第一篇:变电站直流系统保护选择的有关问题(小编推荐)
变电站直流系统保护选择的有关问题
变电站直流电源既是开关的操作电源,也是继电保护装置的电源,电网和变电站的安全运行要求直流电源必须具有高可靠性,失去直流将可能造成继电保护和开关的拒动,造成电网大面积停电和设备的损坏,严重威胁设备和电网的安全运行。直流由所属单位分散管理,设备种类多,标准应该统一,下面就直流电源使用谈以下几个应引起注意的问题。
一、目前存在的直流断路器(直流开关)和熔断器(保险管)的配合
其配合关系应执行《电力工程直流系统设计技术规程》DL/T5044-2004条款中6.1.3的规定:
1.熔断器装设在直流断路器上一级时,熔断器额定电流应为直流断路器额定电流的2倍及以上。这样可保证动作的选择性。
2.直流断路器装设在熔断器上一级时,直流断路器额定电流应为熔断器额定电流的4倍及以上。即:熔断器为2A时,上一级直流断路器应为8A及以上。这样的配合主要是考虑了直流断路器动作速度相对比较快。由于下级采用熔断器,相应增加了上级开关的额定电流,所以建议最末一级应尽量采用直流断路器。
二、上下级熔断器之间、上下级自动开关之间额定电流的选择,其配合关系应按《火力发电厂、变电所二次接线设计技术规程》DL/T5136-2001条款9.2.10、9.2.11中的规定: 9.2.10条款为:1.熔断器额定电流应按回路的最大负荷电流选择,并满足选择性的要求。干线上熔断器熔件的额定电流应较支线上的大2级——3级。
在安全评价文件中,要求上、下级熔体之间(同一系列产品)额定电流值,必须保证2——4级级差,电源端选上限,网络末端选下限。为避免蓄电池组总熔断器无选择性熔断,该熔断器和分路熔断器之间,必须保证3——4级级差,对级差的要求又有所加大,其目的主要是使上级脱扣(熔断)时间大于下级,确保上、下级直流熔断器在过负荷或直流短路时选择性。
级差是熔断器(直流断路器)生产制造时的额定电流关系,额定电流分别为3A、6A、10A、16A、20A、25A、32A、40A、50A、63A、80A、100A、125A等,它不是成固定倍数的关系。分支熔断器选用6A,按大2-3个级差考虑干线应选用16A或20A的熔断器。
一般每个回路继电保护配置的保险丝为3A或6A,可以根据直流电压和一次开关合闸、跳闸线圈电阻阻值很容易确定合闸、跳闸电流,那么它干线上保险丝的额定电流就很容易确定了,直流屏馈出的熔断器电流值不宜选择过大,因为它决定着上一级熔断器电流值的大小,否则无法与总保险配合,必要时必须增加直流馈出的数量,分散负荷,避免负荷在某段母线的集中,即某一回路最大负荷电流必须要控制,负荷在多回路中分摊,这需要在设计时通过计算,使馈出回路数量上有充分的裕度,并在设计中明确所设小母线的数量。
9.2.11条款为: 1.上下级自动开关之间额定电流的选择:
自动开关额定电流应按回路的最大负荷电流选择,并满足选择性的要求;干线上自动开关脱扣器的额定电流应较支线上的大2级——3级。
7.5.2条款为:开关电磁操动机构的合闸回路,直流断路器可按(大于等于)0.3倍的额定合闸电流选择,但直流断路器过载脱扣时间应大于开关固有合闸时间。
直流电动机回路,直流断路器可按(大于等于)电动机的额定电流选择。
7.6.3条款为:开关电磁操动机构的合闸回路,熔丝可按0.2——0.3倍的额定合闸电流选择,但熔断器的熔断时间应大于开关固有合闸时间。
直流电动机回路,熔丝可按电动机的额定电流选择。
在国家电网公司颁布的《直流技术标准》中对直流系统的保护规定如下:
(1)直流回路中严禁使用交流空气断路器;当使用交直流两用空气断路器时,其性能必须满足开断直流回路短路电流和动作选择性的要求。(2)直流空气断路器、熔断器应具有安一秒特性曲线,上下级应大于2级的配合级差,并应满足动作选择性的要求。(3)直流电源系统中应防止同一条支路中熔断器与空气断路器混用,防止在回路故障时失去动作选择性。
由于不同制造厂或不同系列产品存在性能差异,混合使用有可能会失去动作选择性配合,因此,一个站的直流熔断器或自动空气开关,原则上应选用同一厂家的系列产品。
断路器与熔断器混合保护的级差配合比较困难,由于无时限的断路器的脱扣速度基本不变,而熔断器的动作具有反时限特性。无论断路器安装在熔断器之前或之后,总在某些短路电流值范围内会出现失去动作选择性。因此,应避免这种组合保护方式。
直流系统熔断器应分级配置,上下级熔体应满足选择性配合要求。一个站的直流熔断器或自动空气断路器,原则上应选用同一制造厂系列产品。使用前宜进行安秒特性和动作电流抽检,同一条支路上的空气开关和熔断器不宜混合使用。
直流回路中采用空气自动空气断路器时,必须选用合格的直流空气断路器,严禁采用交流空气断路器。对已经采用的,必须安排更换。
在变电所直流电源屏上,由于蓄电池组的容量确定后,其出口回路熔断器额定电流是按蓄电池1H放电率电流选择的,并应与各馈出回路相配合;从保护动作选择性要求,蓄电池输出回路断路器额定电流应大于馈出断路器额定电流最大的一台来选择,配合系数一般取2,必要时取3,取以上电流最大者为蓄电池输出回路断路器额定电流,并应满足蓄电池出口短路时灵敏系数的要求。所以设计部门在设计时,基本也确定了蓄电池出口回路额定电流和馈出回路的额定电流。如防酸式和阀控式密封铅酸蓄电池回路设备选择:
蓄电池容量(AH)
200
300
400
500
800
熔断器IE(A)
200
315
315
400
630
直流断路器IE(A)
160
200
250
315
500
详见规程5044——2004附录F
三、目前变电站直流电源的保护大多采用直流断路器和熔断器配合,熔断器和直流断路器配合的混合方式,很不规范,一般微机保护和电磁式保护分别采用直流断路器和保险管,而新上的直流电源屏均采用直流断路器,原使用的直流电源屏是采用保险管,开关机构上也是保险管较多,早期的变电站采用熔断器,新变电站采用直流断路器,由于继电保护和直流设备的更新,在更新时造成上述的混合方式,要引起运行管理人员的重视。如熔丝的上下级不是同一系列产品(如果末级是快速熔断器还好),也不清楚直流断路器和熔丝的安秒特性,尤其是不应在空气断路器的下级使用熔断器。直流断路器动作相对速度比较快,所以我们不希望直流断路器下一级再接熔断器。以上的问题不满足国家电网公司颁布的《直流技术标准》,应加以整改。
目前对直流系统的各级保护开展了定值管理,主要是对各级直流空气开关和熔丝的额定电流加以明确,但大部分变电站没有对定值的由来进行计算,没有通过计算、校核,进行上下级动作时间的比较,而是沿用建所时使用的原始设计值或厂家原屏带来的设备电流值,依赖设计或厂家对充电机、硅整流(开关电源)、蓄电池回路熔丝(开关)、直流屏馈出部分熔丝(开关)额定电流的选择。在直流回路发生变化、增加负荷或接线改变,上下级保护是否保证选择性有一定的不确定因素。所以变电站要有一张全所的直流图,包括熔丝(开关)额定电流选择和动作电流选择的计算说明,具备采用的熔丝和直流小开关的动作安秒特性,通过直流短路电流计算,校验上下级动作时间,在不满足时能够调整直流接线结构,使上下级保护有动作时间的配合,不误动拒动,尤其不允许越级误动。由于计算涉及问题较多,动作时间不易确定,所以绘制一张全所的直流图很有必要,在图中可以清楚地看出上、下级保护级差配置,保护配置是否存在问题,要满足上、下级保护级差配置的规定。
直流屏馈出的熔断器采用短路短延时开关,防止越级带来的事故面扩大。
