第一篇:测量技术在土木工程中的应用
中南大学测绘0803班 闵启忠
测量技术在土木工程中的应用
土木工程是一门古老的学科,我想,自从人类诞生开始,我们的祖先就在耕耘着这一项文明的事业,直到今天,它依然展现出一幅蓬勃的姿态,昂扬向前飞速发展。然而在这个过程中一门新的学科也默默地产生了,那就是今天的测量工程。测量工程它发源与土木工程,并在这个过程中不断的得到发展,同时它也服务于土木工程的各个角落。随着土木工程的发展,测绘工程也在这个过程中不断提升,在如今,很多人都把测绘工程划分到土木工作之下。我想,在如今,随着测量技术在各个领域说起的作用不断加重,他已经开成为了一门独立的学科,当然测绘工程很大一部分还是服务于土木工程。如果把土木工程比作大海上行驶的一艘轮船,那么测量工程就是它的一个导航灯,没有测量技术为其服务,不管它有多么强劲的动力,它都寸步难行。在工程建设的各个阶段,无处不渗透着测量技术的痕迹,在工程设计阶段,我们需要引用到已有的地形图,以使设计人员根据地表形态和各种地物的分布做出合理地规划设计。在工程建设阶段,我们选用将已经设计好的建筑物放到实地去,这也需要测量技术为其导航。在工程的建设和运营阶段,也密切的和测量工程联系在一起,为了保证建筑物的安全使用,我们需要定期的对其进行沉降观测,以提供第一手的资料,对建筑物做出分析,必要时采取合适的措施。
测绘科学和技术是一门具有悠久历史和现代发展的一级学科。该学科无论怎样发展,服务领域无论怎样拓宽,与其他学科的交叉无论怎样增多或加强,学科无论出现怎样的综合和细分,学科名称无论怎样改变,学科的本质和特点都不会改变。总的来说,测绘科学与技术主要包含以下几个学科: 大地测量学、工程测量学、航空摄影测量与遥感学、地图制图学、不动产地籍与土地整理。在土木工程的各个领域它都离不开我们的测量技术,而在整个测绘工程领域与工程测量学联系极为紧密。在我们测绘领域工程测量主要研究的是在各种工程的规划设计、施工建设和营运管理阶段所进行的各种测量工作。在此我们所提到的工程包括:工业建设、城市建设、交通工程(铁路、公路、机场、测站、桥梁、隧道等)、水利电力工程(河川枢纽、大坝、船闸、电站、渠道)地下工程、管线工程(高压输电线、输油送气管道)、矿山工程等。它涵盖了我们土木工程的各个领域。因此在土木工程中我们说应用的测量技术主要研究的学科应该是我们的工程测量了。下面我就从测量仪器,运用的测量理论,在施工的各个阶段测量技术所起的作用吧!
在土木工程测量中我们所应用的测量仪器情况:
用于建立水平的或竖直的基准线或基准面,测量目标点相对于基准线(或基准面)的偏距(垂距),称为基准线测量或准直测量。这方面的仪器有正、倒锤与垂线观测仪,金属丝引张线,各种激光准直仪、铅直仪(向下、向上)、自准直仪,以及尼龙丝或金属丝准直测量系统等。
在距离测量方面,包括中长距离(数十米至数公里)、短距离(数米至数十米)和微距离(毫米至数米)及其变化量的精密测量。精密激光测距仪和双频激光测距仪,中长距离测量精度可达亚毫米级;可喜的是,许多短距离、微距离测量都实现了测量数据采集的自动化,石英伸缩仪,各种光学应变计,位移与振动激光快速遥测仪等。采用多谱勒效应的双频激光干涉仪,能在数十米范围内达到0.01μm的计量精度,成为重要的长度检校和精密测量设备;采用CCD线列传感器测量微距离可达到百分之几微米的精度,它们使距离测量精度从毫米、微米级进入到纳米级世界。
高程测量方面,最显著的发展应数液体静力水准测量系统。这种系统通过各种类型的传感器测量容器的液面高度,可同时获取数十乃至数百个监测点的高程,具有高精度、遥测、自动化、可移动和持续测量等特点。两容器间的距离可达数十公里,如用于跨河与跨海峡的水准测量;通过一种压力传感器,允许两容器之间的高差从过去的数厘米达到数米。
