第一篇:含水物质红外光谱测试的样品制备解读
基金项目:福建省自然科学基金资助项目(C0110024。
作者简介:谢狄霖,男,研究员,理学硕士,福建省医学测试重点实验室主任,主要从事红外光谱与核磁共振等仪器分析技术的研究与应用。
含水物质红外光谱测试的样品制备 谢狄霖1 陈 忠2(1.福建省医学科学研究所,福州,350001;2.厦门大学物理系和化学系,厦门,361005 摘 要 介绍了含水物质红外光谱测试中常用的样品制备技术,包括结晶压片法、吸附压片法、蒸发涂片法、蒸发成膜法、液池参比法等。
关键词 含水物质 红外光谱 样品制备
自然界中有许多物质,尤其是生物医学样品,富
含水分。水对红外波段有很强的吸收,会产生强烈干扰;水分还会溶解腐蚀溴化钾、氯化钠等常用晶片材料,给含水物质的红外光谱测试带来很大麻烦。本文介绍日常测试工作中含水物质红外光谱测试样品的制备技术。结晶压片法
如果水溶液样品中溶质的成分是结晶体,则可以将溶液加热或在室温下抽真空,使水分蒸发,余下的溶质就会以固态晶体或粉末状态析出,稍加干燥后取出,与溴化钾一起研磨压片,即可上机测试[1]。这是处理水溶液样品最简单的一种方法。但在许多情况下,难于通过蒸发使溶质以晶体或粉末状态析出,所以本方法的应用受到一定限制。吸附压片法
取少量待测水溶液样品注入蒸发皿,掺入适量溴化钾晶粒,搅拌,使之溶解,然后缓慢加热蒸发,或放置在真空干燥设备中抽干。取少量析出物,添加适量溴化钾后研磨压片,即可上机测试。由于这时样品在溴化钾分子间的分布十分均匀,通常可以得到基线平直、质量较高的谱图。溴化钾吸附压片法简单易行,适用面广,绝大多数含水样品均可按此法处理。我们用此法处理人血清、唾液、药水等样品,常可得到满意的谱图。
有时待测样品,如脊髓、胃液等生物医学物质, 干燥后得到的样品量微少,不足以压制通常大小的样片。这时可找一张卡片纸,剪成直径为13mm 的圆盘,在圆盘中部刻出4mm ×10mm 的矩形孔。将制作好的纸圆盘放在压模内下垫块的上方。将按上述方法得到的吸附有样品的溴化钾充分研磨后,均匀铺洒在纸圆盘的矩形孔中,并在纸圆盘的其余部分铺洒研磨好的空白溴化钾粉末,一同进行压片。最后连圆纸片一起上机测试。调整矩形孔的方位,使其与仪器光路狭缝一致,使该处的透过率达到最大,这样便可得到微量生物医学样品的谱图。蒸发涂片法
许多含水样品在蒸发后并不析出晶体或粉末,而是析出粘稠的油状物,不适于压片制样。这时可用玻璃棒沾取少量析出物,均匀涂抹在可拆液槽的溴化钾窗片中央进行测试,也可用自行压制的溴化钾小圆片代替可拆液槽窗片,以节省实验费用。我们在进行中草药成分研究时,常对样品溶液使用这种制样方法。蒸发成膜法
有些样品溶液溶质的柔韧性较好,在水分蒸干
后能够成膜,则可以采用蒸发成膜法制样[2]。为便于揭膜,可将水溶液注入水银槽的表面,置于真空干燥器中抽干。如果需要,可适当加热,直至溶液成膜,悬浮在水银面上。为节省样品量,水银槽的开口应尽可能做成狭长形,只要制成的薄膜足够遮挡入 分析仪器
2003年第4期
射狭缝即可。水银面上方四壁涂抹少量石蜡油,防止样品膜粘结在壁上不易揭下。用2cm ×4cm 的卡片纸2张,中央分别刻出4mm ×10mm 的长方形孔洞。将样品薄膜取出摊平,夹在两张卡片中央孔洞处,然后将整个卡片靠磁力吸附在样品架上待测。由于水银槽的横截面积是固定的,在相同实验条件下,只要注入的水溶液量相同,就可得到同样厚度的薄膜。这样便可以根据某物质特征吸收峰强度的变化,建立标准曲线,对该物质进行定量分析。用此种方法制样可以测量血浆中的血药浓度。液池参比法
采用特制的液池盛装含水样品,并在另一个与
样品液池结构相同的液池中注入适量的水,作为参比,保持两液池的温度相同。由于水在250~5000cm-1的整个区域内都有极强的吸收带,因此水
溶液的透射光谱必须采用溶剂水来补偿。氟化钙不溶于水,与酸碱及大多数无机盐都不起化学反应,是最常用的液池材料。由于水在红外波段的吸收很强,池的光程长通常取50mm ,甚至更短[3]。生物医学系统大多富含水,经过蒸发、结晶、吸附等方法处理后,可能引起系统某些性状的变化,使红外光谱发生变异,故有时需要在原系统条件下测定其红外光谱,而液池参比技术是在不改变系统条