在前几年进行的变电站直流系统的反措中,新建或改造的直流系统对不同的电压等级采用不同的直流母线供电,开关的控制操作和动力直流分开,如一次变有三个电压等级,那么分别各设置供220KV、66KV、10KV的直流开关操作电压母线、220KV、66KV、10KV的继电保护用直流电压母线,每段母线由直流屏二个馈出开关环路供电,正常单回路运行辐射状供电。对变电所高压开关的合闸设立动力直流母线采用独立环路供电,中间解环运行。对信号回路采用由直流屏独立馈出。避免与继电保护用直流和控制直流交叉供电,互相影响。在一个电压等级的直流母线上,根据一次元件数量、负荷大小适当增加母线段数,可分设保险(空气开关)供电,以便较好的实现配合。设置多段母线可以使负荷分配合理,使直流屏馈出开关的保护电流值不致偏大,有较好的灵敏度,与总保护有较大的级差保证,所以直流系统好的接线结构也是保证其安全运行的关键。
四、在安全性评价中建议:在熔断器(直流开关)定值管理上要进行计算,有书面材料,专人管理,每年一次。没有进行的要尽快落实,对配合关系要做到心中有数。计算的步骤: 1.建立完整的直流系统图,从交流电源开始,包括充电机、蓄电池、直流屏馈出、各级母线馈出的完整接线,可以采用单线图从上级到下级,由粗线到细线,对采用的熔断器、直流开关、刀闸采用不同的符号区别,标明采用的额定电流值。
A、蓄电池、充电机为第一级保护定值;
B、直流屏馈出、试验电源、开关动力直流(大合闸)为第二级保护定值;
C、从各直流母线馈出到保护和控制回路的分支保险为第三级保护定值;
2.通过统计各回路最大负荷电流,根据规程原则确认各分支保护的额定电流值,3.建立保护定值一览表,整定值计算过程,计算保护和控制回路负荷电流,动作曲线对比,动作时间对比。
4.进行各点直流回路短路电流计算。依靠时间的配合保证上级保护不越级动作。
五、为了方便了解和掌握,对北京人民电器厂保护电器的设计方案简介如下,说明直流开关的选择原则,额定电流与动作特性的关系:
采用的直流断路器应具有速断保护和过电流保护功能是《电力工程直流系统设计技术规程》DL/T5044-2004的要求,其附录E对直流断路器的选择进行了介绍,并分别介绍了过负荷长延时保护、短路瞬时保护、短路短延时保护的整定原则。北京人民电器厂采用其生产的G系列直流开关保护特性对不同的异常(过载)和短路电流,有三种动作行为。1.过载(长延时)保护:电流较小,为防止电缆发热的绝缘破坏,经一段时间延时切除故障回路。
2.短路(瞬时)保护:电流较大,会对设备有较大危害,所以要求断路器立刻切除故障回路。
3.短路短延时为防止越级保护带来的事故面扩大,保证故障电流仅仅由距离故障点最近的断路器来切除,有时要求上级断路器在遭遇短路电流时,经过一定时间的短延时(一般为MS级)后再动作。
在电流小于过载(长延时)保护起始动作值,开关正常工作。在电流达到各相应动作值,开关按相应时间特性动作。
北京人民电器厂其生产的G系列直流开关具有长延时+瞬时保护功能为二段保护脱扣器(A类保护)。如GMN20R、GMXX系列,用于直流电源末端保护。GMN20R系列用于直流电源末端保护,额定电流为:1A、3A、6A ;在通过5IN时瞬时脱扣。
GM系列脱扣分为延时过载、瞬时。在通过10IN时瞬时脱扣,(短路瞬时保护一般在10倍IN时瞬时脱扣。)GM800A、1250A为5IN瞬时脱扣。以上二种B类保护的开关用于直接接到负载的场合。
北京人民电器厂其生产的GMB系列具有长延时+瞬时+短路短延时功能,称为三段保护脱扣器(B类保护)。
GMB32系列脱扣采用长延时+瞬时+短路短延时,额定电流为:16A、20A、25A、32A、40A。以下以GMB32/2400R-32A为例来说明各种故障电流发生时断路器的动作情况,ID为故障电流。
1.过载(长延时)保护:1.05*IN(33A)〈ID〈10*IN(320A)
ID=33A时
在1H以上动作,ID=3IN= 96A时
在7S内动作,ID=7IN=224A时
在3S内动作,动作为反时限曲线动作,ID增大,动作时间逐渐减小。
2.短路短延时保护功能:10*IN(320A)〈ID〈2.5KA 动作时间可达数百毫秒。
ID属于一般短路电流,开关经过一个固定的延时时间T后(10MS)再动作,3..短路(瞬时)保护:2.5KA〈ID〈20KA ID大于2.5KA时,属于大短路电流,开关瞬动为十几毫秒,开关极限短路分断能力为20KA,动作时间为4MS。第二级保护额定电流与第三级保护额定电流级差不宜小于4级。
对直接接到负载的馈线断路器,可以不设短延时,它的上级对直接接到负载的馈线断路器的保护范围要有短延时,关键是落实反措要求,设置供220KV、66KV、10KV的直流电压母线,保证不失去后备保护,第一级保护只有在直流屏母线短路时断开。
六、省公司提出如下要求:
1、各单位应高度重视变电所直流保险的使用维护工作,加强这方面的领导,每年应结合春、秋检对变电所直保险进行一次全面检查,重点检查保险容量、上、下级的配合及保险状况,对长时期运行的直流支路保险和总保险,根据现场实际情况,必要时应提前更换,以确保可靠安全
2、对现运行、库存和新购进的各类保险、空气开关,有条件的应抽样进行安秒特性试验,确保其质量。
3、各单位要对现运行蓄电池总保险进行一次全面检查,对保险熔断没有告警信号的,要实施改造加装信号回路,蓄电池总保险应更换成带有“撞击体”保险器,以便实现保险熔断有信号发出。
4、加强对《电力工程直流系统设计技术规程》DL/T5044-2004和《火力发电厂、变电所二次接线设计技术规程》DL/T5136-2001的学习和理解,学习厂家有关维护使用说明书,对现运行的进行复核,对新投产的设计要加强审核和验收。
省公司农电生产工程处 2007年4月29日
第二篇:浅谈变电站直流系统接地问题
浅谈变电站直流系统接地问题
摘要:直流系统是变电站的一个重要组成部分,直流系统接地是常见的缺陷。主要介绍了变电站直流接地的危害,并对直流系统接地的原因进行分析及查找方法,从而找到相应的防范措施来保证直流系统的稳定运行。关键词:直流系统;接地;绝缘;断路器
0 引言
变电站直流系统以蓄电池储存能量,以充电机补充能量,向全站保护、监控、通讯系统提供不间断电源,确保其安全、稳定、可靠运行。正常情况下正、负极对地均为绝缘的,发生一点接地时,正、负极对地电压发生变化,接地极对地电压降低,非接地极电压升高,供电可靠性大大降低,因为在接地点未消除时再发生第二点接地,极易引起直流短路和开关误动、拒动,所以直流一点接地时,设备虽可以继续运行,但接地点必须尽快查到,立即消除或隔离。直流接地故障产生的主要原因
1.1 基建及施工遗留的故障隐患
在发电公司建设施工或扩建过程中,由于施工及安装的种种问题,会遗留下电力系统故障的隐患,直流系统更是故障隐患的薄弱环节,这些环节在投产初期不易控制和检查,投运时间越长,系统接地故障的概率就越大。
1.2 外力损伤
直流回路在运行过程中不可避免地要受到检查维护人员在工作过程中因挤压、移动、及不当冲洗等外力造成的损伤。
1.3 质量原因
因市场供应直流电缆设备质量参差不齐,质量不良的直流电缆成为一种直流接地的故障隐患。
1.4 自然原因
发电厂直流系统所接设备多、回路复杂,在长期运行过程中会由于环境、气候的变化、电缆和接头的老化及设备本身的问题等而发生直流接地故障,特别是处于沿海地区的电厂,因海拔较低且处于高盐、高湿环境,更不可避免地会发生直流系统接地故障。直流系统两点接地的危害分析 现以图1为例说明直流接地的危害。当图1中A点与C点同时有接地出现时,等于+KM、-KM通过大地形成短路回路,可能会使熔断器1RD或2RD熔断而失去保护电源;当B点与C点同时有接地出现时,等于将跳闸线圈短路,即使保护正常动作,TQ跳闸线圈也不会起动,断路器就不会跳闸,因此在有故障情况下就要越级跳闸;当A点与B点或A点与D点同时接地时,就会使保护误动作而造成断路器跳闸。直流接地的危害不仅仅是以上所谈的几点,还有很多,在此不一一介绍了。