土木工程中所应用的测量理论:
测量平差理论
最小二乘法广泛应用于测量平差。最小二乘配置包括了平差、滤波和推估。附有限制条件的条件平差模型被称为概括平差模型,它是各种经典的和现代平差模型的统一模型。测量误差理论主要表现在对模型误差的研究上,主要包括:平差中函数模型误差、随机模型误差的鉴别或诊断;模型误差对参数估计的影响,对参数和残差统计性质的影响;病态方程与控制网及其观测方案设计的关系。由于变形监测网参考点稳定性检验的需要,导致了自由网平差和拟稳平差的出现和发展。观测值粗差的研究促进了控制网可靠性理论,以及变形监测网变形和观测值粗差的可区分性理论的研究和发展。针对观测值存在粗差的客观实际,出现了稳健估计(或称抗差估计);针对法方程系数阵存在病态的可能,发展了有偏估计。与最小二乘估计相区别,稳健估计和有偏估计称为非最小二乘估计。工程控制网优化设计理论和方法
网的优化设计方法有解析法和模拟法两种。解析法是基于优化设计理论构造目标函数和约束条件,解求目标函数的极大值或极小值。一般将网的质量指标作为目标函数或约束条件。网的质量指标主要有精度、可靠性和建网费用,对于变形监测网还包括网的灵敏度或可区分性。对于网的平差模型而言,按固定参数和待定参数的不同,网的优化设计又分为零类、一类、二类和三类优化设计,涉及到网的基准设计,网形、观测值精度以及观测方案的设计。在工程测量中,施工 控制网、安装控制网和变形监测网都需要作优化设计。由于采用GPS定位技术和电磁波测距,网的几何图形概念与传统的测角网有很大的区别。除特别的精密控制网可考虑用专门编写的解析法优化设计程序作网的优化设计外,其他的网都可用模拟法进行设计。模拟法优化设计的 软件功能和进行优化设计的步骤主要是:根据设计资料和地图资料在图上选点布网,获取网点近似坐标(最好将资料作数字化扫描并在微机上进行)。模拟观测方案,根据仪器确定观测值精度,可进一步模拟观测值。计算网的各种质量指标如精度、可靠性、灵敏度。精度应包括点位精度、相邻点位精度、任意两点间的相对精度、最弱点和最弱边精度、边长和方位角精度。进一步可计算坐标未知数的协方差阵或部分点坐标的协方差阵,协方差阵的主成份计算,特征值计算,点位误差椭圆、置信椭圆的计算等。可靠性包括每个观测值的多余观测分量(内部可靠性)和某一观测值的粗差界限值对平差坐标的影响(外部可靠性)。灵敏度包括灵敏度椭圆、在给定变形向量下的灵敏度指标以及观测值的灵敏度影响系数。将计算出的各质量指标与设计要求的指标比较,使之既满足设计要求,又不致于有太大的富余。通过改变观测值的精度或改变观测方案(增加或减少观测值)或局部改变网形(增加或减少网点)等方法重新作上述设计计算,直到获取一个较好的结果。
工程工程测量按工程建设的规划设计、施工设计和营运管理三个阶段分为“工程勘测”、“施工测量”和“安全检测”。在土木工程建设中也不例外,在这三个阶段对测绘工作有不同的要求。
工程建设规划阶段的测量工作。每项工程建设都必须按照自然条件和预期目的进行规划设计。在这个阶段中的测量工作,主要是提供各种比例尺的地形图,另外还要为工程地质探测、水文地质探测以及水文测验的进行测量。对于重要的工程,例如某些大型特种工程,或在地质条件不良的地区进行建设,这还有对地层的稳定性进行测量。
工程建设阶段的测量工作。每项工程建设的设计经过讨论、审查和批准之后,即进入施工阶段。这时,首先要将所建设的工程建筑物按照施工的要求在现场标定出来(即所谓定线放样),作为实地修建的依据。为此,要根据工地的地形,工程的性质以及施工组织和计划等,建立不同形式的施工控制网,作为定线放样的基础。然后再按照施工的需要,采用各种不同的放样方法,将图纸上所建设的内容转移到实地。此时,还需进行施工质量控制,这里主要是几何尺寸如工程建筑的竖直角、地下工程的断面等的监控。为检测工程进度,还要进行开挖与与建筑方测绘以及工程竣工测量、变形测量以及设备的安装测量等。