件下获取红外光谱的唯一方法。另外,有些无机化合物(如硫酸铜等固态样品的红外光谱,由于离子间相互作用的影响,使谱峰复杂化,往往难于解析,而它们在水溶液中的光谱却要简单得多,因而也适宜采用液池参比法测定其光谱。
我们利用氟化钙液池,用水作参比,测量了人血清样品在室温下的红外透射光谱,研究胃癌患者血清的光谱与正常人的差异,得到了较好的结果。但由于参比池中水的用量不易精确控制,参比光束与样品光束间的强度、温度、衰减等也不会完全相
同,而且液池参比法总是存在水分的强吸收干扰,无法完全补偿,所以液池参比法只是在有特殊要求的情况下才使用。
致谢:感谢张水冰女士为本文所做的大量实验工作。参考文献 王宗明等.实用红外光谱学.北京:石油工业出版社, 1982:141-144 2 钟海庆.红外光谱法入门.北京:化学工业出版社,1984: 98 3 Miller R G.红外光谱学的实验方法.北京:机械工业出版 社,1985:223-227 收稿日期:2003-01-24 T echniques for preparing hydrous samples for infrared spectrometry.Xie Dili n ,Chen Zhong(1.Fujian Medical Research Instit ute ,Fuz hou ,350001;2.Depart ments of Physics and Chem ist ry ,Xiamen U niversi 2ty ,Xiamen ,361005 Five techniques commonly used for preparing samples of materials containing water for testing by infrared spectrometry are described ,including crystallization wafer pressing ,absorption wafer pressing ,evaporation film coating ,evaporation filming and solution reference techniques.北京北分瑞利分析仪器(集团有限责任公司被评为“2002中国机械行业竞争力之星企业”
中国工业经济联合会、中国机械工业联合会和中国工业报社从2003年年初开始,根据国家统计局授权中国机械工业联合会统计的2002年机械行业的权威数据,按照机械工业企业核心竞争力评价体系,对机械行业企业开展了企业核心竞争力的测评工作。北京北分瑞利分析仪器(集团有限责任公司被评为“2002中国机械行业竞争力之星企业”。
根据测评结果,有100家企业被评为“2002中国机械工业企业核心竞争力100强”。被评为“2002中国机械行业竞争力之星企业”的共有108家,其中仪器仪表企业9家,属于分析仪器的企业只有北分瑞利公司一家。其他8家是:佛山普立华科技有限公司、上海美能达光学仪器有限公司、中国四联仪器仪表集团有限公司、上海海鸥数码影像股份有限公司、上海横河电机有限公司、天津市自动化仪表七厂、吴忠仪表集团有限公司、苏州三光集团公司。52003年第4期
分析仪器
第二篇:傅里叶变换红外光谱仪样品测试申请登记表new
岭南师范学院新材料研究院 傅里叶变换红外光谱仪样品测试申请登记表 送样日期: 年 月 日 送样单位 送样人 名称 地址 联系电话 研究课题名称 电子邮件 □国家及省部基金课题 课题类型 □校内基金课题 □研究生课题 □本科毕业论文(人)□其它 样品编号 课题负责人或指 导老师签名 电话 样品数量 样品状态 □粉末 □薄膜 □液体(pH=)样品分子结构式 □毒性 □放射性 □腐蚀性 □含水 □含油脂 □受热挥发 □致病微生物 其它说明: 样品物性描述 是否回收 □回收 □代保管7天 □不必回收 新材料研究院意见 设备管理老师意见 测试要求 编号 1 2 3 4 制样方法 衰减全反射附件选择 光谱范围 采样次数 测试条件 □KBr压片法 □液膜法 □ZnSe晶体 □Ge晶体 cm-1 次 请填扫描波数范围 备注 其它特殊说明: 为了检测工作的顺利进行和报告的及时、准确,请用户详细填写以上各栏 注意:
1.样品可以是粉末、薄膜或者液体,样品必须充分干燥,否则会影响测试结果。2.如果样品有毒性或腐蚀性,请事先声明。
3.测试完成时间:一般为1周内;对于疑难样品,与用户协商后分析;遇仪器发生故障,时间推后。4.如果没有认真阅读以上条款,并且没有预先处理好样品,引起仪器故障,需要承担相应责任。
收样人: 收样时间: 测样人: 测试时间:
注:此表一式两份,一份交新材料研究院办公室存档,一份交设备管理员。
第三篇:总结红外光谱频率与官能团特征吸收峰解读
红外波谱
分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。相同类型的化学键的振动都是非常接近的,总是在某一范围内出现。
常见官能团的红外吸收频率
整个红外谱图可以分为两个区,4000~1350区是由伸缩振动所产生的吸收带,光谱比较简单但具有强烈的特征性,1350~650处指纹区。
通常,4000~2500处高波数端,有与折合质量小的氢原子相结合的官能团O-H, N-H, C-H, S-H键的伸缩振动吸收带,在2500-1900波数范围内常常出现力常数大的三件、累积双键如:-C≡C-,-C≡N,-C=C=C-,-C=C=O,-N=C=O等的伸缩振动吸收带。在1900以下的波数端有-C=C-,-C=O,-C=N-,-C=O等的伸缩振动以及芳环的骨架振动。
1350~650指纹区处,有C-O, C-X的伸缩振动以及C-C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰,因此光谱非常复杂。该区域各峰的吸收位置受整体分子结构的影响较大,分子结构稍有不同,吸收也会有细微的差别,所以指纹区对于用已知物来鉴别未知物十分重 要。
有机化学有机化合物红外吸收光谱
σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动
一、烷烃
饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。在确定分子结构时,也常借助于C-H键的变形振动和C-C键骨架振动吸收。烷烃有下列四种振动吸收。
1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动
2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基 C-H的σs。1380 cm-1峰对结构敏感,对于识别甲基很有用。共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。
异丙基 1380 cm-1 裂分为两个强度几乎相等的两个峰 1385 cm-
1、1375 cm-1 叔丁基 1380 cm-1 裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-
1、1200 cm-1附近出现两个中等强度的骨架振动。
3、σ
4、γC-C在1250—800 cm-1范围内,因特征性不强,用处不大。大于或等于4时,在722 cm-1有一个C-H分子中具有—(CH2)n—链节,n 弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。
二、烯烃
烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。烯烃分子主要有三种特征吸收。
1、σC=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢 2在3075—3090 cm-1有强峰最易识别。
1670—1620 cm-1。随着取代基的不同,σC=C2、σC=C 吸收峰的位置在吸收峰 的位置有所不同,强度也发生变化。
3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取
代情况和构型。