图1 直流接地示意图 直流接地故障的查找方法及存在的问题
排除直流接地故障,首先要找到接地的位臵,这就是常说的接地故障定位。直流接地大多数情况不是一个点,可能是多个点,或者是一个片,真正通过一个金属点去接地的情况是比较少见的。更多的会由于空气潮湿,尘土粘贴,电缆破损,或设备某部分的绝缘降低,或外界其它不明因素所造成。大量的接地故障并不稳定,随着环境变化而变化。因此在现场查找直流接地是一个较为复杂的问题。
3.1拉回路法
这是电力系统查直流接地故障一直沿用的一个简单办法。所谓“拉回路”,就是停掉该回路的直流电源,停电时间应小于三秒。一般先从信号回路,照明回路,再操作回路,保护回路等等。该种方法,由于二次系统越来越复杂,大部分的厂站由于施工或扩建中遗留的种种问题,使信号回路与控制回路和保护回路一个严格的区分,而且更多的还形成一些非正常的闭环回路,必然增大了拉回路查找接地故障的难度。正由于回路接线存在不确定性,往往令在拉回路的过程中,常常发生人为的跳闸事故,再加上微机保护的大量应用,微机保护由于计算机的运行特性也不允许随意断电。“拉回路”可能导致控制回路和保护回路重大事故发生。3.2直流接地选线装臵监测法
这是一种在线监测直流系统对地绝缘情况的装臵。该装臵的优点是能在线监测,随时报告直流系统接地故障,并显示出接地回路编号。缺点是该装臵只能监测直流回路接地的具体接地回路或支路,但对具体的接地点无法定位。技术上它受监测点安装数量的限制,很难将接地故障缩小到一个小的范围。而且该装臵必须进行施工安装,对旧系统的改造很不便。此类装臵还普遍存在检测精度不高,抗分布电容干扰差,误报较多的问题。
3.3便携式直流接地故障定位装臵故障定位法
该装臵是近几年开始在电力系统较为广泛应用的产品。该装臵的特点是无需断开直流回路电源,可带电查找直流接地故障完全可以避免再用“拉回路”的方法,极大地提高了查找直流接地故障的安全性。而且该装臵可将接地故障定位到具体的点,便于操作。目前生产此类产品的厂家也较多,但真正好用的产品很少,绝大部分产品都存在检测精度不高,抗分布电容干扰差,误报较多的问题。防范措施
4.1 经常检查各支路直流系统的绝缘状况 ,对于户外电气设备和热工就地装臵的直流系统的绝缘状况更应经常检查 ,要特别注意检查各支路的跳闸回路。具体检查方法:将该支路的断路器合上(注意:此时隔离开关应在断开位臵或断路器拉至试验位臵)。然后取下该支路的直流电源的熔断器 ,在熔断器的下方(即负荷侧)将正、负极短接 ,用兆欧表检查绝缘电阻是否符合要求 ,如发现接地应及时消除。
4.2 发生直流系统接地时 ,常采用取下直流熔断器来观察直流接地是否消失 ,在取直流熔断器时应先取非接地极的熔断器;在投熔断器时 ,先投非接地极的熔断器。其目的是使非接地极对地电容有一定的充电时间 ,使该支路的正、负电源间在未形成回路前 ,先使非接地极电容充上一定电压 ,即 Uc不等于0 ,从而降低 UL ,防止断路器误动。
4.3 出口继电器和断路器的跳闸线圈的动作值按规程要求为(30 %-70 %)UH ,实际工作中调整在(60 %-70 %)UH之间最好。
4.4 运 行维 护人员必须熟悉现场运行规程,在直流回路工作时,做好安全措施,防止保护误动。结束语
直流电源在电力系统的作用十分重要,着重分析了直流接地对保护装臵的影响,在什么情况下可能造成保护误动和拒动,从而更好地为运行维护人员提供参 考依据,有利于更好地保证直流系统的稳定,从而保证电网的安全稳定运行。
参考文献
[1]张信,卢灿遹. 直流系统接地的危害分析与处理
[2]苏玉林 刘志民 熊深.怎样看电气二次回路图
[3]张善全.电力系统直流接地危害性分析及预防措施例
第三篇:变电站直流系统设计方案的合理选择
变电站直流系统设计方案的合理选择
2009-05-06 14:44:08 来源: 网上搜集 作者:佚名
摘 要:对变电站直流系统设计中的几个主要问题进行了讨论,阐述了影响直流系统额定电压和蓄电池容量选择的主要因素,分析了直流系统额定电压、蓄电池容量的选取方法以及主接线、直流馈线网络的设计方法,介绍了新型的充电装置、绝缘监测和电压监视装置的性能。关键词:变电站;直流系统;设计;智能型高频开关充电装置;绝缘监测和电压监视装置
直流系统为变电站的继电保护、控制系统、信号系统、自动装置、UPS和事故照明等提供电源。近年来直流系统的技术和设备发展迅速,阀控铅酸蓄电池、智能型高频开关充电装置、微机型绝缘监测装置等,具有安全可靠、技术先进和性能优越等特点,促进了直流系统的发展。
本文就变电站设计中对直流系统设计有直接影响的因素和变电站直流系统设计方案的选择进行探讨。 1直流系统接线
根据《火力发电厂和变电所直流系统设计技术规定》,发电厂和变电站的直流系统应采用单母线或单母线分段接线。单母线接线简单、清晰,但可靠性与灵活性差,一般用在110kV以下的变电站;单母线分段接线可靠性较高,任一段母线出现故障或需要检修都不影响供电,建议110 kV,220 kV和500 kV变电站采用单母线分段接线。 2直流系统额定电压
在确定变电站直流系统额定电压时,应根据变电站的具体情况,找出影响直流系统额定电压选择的主要因素。以往设计的220 kV及以下电压等级的变电站,大多数为带电磁操作机构的断路器,需要直流动力合闸电源,在这种情况下,满足直流动力回路电压的要求,降低直流动力电缆的投资,成为影响直流系统额定电压选择的主要因素,因此,以往设计的变电站中多数采用了220 V的直流系统。20世纪80年代以来,在220~500 kV变电站中,110 kV及以上电压等级的断路器多采用气动或液压操作机构,10 kV断路器采用弹簧操作机构,这样就不需要直流系统提供动力合闸电源了,因此,满足直流动力回路电压的要求和降低直流动力电缆投资,就不再是确定直流系统额定电压的主要因素。由于500 kV变电站被控对象远,控制回路电缆长,所以满足控制回路电压的要求,降低控制电缆的投资就成为确定500 kV变电站直流系统额定电压的主要因素。一般来说,当直流电压为220 V时,若控制电缆长度在500 m以内,电缆截面面积不大于4 mm2,就不会给电缆的接线带来困难。当直流电压为110 V时,若电缆长度超过250 m,就要选用截面面积为6 mm2或10 mm2的电缆,一般端子排只能连接截面面积不超过6 mm2的电缆芯,要连接截面面积大的电缆芯必须采取特殊的连接方式,这给施工和维护都带来困难;另外,500 kV变电站的控制对象多,距离远,电缆用量大,直流电压采用110 V,加大了控制电缆的截面面积,必然大幅度增加有色金属的消耗,增加了在控制电缆方面的投资。基于上述技术和经济上的考虑,在220~500 kV变电站采用集中控制的情况下,直流系统的额定电压宜选220 V。
若220 kV变电站的规模较小,控制电缆的单根长度较短和控制电缆总量较少,或为全户内的220 kV变电站的情况下,直流系统的额定电压采用110 V是合理的。
若500 kV变电站采用在配电装置上设分控室,二次设备分散布置,在主控室和分控室中都设有独立的直流系统,则控制电缆的长度可大大缩短,满足控制回路电缆电压的要求不存在任何问题。此时,由于变电站的蓄电池组数多,所以降低每组蓄电池及其辅助设施的造价就显得尤为突出。在这种情况下变电站的直流系统的额定电压宜选110 V。3直流馈线网络