施工建设营运鼓励阶段的测量工作。在运营期间,为检测工程建筑物的安全情况,了解设计是否合理,验证设计理论是否正确,需要对工程建筑物的水平位移,沉陷、倾斜以及摆动等进行定期或持续的检测。这些工作,就是通常所说的变形检测。对于大型的工业设备,还要进行经常性的检测和调校,以保证其设计安全运行。为了对工程进行有效的管理、维护,为了日后扩展的需要,还应建立工程信息系统。
土木工程勘测设计阶段测量工作
任何一项工程都必须按照自然条件和预期目的进行选址和勘测设计。在此阶段的测量工作,主要是提供各种比例尺的地形图勘测设计人员进行规划设计。随着一体化设计软件和地理信息系统的发展及其在国土资源、能源、交通、人口、市政、生态环境和综合管理的方面的广泛应用,不仅给各类规划人员提供了更好的辅助工具,而且也可以让决策者据此对勘测设计做出客观的评价。
在以往设计人员规划选址首先是收集各种比例尺的地形图,如城市规划主要采用大比例吃地形图,在结合各方面的资料和规范要求,选出几条可能的方案,然后下达勘测设计任务委托测量人员进行初步勘测。因此勘测的任务说到底就是为设计人员提供各种设计用图。随着数字测图技术和GIS的逐步推广和使用,设计人员能利用野外数据和室内数据一体化软件以及GIS强大的空间分析功能,修改设计方案。勘测设计阶段的测量工作更加工程性质的不同而不同。下面简要的以工业企业勘测设计阶段和线路勘测设计阶段测量工作来说明测量技术的应用。工业企业勘测设计阶段测量工作
工业企业不同于铁路和公路呈现状地形,它是面装地形,因此它需要的图也是呈面装特特征。要进行勘测设计必须有设计地底图,而该阶段测量工作的任务是向设计者提供所需要的地形图。地形图主要使用在平面运输设计部门。该部门的设计任务,就是根据地形图等各种基础资料和工业企业生产特点,综合设计解决主要车间、辅助车间、动力设施、运输设施、等在厂内的平面与竖直布设。
工业厂地竖向布设就是将区域的自然地形加以平整改造,以保证生产运输在竖向的良好的结合,合理地组织排水,而且是建设中天文土石方工程保持平衡,降低工程造价。场地平整和设计高程确定后,即进行建筑物的地坪高程,铁道轨顶高程、道路中心线高程以及工程管网高程的设计。这些高程的设计原则仍然是要使其尽量与自然相适应。在一般情况下,1:5000比例尺地形图可用以勘测设计,例如厂址选择、总体规划、方案比较等;1:2000比例尺地形图可用于初步设计;1:1000比例尺地形图可用于施工设计;对于新建厂或比较简单的扩建厂、改建厂。可与初步设计共用同一比例尺的地形图;1:500比例尺地形图可用于地形复杂,建筑物密集、精度要求较高的工业企业的施工设计。
对于目前的测绘技术而言,大多采用野外实测数字化测图技术,故数字化测图已被设计者广泛使用。数字化地形图的优点在于,成图速度快,修改,备份,存储容易,其最大的优点是不限于比例尺,而可以根据不同的需要选用不同比例尺地形图。由于采用数字化成图技术,设计人员在电脑上可以方便地进行设计和修改,使的前面所提到的总体规划,方案比较,施工设计等均可在同一幅地图上完成。另外,以往从图上图解设计元素存在误差均不存在,提高了设计和获取放样元素的精度。从某种程度上讲,工业企业勘测设计阶段的测量工作任务就是根据设计任务的性质选择适当的成图比例尺,野外实测数字化地形图或航测数字化地形图,并制作各种专题图,为设计者提供设计底图。
线路勘测设计阶段测量工作