RHC=CH2 995~985cm-1(=CH,S)915~905 cm-1(=CH2,S)R1R2C=CH2 895~885 cm-1(S)
(顺)-R1CH=CHR2 ~690 cm-1(反)-R1CH=CHR2 980~965 cm-1(S)R1R2C=CHR3 840~790cm-1(m)
三、炔烃
在IR光谱中,炔烃基团很容易识别,它主要有三种特征吸收。
1、σC 该振动吸收非常特征,吸收峰位置在3300—3310 cm-1,中等强度。σN-H值与σC-H 值相同,但前者为宽峰、后者为尖峰,易于识别。
2、σ CC 一般 C 键的伸缩振动吸收都较弱。一元取代炔烃 σC C 出现在2140—2100 cm-1,二元取代炔烃在2260—2190 cm-1,当两个取代基的性质相差太大时,炔化物极性增强,吸收峰的强度增大。当 处于分子的对称中心时,σ C C
3、σ C H 炔烃变形振动发生在680—610 cm-1。
四、芳烃
芳烃的红外吸收主要为苯环上的C-H键及环骨架中的C=C键振动所引起。芳族化合物主要有三种特征吸收。
1、σAr-H 芳环上C-H吸收频率在3100~3000 cm-1附近,有较弱的三个峰,特征 C=C-H频率相近,但烯烃的吸收峰只有一个。性不强,与烯烃的σ
2、σC=C 芳环的骨架伸缩振动正常情况下有四条谱带,约为1600,1585,1500,1450 cm-1,这是鉴定有无苯环的重要标志之一。
3、δAr-H 芳烃的C-H变形振动吸收出现在两处。1275—960 cm-1为δAr-H,由于吸收较弱,易受干扰,用处较小。另一处是900—650 cm-1的δAr-H吸收较强,是
Ar-H频率越高,识别苯环上取代基位置和数目的极重要的特征峰。取代基越多,δ
见表3-10。若在1600—2000 cm-1之间有锯齿壮倍频吸收(C-H面外和C=C面内弯曲振动的倍频或组频吸收),是进一步确定取代苯的重要旁证。
苯 670cm-1(S)单取代苯 770~730 cm-1(VS),710~690 cm-1(S)1,2-二取代苯 770~735 cm-1(VS)
1,3-二取代苯 810~750 cm-1(VS),725~680 cm-1(m~S)1,4-二取代苯 860~800 cm-1(VS)
五、卤化物
随着卤素原子的增加,σ如C-X降低。C-F(1100~1000 cm-1);C-Cl(750~700 cm-1);C-Br(600~500 cm-1);C-I(500~200 cm-1)。此外,C-X吸收峰的频率容易受到邻近基团的影响,吸收峰位置变化较大,尤其是含氟、含氯的化合物
变化更大,而且用溶液法或液膜法测定时,常出现不同构象引起的几个伸缩吸收带。因此IR光谱对含卤素有机化合物的鉴定受到一定限制。
六、醇和酚
醇和酚类化合物有相同的羟基,其特征吸收是O-H和C-O键的振动频率。
1、σO-H 一般在3670~3200 cm-1区域。游离羟基吸收出现在3640~3610 cm-1,峰形尖锐,无干扰,极易识别(溶剂中微量游离水吸收位于3710 cm-1)。OH是个强极性基团,因此羟基化合物的缔合现象非常显著,羟基形成氢键的缔合峰一般出现在3550~3200 cm-1。1,2-环戊二醇 顺式异构体 P47 0.005mol/L(CCl4)3633 cm-1(游离),3572 cm-1(分子内氢键)。
0.04 mol/L(CCl4)3633 cm-1(游离),3572 cm-1(分子内氢键)~3500cm-1(分子间氢键)。
2、σC-O和δO-H C-O键伸缩振动和O-H面内弯曲振动在1410—1100 cm-1处有 C-O强吸收,当无其它基团干扰时,可利用σ的频率来了解羟基的碳链取代情况(伯醇在1050cm-1,仲醇在1125cm-1,叔醇在1200cm-1,酚在1250cm-1)。
七、醚和其它化合物
醚的特征吸收带是C-O-C不对称伸缩振动,出现在1150~1060cm-1处,强度大,C-C骨架振动吸收也出现在此区域,但强度弱,易于识别。醇、酸、酯、内酯的σC-O吸收在此区域,故很难归属。
八、醛和酮
醛和酮的共同特点是分子结构中都含有(C=O),σC=O在1750~1680cm-1范围内,吸收强度很大,这是鉴别羰基的最明显的依据。临近基团的性质不同,吸收峰的位置也有所不同。羰基化合物存在下列共振结构:
-+ A B C=O 键有着双键性 强的A结构和单键性强的B结构两种结构。共轭效应将使σ吸电子的诱导效应使σC=O的吸收峰向高波数C=O吸收峰向低波数一端移动,方向移动。α,β不饱和的羰基化合物,由于不饱和键与C=O的共轭,因此C=O键的吸收峰向低波数移动
σC=O RCH=CHCOR'RCHClCOR' 1685~1665cm-1 1745~1725cm-1 苯乙酮 对氨基苯乙酮 对硝基苯乙酮
σ
σC=O 1691cm-1 1677cm-1 1700cm-1 2700~2900cm-1 区域内,通常在~2820 cm-
1、~2720 cm-1附近各有 一般在
一个中等强度的吸收峰,可以用来区别醛和酮。
九、羧酸
1、σO-H 游离的O-H在~3550 cm-1,缔合的O-H在3300~2500 cm-1,峰形宽而散,强度很大。
2、σC=O 游离的C=O一般在~1760 cm-1附近,吸收强度比酮羰基的吸收强度大,但由于羧酸分子中的双分子缔合,使得C=O的吸收峰向低波数方向移动,一般在1725~1700 cm-1,如果发生共轭,则C=O的吸收峰移到1690~1680 cm-1。
3、σ
4、δC-O O-H 一般在1440~1395 cm-1,吸收强度较弱。一般在1250 cm-1附近,是一强吸收峰,有时会和σC-O重合。
十、酯和内酯
1、σC=O 1750~1735 cm-1处出现(饱和酯σC=O 位于1740cm-1处),受相邻基团的影响,吸收峰的位置会发生变化。
2、σC-O 一般有两个吸收峰,1300~1150 cm-1,1140~1030 cm-1
十一、酰卤
σC=O 由于卤素的吸电子作用,使C=O双键性增强,从而出现在较高波数
C=O变小,处,一般在~1800cm-1处,如果有乙烯基或苯环与C=O共轭,会使σ
一般在1780~1740cm-1处。
十二、酸酐
1、σC=O 由于羰基的振动偶合,导致σ分别处在C=O有两个吸收,1860~1800 cm-1和1800~1750 cm-1区域,两个峰相距60 cm-1。
2、σC-O 为一强吸收峰,开链酸酐的σC-O 在1175~1045 cm-1处,环状酸酐1310~1210 cm-1处。
十三、酰胺
1、σC=O 酰胺的第ⅠⅡⅢ谱带,由于氨基的影响,使得σC=O向低波数位移,伯酰胺1690~1650 cm-1,仲酰胺 1680~1655 cm-1,叔酰胺1670~1630 cm-1。
2、σN-H 一般位于3500~3100 cm-1,伯酰胺 游离位于~3520 cm-1和~3400 cm-1,形成氢键而缔合的位于~3350 cm-1和~3180 cm-1,均呈双峰;仲酰胺 游离位于~3440 cm-1,形成氢键而缔合的位于~3100 cm-1,均呈单峰;叔酰胺无此吸收峰。
3、δN-H 酰胺的第Ⅱ谱带,伯酰胺δN-H位于1640~1600 cm-1;仲酰胺1500~1530 cm-1,强度大,非常特征;叔酰胺无此吸收峰。
4、σC-N 酰胺的第Ⅲ谱带,伯酰胺1420~1400 cm-1,仲酰胺 1300~1260 cm-1,叔酰胺无此吸收峰。
十四、胺
1、σN-H 游离位于3500~3300 cm-1处,缔合的位于3500~3100 cm-1处。含有氨基的化合物无论是游离的氨基或缔合的氨基,其峰强都比缔合的OH峰弱,且谱带稍尖锐一些,由于氨基形成的氢键没有羟基的氢键强,因此当氨基缔合时,吸收峰的位置的变化不如OH那样显著,引起向低波数方向位移一般不大于100cm-1。伯胺 3500~3300 cm-1有两个中等强度的吸收峰(对称与不对称的伸缩振动吸收),仲胺在此区域只有一个吸收峰,叔胺在此区域内无吸收。
2、σ
3、δC-N N-H 脂肪胺位于1230~1030 cm-1处,芳香胺位于1380~1250 cm-1处。位于1650~1500 cm-1处,伯胺的δ仲胺的吸收强度N-H吸收强度中等,较弱。
4、γN-H 位于900~650 cm-1处,峰形较宽,强度中等(只有伯胺有此吸收峰)。主要基团的红外特征吸收峰