为简化设备,220 kV变电站直流系统一般采用环形供电网络,即直流动力负荷和控制负荷都采用环形供电网络。在变电站内设动力和控制小母线,在各直流负荷之间形成环形供电网络,每个环的电源回路接到两段母线上。若220 kV变电站为全户内式,220 kV及110 kV配电装置均采用气体绝缘金属封闭开关设备(GIS),二次设备置于GIS室内,则直流馈线应分别引至各配电装置处各自形成环网。由于GIS二次回路所需直流电源较多,故在设计时应考虑足够的直流馈线数量。
500 kV变电站对直流供电网的可靠性要求更高,结合对控制电源双重化的要求,一般采用辐射状供电。为了简化供电网络,减少馈线电缆数量,可在靠近配电装置处设直流分屏,每一分屏由2组蓄电池各用1条馈线供电。 4蓄电池容量
在以往的变电站中,10 kV断路器多采用电磁操作机构,其额定合闸电流较大,为90~245 A,所以事故放电末期承受冲击负荷时,确保直流母线电压在允许值范围内,是选择蓄电池容量的决定性因素。近年来,越来越多的10 kV断路器采用弹簧操作机构,其合闸电流很小,则蓄电池的容量由全站的经常负荷和事故负荷决定,这样可大大减少蓄电池容量。
以1个具有2台150~180 MVA主变压器、8回220 kV线路、10回110 kV线路、10回10 kV线路和2组电容器的220 kV变电站为例,当变电站10 kV断路器采用弹簧操作机构时,其额定合闸电流为3.2 A,分闸电流为0.5 A,允许的最低工作电压为87.5%额定电压,选择220 V额定电压、104只蓄电池和400 Ah容量的直流系统即可满足要求。 5充电装置
充电装置是保证蓄电池可靠运行的主要设备,特别是阀控式蓄电池对充电装置性能的要求更高。以往的变电站的充电装置多采用晶闸管整流装置,近年来越来越多的变电站采用智能型高频开关充电装置,且运行情况良好。智能型高频开关充电装置具有技术先进、性能优越和体积小等优点。表1列出了2种类型的充电装置的技术指标。 6绝缘监测和电压监视装置
常用的直流绝缘监测和电压监视装置是根据电桥原理由继电器组成的,近年来有些厂家生产了微机型的直流绝缘监测和电压监视装置,如南京自动化研究院的ZYJ型绝缘监测和电压监视装置,武汉琴台电力技术研究院的WZJ型绝缘监测和电压监视装置,温州星炬电控有限公司的ZJD-4型绝缘监测和电压监视装置等。这些产品的灵敏度高,正、负母线绝缘同时降低时也能进行监测,并带有分支回路在线监测装置,能指出绝缘下降或出现接地故障的回路,大大缩短了查找直流系统接地故障的时间。
采用单母线分段接线方式有2组蓄电池时,母线是分开运行的,以往多设1套直流绝缘监测和电压监视装置,经切换开关切换至2段母线,接线复杂,其中有一段母线不能监测,所以每组母线设1套直流绝缘监测和电压监视装置为好;只有1组蓄电池但采用单母线分段接线方式时,单分段开关通常是接通的,此时可设1套可切换的直流绝缘监测和电压监视装置。 7结束语
直流系统是变电站的一个重要组成部分,对变电站的正常运行起着重要的作用,它的设计方案的合理性及其运行的可靠性直接影响着变电站的可靠性。所以在变电站直流系统的设计中,我们要根据变电站的实际情况对直流系统进行计算、分析,选择最合理的方案。 参考文献
[1]能源部西北电力设计院.电力工程电气设计手册(2):电气二次部分[M].北京:中国电力出版社,1991.
[2] 宋继成.220~500 kV变电所二次接线设计[M].北京:中国电力出版社,1996.
第四篇:《220kv变电站直流系统》
220kv变电站直流系统
目录
1.什么是变电站的直流系统
2.变电站直流系统的配置与维护
3.直流系统接地故障探讨
4.怎样提高变电站直流系统供电可靠性
5.如何有效利用其资源
1.什么是变电站的直流系统
变电所是电力系统中对电能的电压和电流进行变换、集中和分配的场所。变电站内的继电保护、自动装置、信号装置、事故照明和电气设备的远距离操作,一般都采取直流电源,所以直流电源的输出质量及可靠性直接关系到变电站的安全运行和平稳供电。变电站的直流系统被人们称为变电站的“心脏”,可见它在变电站中是多么的重要。直流系统在变电站中为控制、信号、继电保护、自动装置及事故照明等提供可靠的直流电源。它还为操作提供可靠的操作电源。直流系统的可靠与否,对变电站的安全运行起着至关重要的作用,是变电站安全运行的保证。
(1)220kv变电站直流母线基本要求: 蓄电池组、充电机和直流母线
1.设立两组蓄电池,每组蓄电池容量均按单组电池可为整个变电站直流系统供电考虑。
2.设两个工作整流装置和一个备用整流装置,供充电及浮充之用,备用整流装置可在任一台工作整流装置故障退出工作时,切换替代其工作。
3.直流屏上设两段直流母线,两段直流母线之间有分段开关。正常情况下,两段直流母线分列运行,两组蓄电池和两个整流装置分别接于一段直流母线上。
4.具有电磁合闸机构断路器的变电站,直流屏上还应设置两段合闸
母线。
5. 220kV系统设两面直流分电屏。分电屏Ⅰ内设1组控制小母线(KMⅠ)、1组保护小母线(BMⅠ);分电屏Ⅱ内设1组控制小母线(KMⅡ)、1组保护小母线(BMⅡ)。
6. 110kV系统设1面直流分电屏,屏内设1组控制小母线(KM)、1组保护小母线(BM)。
7. 10kV/35kV系统的继电保护屏集中安装在控制室或保护小间的情况下,在控制室或保护小间设1面直流分电屏。8. 信号系统用电源从直流馈线屏独立引出。
9. 中央信号系统的事故信号系统、预告信号系统直流电源分开设置 10. 每组信号系统直流电源经独立的两组馈线、可由两组直流系统的两段直流母线任意一段供电。
11. 断路器控制回路断线信号、事故信号系统失电信号接入预告信号系统;预告信号系统失电信号接入控制系统的有关监视回路。12. 事故音响小母线的各分路启动电源应取自事故信号系统电源;预告信号小母线的各分路启动电源应取自预告信号系统电源。13. 公用测控、网络柜、远动柜、保护故障信息管理柜、调度数据网和UPS的直流电源从直流馈线屏直接馈出。(2)、直流系统运行一般规定:
(1)、220Kv变电站一般采用单母线分段接线方式,110Kv变电站一般采用单母线接线方式。直流成环回路两个供电开关只允许合一个,因为母联开关在断开时,若两个开关全在合位就充当母联开关,其开关
容量小,线型面积小,又不符合分段运行的规定。直流成环回路分段开关的物理位置要清楚,需要成环时应先合上母联开关再断开直流屏上的另一个馈线开关。
(2)、每段直流馈线母线不能没有蓄电池供电。(3)、充电机不能并列运行。
(4)、正常情况下,母联开关应在断开位置。(5)、绝缘检查装置、电压检查装置始终在运行状态。(6)、投入充电机时先从交流再到直流。停电时顺序相反。
(7)、母线并列时首先断开一台充电机,投入母联开关,在断开检修蓄电池。
(8)、母线由并列转入分段时首先合上检修蓄电池,断开母联开关,再投入充电机。
2.变电站直流系统的配置与维护
A:配置
220kV变电站直流系统设计依据是DL/ T5044—95《火力发电厂、变电所直流系统设计技术规定》,本规定适用于采用固定型防酸式铅蓄电池。
一、要求220kV变电站具备高可靠性直流电源的原因:
1.1 部分变电站建设规模为主变容量3X 150MVA或3X180MVA,且为枢纽站。
1.2 220kV变电站主保护亦实现双重化,采用两套不同原理、不
同厂家装置;断路器跳闸回路双重化;且均要求取自不同直流电源。
1.3 线路的两套纵联差动保护、主变压器的主保护和后备保护均分别由独立的直流熔断器供电。
1.4 所有独立的保护装置都必须设有直流电源故障的自动告警回路。
1.5 变电站综合自动化水平提高,监控系统高可靠运行要求。
二、目前单组蓄电池运行、维护存在的主要问题:
