发展及日趋成熟,我国已基本形成了较为完整的风电标准体系。国家能源局组织成立能源行业风电标准化技术委员会,提出了我国风电标准体系框架,主要包括6大体系29大类,涵盖风电场规划设计、风电场施工与安装、风电场运行维护管理、风电并网管理技术、风力机械设备、风电电器设备等风电产业的各个环节。我国风电标准体系框架如表2-1所示。

二、风电技术标准制定

截至2011年底,我国已发布风电技术标准41个,待批3个,在编6个。其中,风电场规划设计体系标准21个,风电场施工与安装体系标准5个,风电场运行维护管理体系标准1个,风电并网管理技术体系标准3个,风力机械设备体系标准1个,风电电器设备体系标准9个。

国标建设

2011年12月,国家标准化管理委员会批准发布《风电场接入电力系统技术规定》(GB/Z 1996 3-2011)。

新国标对于低电压穿越、接入系统测试等都提出了更多和更严格的标准。针对脱网事故,新国标提出了低电压穿越方面的约束,要求风电场并网点电压跌至20%标称电压时,风电场内的风电机组应保证不脱网连续运行625ms,特别的,要求风电场并网点电压在发生跌落后2s内能够恢复到标称电压的90%时,风电场内的风电机组应保证不脱网连续运行。针对接入系统测试,新国标提出了当接入同一并网点的风电场装机容量超过40兆瓦时,需要向电力系统调度机构提供风电场接入电力系统测试报告,累计新增装机容量超过40兆瓦时,需要重新提交测试报告。

新国标发布后一直争议不断,特别是对并网影响最大的低电压穿越要求,会否导致风电产业格局重新洗牌,暂停运行的风电机组能否重新并网,这些问题都引发行业内热烈的讨论。

行标建设

2011年8月,国家能源局召开能源行业风电标准技术委员会一届二次会议,发布18项风电并网设计技术规范。《大型风电场并网设计技术规范》、《风电场电能质量测试方法》等行标正式发布。《风电信息收集和提交技术规定》、《风电调度运行管理规范》、《风电功率预测系统功能规范》等三个行标待批。

行标的发布进一步完善和补充了风电安装运营、维护管理、并网运行等方面的技术标准,为进一步建立和完善我国风电行业标准、检测、认证管理体系,规范风电行业的发展奠定了基础,对于保障电网安全稳定运行,促进风电与电网协调发展创造了条件。

企标建设

在国家和行业标准颁布相对滞后的情况下,国家电网公司加快研究建设风电企业标准体系。

建立了适应我国风电接入及调度运行的企业标准体系。2005年以来,国家电网公司先后编制修订22项企业标准。2006年7月,《国家电网公司风电场接入电网技术规定(试行)》颁布施行。2009年12月,颁布了《风电

场接入电网技术规定》(Q/GDW 392-2009),提出了风电场需要具备功率控制、功率预测、低电压穿越、监控通信等功能要求。2010年2月,颁布了《风电调度运行管理规范》(Q/GDW 432-2010),同时制定了《国家电网公司风电场接入系统设计内容深度规定》等多个配套规定。2011年,针对新出现的高电压穿越问题,积极开展风电场高电压穿越的技术标准研究和制订工作,与国际标准接轨,同时颁布了《风电功率预测系统功能规范》(Q/GDW 588-2011)、《风电场功率调节能力和电能质量测试规程》(Q/GDW 630-211)等多个配套规定。具体如表2-2所示。

开展《风电场电气系统典型设计》编制工作。为引导风电设计的规范化、标准化,2009年,国家电网公司组织开展了风电场电气系统典型设计研究编制工作,推动建设环境友好、资源节约、符合国家绿色能源政策的风电场,促进风电场与电网的协调发展。2011年,结合几次风电场大规模脱网事故,编制单位对风电场电气系统典型设计进行了进一步修改和完善。

此外,国家电网公司还承担相关国际标准的制定,牵头IEEE《储能系统接入电网设备测试标准》的制定、国际电工委员会(IEC)大容量新能源发电及大容量储能接入电网研究等,参与制订风电机组和风电场电气建模方面的国际标准,提高了我国在风电国际标准领域的话语权。

下载风电运营期风险word格式文档
下载风电运营期风险.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    风电企业简介

    风电装备企业简介1、南京高速齿轮制造有限公司南高齿是我国机械工业核心竞争力100强之一,国内风电传动设备的龙头企业,拥有变桨、偏航和增速等主传动核心技术。企业已经拥有年......

    风电工作总结

    风机安装部分:一、与风机安装单位的合同: 1、风机设备进场引路、协助工作责任划分 风机设备在到达风场范围(到达风场范围或设置的临时设备存方场)后,后续路段设备进场协调、引路......

    风电考试

    招聘笔试试题(值班长) 一、 填空题(共9题,每空1分,共20分) 1、 风力发电机组结构所能承受的最大设计风速叫(安全风速) 2、 在某一期间内,风力发电机组的实际发电量与理论发电量的比值......

    电销运营方案

    呼叫中心团队运营方案 初期人员配置:1、呼叫中心经理:1名2、主管:3名3、小组长:6名4、电销专员:24名 职责: 1、电销专员:主要负责呼出客户数据,运用专业话术及灵活的销售技巧,使其客......

    电商运营计划书

    一、页面改版,店铺装修 1、首页改版 整体页面风格清爽,以目前老款产品为主,首页用新款茶树系列作为主推,次顺序为薰衣草、玫瑰系列,最后是其他类。 2、详情 宝贝详情重新制作,首先......

    电商代运营详解

    电商代运营详解 北京中酒世家网络科技有限公司 目录: 一、 白酒行业数据分析……………………………………………………………………….1 二、 运营团队人员配置……………......

    电商运营方案

    明白四达商城运营方案 一,商城的定位 市场定位: 锁定全国酒店餐饮用品市场,提供全程一站式打包服务,打造行业旗舰 属性定位 : 最全、最新的产品信息,科学、共赢的合作打包方案,专业......

    电商运营求职信

    电商运营求职信 电商运营求职信1 尊敬的领导:您好!非常感谢您在百忙之中审阅我的求职材料。我叫xxx,是xx大学机电专业的应届毕业生。面临择业,我选择应聘与我的专业对口的贵公司......