铁路、公路、架空送电线路以及输油管道等均属于线性工程。一条线路的勘测设计工作,主要是根据一定的计划与自然地理条件,确定线路经济合理地位置,为达此目的,必须进行反复的实际和比较。线路在勘测设计阶段的测量工作称线路勘测。这项工作的任务是为线路设计收集一切必要的地形资料。线路除了地形资料外,还必须考虑线路所经过地区的工程地质、水文地质已经经济等方面的问题,所以线路设计一般分阶段进行,其勘测工作也分阶段进行。各种线形工程的勘测工作的任务基本都一样,但随着工程的不同有以下差异,我们以铁路设计为例,说明测量在铁路勘测中的各项任务。
线路工作分为处测和定测两个阶段进行。初测是在设计人员根据已有的资料和有关部门对线路要求,在小比例尺地形图上选出几个可能的线路方案,经过全面的分析比较后,提出对主要方案的初步意见下达勘测设计任务后进行的测量工作。初测是对方案研究中认为有价值的几条线路后一条主要线路,结合现场的实地情况,在实地进行选点,标出路线方向。然后根据实地上选出的点进行平面控制测量和水准测量,测出个点的平面位置和高程。在以初测控制点为图根点,测绘一定比例尺的带状地形图供编制初步设计使用。定测是对已批准的初步设计方案选定的路线,利用带状地形图上初测导线和纸上线路的几何关系,将选定的线路勘测设到实地上去。测设时应结合现场的地形、水文、地质等实地情况,尽量改善线路的位置,力求选出最经济合理地路线。测定工作包括中线测量、曲线设计、纵横断面测量以及局部的地形图测绘,并为施工设计收集资料。以上的测量工作,现在又很大部分如平面控制,带状地形图的测绘等均可应用GPS、RTK技术完成,其不设速度快、精度高、成图周期短等特点成为各测量单位测量的重要手段。数字化测图技术的发展以及摄影测量技术的发展,时候的线路勘测成果更加丰富多样,特别是数字高程模型为线路设计提供了形象逼真的地面立体模型,为设计人员进一步设计提供了良好的平台。
桥梁勘测设计阶段测量工作
桥梁勘测设计阶段主要有以下测量工作: 桥位平面和高程控制测量:建立平面和高程控制网,要求与国家和地方高程等级已知三角点和水准点联测。桥址定线测量:在等级控制点基础上按I级导线测量精度与实地测设中线控制点,包括交点等。断面测量:在桥址定线范围内,按有关规范要求施测全桥中线断面,编制断面资料,绘制断面图,根据设计要求测绘若干桥墩台的断面图。河床地形测量:桥位大比例尺的陆地地形测绘,准确反映地形、地物现状、测量与桥址中线交叉的道路及平面位置、高程及悬空高度等。流量测量:采用前方交会法测量浮标,施测桥址中线上下游一定范围内水流流向和流速,并按照大比例尺测绘流量图。
土木工程施测阶段的量测工作
工程施测阶段的测量工作主要是按照设计要求将设计好的建(构)筑物的位置、形状、大小及高程在实地标定出来,以便进行施工;另一方面作为施工质量方面的监督,还需进行工程质量方面监理。工程监理是指独立于业主和承包方的第三方对基础设施施工项目建设过程的监督和管制,他是监理工程师依照施工合同,在业主授权范围内,对施工现场进行监督管理,对施工进度、质量和费用进行控制,对合同执行中出现的问题进行处理,是工程施工按照施工合同要求进行,并获得预期的建筑产品;测量工作是工程施工的眼睛,在工程建设中起到至关重要的作用。
施工测量工作:施工单位作为工程建设者,主要任务是按照设计和施工要求,将图纸上设计计好的建(构)筑物的位置、形状、大小及高程在实地标定出来,这种标定任务称为施工放样。施工放样也可以说是将图纸上的建构筑物放到地面上去的工作过程。施工放样与测量的程序恰好相反,但工作方法和原理都是一样。工程建筑物的放样,同样必须遵循从整体到局部、先控制和碎步的原则和工作程序。首先,根据工程平面图和地形条件建立施工控制网,根据施工控制点在实地定出各个建筑物的主轴线和辅助轴线;在根据主轴线和辅助轴线标定出建筑物的各个细部点。采用这样的工作程序,能保证建筑几何关系的正确性,而且是施工放样工作可以有条不紊的进行,避免误差的积累。