2.1 事实证明:要掌握蓄电池运行状态,做到心中有底、运行可靠,必须进行全容量核对试验;然而直流系统配置一组蓄电池,给运行维护造成了极大困难。
2.2 现有220kV变电站蓄电池只对蓄电池组进行部分容量试验,检测出损坏严重的蓄电池;因进行全容量试验工作繁琐因难,部分单位回避容量试验,而不能完全掌握蓄电池的实际运行状态。
2.3 就对各发供电单位已运行的各型式蓄电池统计表明,使用寿命一般为7年到10年;且这期间尚需对个别落后电池维护处理才能够保证整组蓄电池使用年限。对于仅一组蓄电池而言,整个更换期间同样要承担风险运行。
2.4 蓄电池组由106只-108只(无端电池)或118只一12O只(有端电池)单体电池串联组成,若其中一只电池容量下降后,则表现为内阻增大、严重者相当于开路.也就是说:一只电池损坏,祸及整组电池不能发挥作用。目前检测的最佳方法是将浮充机停运,直流负荷由蓄电池组供电;对于仅有一组蓄电他的直流系统,若存在有开路情
况.则造成全站失去直流。
2.5 整流设备的好坏也影响蓄电池的寿命。新近入网交流整流设备,虽然具有充电、均衡充电、浮充电自动转换功能,但功能还不完善。如浮充电缺少温度补偿,温度低时充电容量不足、温度高时容易过充电,造成电池漏液鼓肚现象,缺乏单体电池端电压测量,当有2—3只电池充容量不足不能发现时就影响整组电池寿命。
2.6 近2—3年间投运的变电站蓄电池大多采用全密封阀控式铅酸电池,因不能象原固定防酸式铅酸蓄电池正常远行中能够通过测单体电池电压、量其比重、观其外观而综合分析判断电池运行状态。其日常仅能靠测量单体电池进行监视,运行状态好坏难以充分把握。2.7 对蓄电池容量的在线监测现在仍是一大难题。对阀控式全密封蓄电池能否依据某—指标数据判断或多项指标数据综合判断运行状态尚处于探索时期。
220kV变电站直流系统配置两组电池的必要性及优点
3.1 正在编写制订的《阀控式铅酸蓄电池运行、维护导则》国家标准,明确要求蓄电池必须进行容量试验。
3.2 220kv变电站内通信用直流系统按有关规定均配置二组48V蓄电池。而220kV变电站控制、保护、信号、安全自动装置等负荷同样需要高可靠的直流系统。
3.3 由于单组蓄电池不能很好的满足22kV变电站运行可靠性要求,且运行维护困难,故此 220kV变电站直流系统配置两组蓄电池是必要的。
3.4 220kV变电站直流系统配置两组蓄电池,完全满足运行要求,并符合部局有关继电保护反措对直流供电的要求,采用该系统对增加控制保护设备运行的可靠性有较重要的意义。
3.5 220kV变电站配置两组全容量蓄电池组或两组半容量蓄电池组后,从简化母线结构、减少设备造价、节约能源、避免降压装置故障开路造成母线失压,扩大为电网稳定事故和更大设备事故出发,可考虑直流动力,控制母线合一,去掉端电池及调压装置,使直流系统进一步简化、可靠。
220kV变电站直流系统配置两组蓄电池方案
4.1 为了保证两组蓄电池能够独立工作,相互间不影响,保持自身特性,采取不完全并联运行方式,即两组蓄电池充、放电独立,相互间不互充放。
4.2 根据变电站的建设规模、负荷地位和负荷水平,可选择采用下列不同的配置方案:
4.2.1 采用两组全容量蓄电池组、三台充电机、直流负荷母线分段接线。此方案是完备的方案,在各种运行方式下,能够保证提供可靠直流电源。
4.2.2 采用两组全容量蓄电池组、二台充电机、直流负荷母线分段接线。
4.2.3 为进一步降低工程费用,可采用两组半容量蓄电池不完全并联运行,配置二台充电机,直流母线分段。结束语:
直流系统是变电站二次设备的生命线,直流系统故障就有可能影响到电网稳定和设备安全。根据现在220kV变电站对直流电源可靠性要求进一步提高,及蓄电池运行、维护的需要,并考虑220kV变电站直流系统网络与蓄电池直流电源可靠性匹配要求,220kV变电站直流系统应配置两组蓄电池,虽在经济上多投入,但其运行可靠性却得到了大幅度提高,且运行方式灵活、维护简便。
B:维护
电力直流系统的维护现状:
现在的变电站一般都是无人值守的,智能高频开关直流电源系统可通过监控串口与变电站后台的监控实现通讯,可在调度端实现对直流系统的“三遥”.运行人员或专职直流维护人员定期对直流设备进行一般性的清扫、日常检查等工作.对充电设备只进行巡检,对蓄电池组进行日常维护和放电核对容量.。
.220KV设两组蓄电池,110KV一般装设一组蓄电池,在有条件时220KV最好装设两组蓄电池,因为220KV的继电保护装置是双重化的,从电流互感器二次侧到断路器跳闸线圈都是双重化,因此,直流系统也宜相应的设置两组,分别对两套保护及跳闸线圈供电,以利系统安全运行.。
在正常运行情况下,变电站的二次设备只需由充电模块来供电就行了.现有的变电站,断路器一般有电磁合闸方式和储能合闸方式两种.在电磁式断路器进行合闸操作时,要求直流电源能提供瞬时的合闸电流(20~200ms内提供数百安培的大电流),显然仅由充电模块来供电是
远远不够的,这时蓄电池组就发挥了重要的作用,它能无间断地提供大电流,保证断路器的正常合闸,这也是直流系统为什么要有合闸母线的原因了.在储能合闸方式下,合闸电流远小于充电模块的额定输出电流,不用蓄电池来合闸.现在新建的变电站一般都是这种储能式的断路器,这时直流系统也就可以不要合闸母线。
当电网发生事故时,必然使交流输入电压下降,当充电模块不能正常工作时,蓄电池无间断的向直流母线送电,毫不影响直流电源屏的对外功能,保证二次设备和断路器的正确动作,确保电网的安全运行.而作为最后保障的蓄电池,如果其容量的不足将会产生严重后果.所以,蓄电池的重要性就可想而之了,其维护一直是最为重要的问题.。
电池巡检仪作为在线监测装置,可实时发现落后或故障电池,并可检测电池组的温度是否处于正常范围内,但直流系统工作时输出电流较小,电池容量的不足或漏液、破损很难通过电池巡检仪发现,而电池内阻和电池容量的在线测试,准确度依旧不高,其测量精度和可靠程度通常只用于定性分析.所以还是需要运行人员或专职直流维护人员对蓄电池进行定期巡视。
由于电池品牌、型号及电池状况的不同,应根据实际情况通过监控模块重新调整电池充电参数,以保证电池处于良好工作状态.蓄电池寿命一般为8~ 10年左右,影响蓄电池寿命的主要因素有:
1、过放电;
2、充电压设置不合理,充电电流过大或过小;
3、充电设备的性能超标;
4、温度。
所以,我们不但要定期对蓄电池组做放电实验,还要定期测试充电
设备的稳压精度、稳流精度及纹波系数、充电机效率等性能参数。
3.直流系统接地故障探讨
直流电源作为电力系统的重要组成部分,为一些重要常规负荷、继电保护及自动装置、远动通讯装置提供不间断供电电源,并提供事故照明电源。直流系统发生一点接地,不会产生短路电流,则可继续运行。但是必须及时查找接地点并尽快消除接地故障,否则当发生另一点接地时,就有可能引起信号装置、继电保护及自动装置、断路器的误动作或拒绝动作,有可能造成直流电源短路,引起熔断器熔断,或快分电源开关断开,使设备失去操作电源,引发电力系统严重故障乃至事故。因此,不允许直流系统在一点接地情况下长时间运行,必须加强在线监测,迅速查找并排除接地故障,杜绝因直流系统接地而引起的电力系统故障
1、直流系统接地查找一般原则
(1)、“直流接地”信号发出后,可通过直流屏监控器和绝缘检查装置找出接地支路号及接地状态,支路号的排列大都是按直流馈线屏馈线开关从上至下或从左到右的顺序,绝缘检查装置还可以显示接地电阻(接地电阻小于15-20千欧时报警),判断接地程度,可通过绝缘检查开关判断正对地、负对地电压,判断接地程度。有时绝缘检查装置判断不出支路只报“直流母线接地”,此时有可能直流母线接地,也可能是支路接地。
(2)、直流接地信号发出后,必须停止二次回路上的工作,值班员应
详细询问情况,及时纠正修试人员的不规范行为。
(3)、利用万用表测量正对地、负对地电压,核对绝缘检查装置的准确性。万用表必须是高内阻的,2000欧/伏,否则会造成另一点接地。(4)、试拉变电站事故照明回路。(5)、试拉检修间直流电源回路。(6)、试拉380伏配电直流电源回路。(7)、试拉通讯远动电源回路。(8)、解列蓄电池。(9)、解列充电机。
(10)、1段母线负荷倒至2段母线,判断1段母线是否接地。(11)、使用接地查找仪对控制、保护、信号回路逐一查找。2.造成变电站直流系统接地的几种原因:
(1)雷雨季节,室外端子箱或机构箱内潮湿积水导致直流二次回路中的正电源或负电源对地绝缘电阻下降,严重者可能到零,从而形成接地。
(2)部分型号手车开关的可动部分与固定部分的连接插头或插座缺少可靠的绝缘隔离措施,手车来回移动导致其中导线破损,从而使直流回路与开关金属部分相接触,从而导致接地。
(3)部分直流系统已运行多年,二次设备绝缘老化、破损,极易出现接地现象。
(4)因施工工艺不严格,造成直流回路出现裸线、线头接触柜体等,引起接地。
3.查找接地故障的基本原则和方法:
(1)一般处理原则:根据现场运行方式、操作情况、气候影响来判断可能接地的地点,按照先室外后室内,先合闸后控制,由总电源到分路电源,逐步缩小范围的原则,采取拉路寻找、处理的方法。应注意:切断各专用直流回路的时间不要过长(一般不超过3秒钟),不论回路接地与否均应合上。
(2)具体处理方法:首先,了解现场直流电源系统构成情况,通过直流系统绝缘监测装置或接地试验按钮初步判断是直流正极接地还是负极接地(以下假设绝缘监测可靠,并假设正接地)。然后,瞬时切除所有合闸电源开关,如接地信号消失,说明接地点在合闸回路,应对站内合闸回路用同样方法拉合负荷开关或解除正电源端,进行分路检查、判断;如监测装置仍报接地,则说明接地点在控制、信号等回路,则应进一步用同样方法检查直流屏、蓄电池柜及站内各保护屏、控制屏、信号屏及其控制回路。查明接地点属于哪一输出电源回路后,应迅速拉合接地回路的直流负荷开关或拔插回路内的正电源保险,并根据绝缘监测装置报警情况判断接地点在开关(保险)之前或之后。判断清楚后,根据查出的范围,迅速解除范围内相关设备的正极端子,观察报警信号,判断接地点是否在这一部分设备内。然后继续按照以上原则和方法,逐步缩小查找范围,直至找出接地点。4.总结:
造成变电站直流系统接地的因素较多,为了较好的解决这一问题,在日常运行维护中还应视具体情况采取不同措施:
(1)严格二次设备施工工艺,发挥主观能动性,减少接地故障的发生概率。如对室外端子箱、机构箱等加强密封,加装防潮除湿设备或材料;对手车开关的活动部位采取措施提高其绝缘性能,如用绝缘材料包裹其线头部分等,避免因其随手车活动引起接地;对绝缘老化,已不能满足对地绝缘电阻要求的控制电缆及有关二次设备及时更换。(2)加强断路器、隔离开关、手车等一次设备的运行维护管理。严格断路器、隔离开关等具有机械传动部分设备的操作规程,避免因操作不合理造成接地故障。
(3)查找处理接地故障时严格遵守相关电气设备检修运行规程要求,并结合现场实际条件进行。禁止单人工作,禁止直流电源长时间停止运行(尤其在天气条件不允许的情况下),拆除、恢复各端子、各开关的时间应尽可能短。
4.怎样提高变电站直流系统供电可靠性 概述 :
供电公司220KV及以下变电所的直流供电系统为环状系统,若一个元件故障可能会引起整个系统的瘫痪,达不到电力系统的安全稳定的要求。而近两年来,随着电力系统的飞速发展,保护设备的增多,对直流系统可靠性和稳定性的要求越来越高,直流系统故障将严重影响到系统的安全稳定运行。针对这一问题我们进行了大量的调查与分析,并发现220KV及以下变电所的直流供
电系统存在:直流系统接线方式不合理;保护直流回路用交流断路器;蓄电池和充电装置数量都不符合要求。2 直流系统供电现状:
直流系统事故后果严重,严重的可造成变电所直流系统全部停电,造成一次设备处在没有保护和监视的不可控状态,不能反应一次设备的故障,极易造成一次设备事故范围的扩大,造成区域电网的大面积停电事故;经过调查发现,该局的变电所普遍采用环状供电方式。环状供电方式示意图
环状供电方式是指将两个独立的直流供电系统在其下一级直流支路中连接,当分支直流元件故障时,非故障母线将断开供电回路,这样扩大了直流故障范围。严重时会使整个变电所处于无直流状态下,对系统正常运行造成重大的安全威胁。同时我们对保护直流回路用的断路器情况进行了统计(见表1)。
表1 各电压等级变电所保护用直流断路器配置情况调查表
交流断路器作为直流电路的保护元件具有局限性。由于交流电流的电弧容易熄灭,故其断路器的动静触点之间的开距小,不能达到拉弧作用,而直流瞬动电流是交流瞬动电流的1.4~2倍,因此在直流回路中断路器不能可靠断开,并且致使交流断路器损坏,从而造成直流系统事故进一步扩大;通过上表我们看到直流系统中采用交流断路器的二次设备占总设备数的2/3。
我们对2000年以来出现的直流供电系统的缺陷进行了分析,发现主要存在以下三个方面的问题:
1、直流供电支路故障造成变电所直流供电系统全部停电。
2、直流回路开关损坏严重。
3、蓄电池和充电装置数量都不符合要求。3.完善直流系统供电方式:
3.1采取辐射状供电方式,增加蓄电池和充电装置数据
3.1.1 220KV及以上变电所应满足两组蓄电池,且两套直流电源系统完全独立,并设两段独立的保护电源小母线。3.1.2 各级直流母线分段开关正常运行时应断开。
3.1.3 控制直流母线分为两段,且控制直流母联开关正常运行时应断 15
开。
3.1.4 220KV设备双套保护装置的保护电源应取自不同的独立直流电源系统,接在不同的保护电源小母线。
3.1.5如果断路器只有一组跳闸线圈,失灵保护装置电源和具有远跳功能装置的电源应与相对应的断路器操作电源取自不同的直流电源系统。
3.2采用专用的直流断路器
根据保险配置情况选购GM型(两段保护)、GMB型(三段保护)系列直流断路器,并进行直流断路器的安秒特性及动作电流的检验,并绘制出三段式保护直流断路器保护特性曲线:
Int-过载长延时断路器起始动作值
Icu-断路器极限短路分断能力 Iop2-断路器延时动作电流 lopl-短路瞬时断路器动作电流
通过试验发现G系列直流断路器作为替代直流回路中的交流断路器,具有良好的三段保护功能。
过载长延时保护:能在故障电流较小时,根据电流的大小进行反延时
动作,能防止线路电缆发热进而造成绝缘破坏和起火。
短路短延保护:能够防止越级动作带来的事故扩大,保证故障电流仅仅由距离故障点最近的断路器来切除,还可作为下一级保护的后备保护
短路瞬时保护:能够在故障电流较大时瞬时切除故障回路,避免对设备及线路的动稳定性带来较大的危害。结束语:
为防止和杜绝变电所直流系统事故,确保电网的安全稳定运行,我们对变电所的直流系统的不足做了进一步完善,消除了造成直流系统故障的安全隐患,进一步减小了变电所发生直流系统事故的可能性,在保证直流系统安全稳定运行的同时也保证了继电保护及自动装置的可靠运行。
5.如何有效利用其资源
变电所直流系统为继电保护以及开关机构提供保护、信号、动力能源;变电所UPS为远动、通讯、微机监控装置提供不间断的电源。
多年来,根据各变电所直流设备运行现状,发现从设计、规划、审批、运行、维护等环节存在管理弊端,不同程度地造成设备重复投资、资源浪费等现象。
近年来,随着两网改造,设备更新升级,变电所的继电保护及其自动化使得当地监控、信息数据采集、计量等专业相互渗透。对于变电所直流系统,如在变电所直流系统电源保证安全可靠性的前提下,即直流系统蓄电池容量和绝缘水平满足运行参数要求,变电所UPS实现集中配置(废除UPS自带蓄电池配置)是可行的。变电所交、直流电源运行
(1)所用电380/220V低压系统:
变电所所用电380/220V系统电源的质量、可靠性较差。主要表现为:
①交流失电(全所失电、互投时间间隔长、暂态停电);
②欠压、过压(一般变电所自备电源较高,末端所电压不易调节,闪变);
③电压短时波动(如电气化铁路干扰,谐波畸变,电压聚降、瞬变);
④电压三相不平衡(所内负载不平衡,中性线断);
⑤二次设备共模、差模超标(接地和泄露电流)等故障。
对于变电所的综合自动化装置、计算机监控、远动装置、信息数据采
集、微机保护、脉冲式电能表等采用静态电路,设备对电压质量及供电连续性要求较高。一旦计算机失电造成死机、远动信息数据采集失电造成丢失数据、电源产生的问题等导致设备误操作将造成更大的损失。
鉴于以上原因,许多变电所配置了UPS电源,但多见于分散配置,各成一体。
(2)变电所UPS不间断电源:
变电所UPS不间断电源,供给远动自动化、信息数据采集、微机监控、电力通讯等电源。在许多变电所内,由于UPS维护不善造成蓄电池容量不足,交流断电后,由于电压过低而自动关机,使得设备电源中断,不能正常工作。
(3)变电所直流系统:
变电所直流系统作为操作电源,供给断路器分合闸及二次回路的仪器仪表、继电保护、控制、事故照明及自动装置电源。
近年来,接受以往事故教训,专业人员在研讨继电保护反措和直流系统反措中,均提出了双重化配置要求,对220kV变电所的直流系统进行了3+2配置(三台充电机、两组蓄电池)单母分段互联式接线改造。对继电保护实现独立保护、独立电源,主保护的线路、变压器、母线双重化保护专用供电,实现保护装置跳闸线圈双重化,控制、保护电源分开。由两套独立(可相互备用)直流系统供电。
2改造目标 :
通过对变电所直流系统实施技术改造,要求变电所直流系统的管
理水平、运行维护和设备健康水平均达到100%。同时,还要使变电所直流系统资源得以充分有效利用。
(1)目标制定:
①加强变电所直流系统运行维护管理。
②对直流系统为UPS提供电源可行性、安全性进行评估、计算,并付诸实施。应用后充分体现了UPS使用直流系统供电的优点。
③规范运行管理,有效利用直流系统。对于改造后的变电所,由生产技术部门协调归口管理。
(2)可行性分析:
①体制管理:变电所直流系统就是为变电所继电保护及其自动装置服务的。但从变电所进行自动化实现四遥,改造变电所直流系统与UPS电源从设计、规划、审批及体制管理上就分开了。直流设备由检修专业班维护变电所直流系统,远动通讯专业班则维护UPS不间断电源。变电所运行人员一般只对直流系统做定期维护监测,而对于UPS电源形成无人维护。
②设备投资:变电所220kV以上及重要的110kV变电所直流系统双重化3+2配置后,完全可以满足继电保护及其自动装置的参数要求。上级在此投资是原来设备的两倍,而有些变电所还在设计安装UPS不间断电源单设蓄电池组。这无疑会造成重复投资浪费。
③绝缘要求:变电所直流系统与变电所通讯电源用直流电源运行方式不同,有可能造成变电所直流系统绝缘降低,影响系统稳定。对于远动通讯电源应该区别对待,如通讯电源从变电所蓄电池抽头现象必须
杜绝,但在绝缘要求满足的前提条件下,完全可以集中配置蓄电池。实施方案 :
(1)要求各专业分工明确,不留死角:
①归口管理,直流专业不能单一只维护充电机、蓄电池组,还应考虑直流系统的完整性。如馈出回路辐射、环路完整、负荷分配、运行方式、接线方式、熔断器及空气开关级差配置、电压质量、直流系统绝缘水平等,应满足继电保护及其自动装置参数要求。
②对设计维护人员要求专业相互渗透。因为继保、远动、通讯、计量、直流专业就是电力系统及其自动化的各分支专业,所以各专业有必然的联系。
③过去有些变电所通讯电源有在直流系统蓄电池中抽头的现象,由于影响直流系统蓄电池内阻、容量,通过落实反措以及整改,已将这种方式消除。对于小容量的载波机以及通讯用计算机UPS,只要满足绝缘要求,可以使用直流系统电源。对于大容量程控交换机、光纤通讯、微波通道,考虑到其独立性以及使用蓄电池运行方式不同,通讯电源UPS设置自备电源。
(2)集中配置:
①变电所UPS使用变电所直流系统蓄电池,可以不用自配蓄电池组,这样,可以节约自备电池以及占地空间,还可以避免重复维护。
②使用直流系统逆变电源,能够防止所用电系统的暂态干扰进入负荷侧。
③一般商用UPS自备电池,放电时间是在10~15min,时间短;工业
用UPS装置自备电池放电在30min。采用直流系统蓄电池可以保证事故停电1h使用。
④利用直流系统容量优势,全所集中配置UPS系统,并实现双重化配置。交流电源使用所用电各段母线电源,直流电源分别使用直流系统各段电源(110kV以上无人值守变电所、较重要的枢纽变电所)。
(3)评估:
①双重化3+2配置后,蓄电池容量增加一倍,而保护自动装置通过更换节能信号灯、节能光子牌,使电磁继电器减少,相对负荷电流也减小,因而可使事故情况下蓄电池容量充足,完全能满足规程要求的全所停电情况下,1h连续供电。
②变电所逐年改造使断路器电磁机构基本退出,而更换成真空开关或弹簧、储能机构以及液压机构,其合闸动力电流减小,故对蓄电池事故放电能完全满足瞬时放电曲线要求。
③对于小容量电力载波机、通讯设备只要运行方式不影响直流系统绝缘,可以经开关电源使用直流系统。
④直流系统馈出回路增加,势必影响直流系统绝缘。其实从UPS电源原理上说,正常时UPS装置使用交流,当交流回路失电后装置自动投切直流电源,而投切回路已明确交流电源是接地回路,直流电源是绝缘回路。
⑤充电机容量:变电所充电机一般满足“均充方式电流+负荷电流+冗余度”。对于UPS负荷:a)交流不间断电源UPS是当交流失电后,自动切换直流电源的;b)有些进口UPS不设整流器而直接接直流母线,故在浮充、恒压限流方式下能满足新增负荷要求。结论 :
实践证明:有效利用变电所直流系统资源,对于电力运行维护、设备投资和环境保护都具有重要意义。今后,应当根据变电所电源的独特性,对110kV及以上重要变电所、枢纽所、无人值守所以及综合自动化变电所的所用电交流380/220V、直流系统220/110V、不间断UPS电源统一考虑,集中配置,以满足继保、远动、通讯等设备的电源要求。
第五篇:变电站直流系统改造技术
变电站直流系统改造技术
摘 要 由于变电站直流系统的改造难度大,风险高,必须结合变电站实际情况,综合性、系统性、科学性的提出相关改造技术措施,以保证改造过程中电力系统的安全运行,避免相关事故或者缺失的发生,文章主要以110kV变电站直流系统为研究对象,针对当前变电站直流系统运行过程中存在的不足,提出了改造当前变电站直流系统的技术措施。
关键词 变电站;直流系统;改造;问题;方案
中图分类号 TM 文献标识码 A 文章编号 1673-9671-(2011)101-0099-02
直流系统是变电站的动力核心,为继电保护设备、自动装置、监控系统、远动系统等电气设备的正常运行和遥控操作提供直流电源保证。伴随着电力、通信、计算机技术的飞速发展,微机型保护装置和安全自动装置被广泛应用于变电站,这就对站用直流电源提出了更高的要求。目前而言,大部分110kV常规变电站的直流系统为电磁型直流设备(相控硅整流电源),这种直流系统在精准性、可靠性、稳定性、纹波系数、效率等方面都已不能满足电网的发展趋势,以及二次设备的应用要求,变电站直流系统的改造将是不可避免的趋势,也是电力系统持续发展的需要。变电站直流系统运行及改造存在的问题
随着电力技术的发展,许多110kV常规变电站被改造成综合自动化变电站以实现了无人值班,原有直流系统的缺陷逐渐显现出来,这些缺陷是不能适应电网的发展趋势的,所以必须对其进行改造。当前大多数110kV变电站仍采用单电单充直流系统供电模式。传统的变电站直流系统主要呈现出以下几个方面的问题:
1)工作母线结线布置复杂。控制屏中直流母线水平置于屏的中部,屏顶还设有多根小母线主要是控制信号音响等,因结构复杂和设备间距比较小,在设备出现接触不良等与之相关的问题时而难以处理
解决。
2)灯光信号和仪表维护困难。传统的直流屏,由于其屏的正面不使用活动门的方式,这样就不能更换装于屏面上损坏后的仪表、信号等设备。
3)绝缘监察装置动作灵敏度不高。传统的直流系统虽能能正确反映单极明显接地现象,但无法反映出正确的接地回路,因为它主要是采用电磁式绝缘监察装置反映直流系统的接地,才会导致这种现象发生。
4)通讯接口与微机进行联接时无法提供数据。随着电力系统自动化的不断深入,以及电网规模的扩大,必须对存在以上缺陷的变电站直流进行改造,但供电模式下的110kV综合自动化变电站的改造也面临着一些问题:①在一些变电站中,因为服役时间较长,需要日常维护的铅酸蓄电池和直流电源系碱性蓄电池组,已不能适应电力系统继电保护装置,尤其是不能适应微机保护装置对直流电源的安全技术标准。②在更换过程中,如果发生断线、短路或者接地等问题时,都极有可能致使保护装置误动或拒动造成大面积停电发生,更为严重的能造成电网事故。为了保证供电的安全可靠要求在全站不失去直流电源的情况下更换,也就是不停电进行直流系统更换。③直流改造时旧直流屏不能带电移出,新直流屏不能带电就位,以确保设备及人身的安全。新、旧直流屏电路割接的难度大,在旧屏转换为新屏的过程中,如何确保继电保护及开关操作所需的直流电源安全可靠,成为了110kV变电站直流系统改造工程需要解决的关键问题。变电站直流系统改造方案
直流系统改造的目的就是提高直流系统运行的可靠性和供电质量,这是衡量直流电源的重要指标,所以需要综合性、科学性的制定改造
方案。
在变电站直流系统改造过程中对于合闸电源及控制电源需要做出以下情况说明:
1)变电站断路器合闸电源仅在断路器合闸时使用,因为平时空载,所以允许短时的停电,因此在更换过程中不再对合闸电源进行说明,停用各馈线重合闸就可以了。
2)要保证电力设备的安全运行,控制、保护电源及信号电源至关重要,绝不允许中断。因此,主要对控制电源进行情况说明。对原有直流系统馈线网络进行认真的核查后,才能制定更换方案,总体的更换方法是:利用临时系统转接负载来搭建一个简易的临时直流系统,如图1所示。用临时电缆将馈线支路直流,是由这条支路的受电侧电源接入点而引至空气开关的下侧。此时,就相当于把原来的直流电源引至空气开关的下方向。在它具体的实施方法上面临以下两个方案:①先把原来的直流系统断掉,然后把上图中的空气开关和上,这样做的有利之处是两套直流系统间的转换过程简单化。虽然在这种转换过程比较快,但是瞬间的变化直流电压,很容易产生一些严重的后果,例如:电源插件损坏、保护装置误发信号等。为了避免这些问题要提前申请退出全站的保护出口压板,等到直流系统转换完成后再恢复压板,而且必须在新的直流系统安装调试完成后,再重复一次上述的过程,然后拆除临时直流电源。这样至少需要2h左右的操作过程,这是不能允许的,因为在这段时间内,就相当于变电站在没有保护的情况下运行。②首先把空气开关闭合,把临时直流电源合并入系统拆去原来的直流电源,等新的直流屏安装和调试完成后,然后重复以上的方法拆掉临时直流系统就可以。这样做的缺点在于容易导致不同直流系统间产生压差,而且因为蓄电池的内阻较小致使容易产生较大的环流。同时这样做也有很多优点:第一,确保了在更换直流的过程中可以保持对外的直流供电;第二,更换过程中避免了对保护设施压板的操作,所以选用这种方法。避免产生环流,可以调整临时直流系统的电压来把两套直流系统间的电压差缩小,并缩短两套直流系统并联时间,这样就把环流的影响降到了最低程度。
根据上面成功的实验方案,制定了下面直流屏更换“旧直流屏一临时直流电源系统一新直流屏”供电转换施工方法:用临时充电机和电池组搭建一个临时的系统,将直流馈供支路转到临时直流系统空气开关下面;在临时直流系统中引出一组直流电源,然后接到空气开关上方,再把原直流系统的充电机停止使用;切断原来直流屏的馈供支路并合上临时充电机的交流输入电源,合并空气开关,这样负载转到临时直流电源供电;这样使临时直流系统工作正常;切断旧直流屏交流输入电源拆除旧直流屏;新直流屏回到原来的位置,然后安装电池,连线接交流,并调试正常;重复上述方法,就可以把负载接入新的直流屏;核对检查一下各馈供支路极性是否正确,新屏是否运行正常。变电站直流系统改造注意事项
1)事先熟悉现场直流系统设备实际接线图纸、负荷电缆出线走向,核实原直流接线合闸正母线与控制母线是正极还是负极共用,仔细查看工作地点与其他设备运行是否相互联系。
2)更换前,需要对作为临时系统的蓄电池组进行仔细检查,将电池组充好电,测量其输出电压是否满足要求,以保证临时供电系统的可靠性。直流系统大多采用辐射型供电,负载线路多,在切改过程中为了防止出现漏倒的现象,要求我们提前做好负载线路的标识工作,将出线名称与电缆一一对应清楚,并标识明确。
3)临时接线时考虑引线截面,各连接头接触良好、牢固。由于一般的临时充电机只有一路交流电源输入,这样为了不让失去交流电带来的一些问题发生,在更换之前就应对站用低压备用电源自动投入功能进行检查试验。
4)电池容量选择和模块的配置。首先电池容量在选择时要进行直流负荷的整理统计,直流负荷按性质通常分为经常负荷、冲击负荷、事故负荷。经常负荷的作用是保护、控制、自动装置及通信的设置。冲击负荷是指极在短时间内,增加大电流负荷。冲击负荷是指在瞬间时间内来增加的大电流负荷,例如合闸操作、断路器分等。事故负荷是指在停电后,必须采用直流系统供电的负荷,比如:通信设置、UPS等。针对以上三种直流负荷统计分析,就可以把事故状态下的直流放电容量整理计算出。一般直流系统的蓄电池(220kV的变电站)要选用两组电池的容量是150AH~200AH。直流系统的蓄电池(110kV的变电站)要选择一组电池容量是100AH~150AH。直流系统的蓄电池(35kV的变电站)要选择一组电池容量是50AH~100AH。模块数量的配置是要全部模块出额定电流总值要大于或等于最大经常负荷加蓄电池充电电流。例如:100AH的蓄电池组,它的充电电流是0.1c100=10A,在没有计算经常负荷时,选用两台额定电流5A电流的模块就可以满足对蓄电池的充电,要实现N+1冗余总共选择3台5A模块。
5)尽量避免在更换过程中对变电站设备进行遥控分、合闸操作。如必须操作,只能在变电站手动分、合闸。更换过程中密切监视直流系统电压情况。
6)直流系统改造过程中为了确保设备及人身的安全,旧直流屏不能带电移出,所以在拆除旧直流屏前应确保设备不带电。结束语
通过对变电站直流系统改造及对显示模块、告警模块、手动调压、控制方式等方面的测试,各个部分的操作和功能都得到了改善,满足相关技术要求,且蓄电池组放电容量充足,池电压均衡、平稳。改造后的直流系统满足变电站设备对直流系统可靠性、安全性、稳定性等方面的要求。为保证五常变设备的安全运行起到至关重要的作用。
参考文献
[1]贺海仓,朱军.变电站直流系统配置应注意的几个问题[J].铝加工,2011,1.[2]黄振强,林品凤.110kV变电站直流系统剖析[J].电力学报,2010,6.