由于施工的对象不同,施工测量方案也有所区别,但其工作程序基本是一致的。主要的测量工作有施工控制网的建立与施工放样。施工控制网根据施工对象的不同有所区别。一般来说,建筑物和厂区的控制网布设成矩形控制网,即所谓的建筑方格网;对于地形平坦但通视比较困难的地区,这可采用GPS与全站仪结合布设的导线网;对于地形起伏较大的山区及跨越江河的工程,一般采用GPS网或边角位;对于线状工程多采用GPS与全站仪结合所布设的导线网,地下工程一般采用导线网。施工放样的主要内容是,放样依据的选择及放样已知点的选择;选择放样方法;计算放样元素,根据已选定的放样方法和已知点坐标和高程以及设计坐标和高程,计算出需要测设的水平角、边长值和高差值,这些元素称为放样元素。根据设计图和控制点分布情况的不同,放样方法也有时区别。随着全站仪和GPS的逐步普及和推广,传统的放样方法正逐步被淘汰,现阶段我国的大型工程建设中已全部采用全站仪和GPS进行高精度定位放样。
监理测量工作
建筑工程的测量工作不仅是工程建设的基础,而且是设计工程质量的关键。近几年随着社会经济快速发展,充适应现代化城市环境需求来考虑,建筑师在建筑设计中既要满足使用功能要求,又要注重建筑物外观造型,许多外观造型复杂的超大超高规模的建筑物应用而生,在这些建筑施工过程中,测量工作尤为显得重要。施工单位的测量方案是否合理,测量数据是否准确可靠,测量人员专业水平都直接影响到工程质量,因此,监理工程师切实做好测量监理工作室施工质量和控制的一项重要环节。监理工程师必须对工程建设过程中测量方案、测量数据进行审查、复核签证。由于测量监理师检查、验收的最后一道程序这样就对监理工程师的测量专业方面提出了很高的要求。监理工程师应结合工程特点,编制相应的测量监理实施细则,以保证监理测量工作的质量。
工程运营管理阶段的测量工作
工程运营管理阶段测量工作的主要任务是工程建筑物的变形观测。在工程建筑物运营期间,为了监视器安全和稳定情况,了解其设计是否合理,验证设计理论是否正确,需要定期对其位移、沉降、倾斜以及摆动等进行观测。
由于在各种因素的影响下,工程建筑物及其设备在运营过程中都会产生变形,这种变形若在一定限度之内,认为是正常现象,但如果超过了规定的限度,就会影响建筑物的正常使用,严重之时还会危及建筑物的安全,因此在工程建筑物的施工和运营期间,必须对其进行监视观测,及变形观测。监测其在施工和运营期间是否存在超出设计要求的变化量。因此在工程建筑物的施工和运营期间,必须进行监视观测,通过变形观测取得第一手的资料,可以监视工程建筑物的状态变化和工作情况,在发现不正常现象时,应及时分析原因,采取措施,防止事故发生并改善运营方式以保证安全。另外通过在施工和运营期间对工程建筑物原体进行观测,分析研究,可以验证地基与基础的计算方法,工程结构的设计方法,对不同的地基与工程结构规定合理的允许沉陷与变形的数值,为工程建筑物的设计施工管理和科学研究工作提供资料。
变形观测的任务是长期而具有周期性的工作,对观测点进行重复性观测,求得其在两个观察周期期间的变化量。而为了求得瞬时变形,则采用各种自动记录仪器记录其瞬时位置。目前,随着测绘仪器、网络技术、信息技术的不断发展,各种监测仪器应运而生,最具代表性的仪器设备是全站仪和GPS时事动态技术。变形观察的内容,应根据建筑物的性质地基情况来定。要求有明确的针对性,既要有重点,又要做到全面考虑,以便能正确反映建筑物的变化情况,达到监测建筑物的安全运营了解其变形规律。
为了更全面地了解影响工程建构筑物变形原因及其规律,以及有些特种工程建构筑物的要求,有时在勘察阶段就要进行地表形变观测,以研究地层的稳定性。通过变形观察取得第一手资料,可以监视工程建筑物的状态变化及工作情况,在发现不正常现象时应及时分析原因,采取措施,防止事故发生。例如我国某水电厂的混凝土大坝,根据多年的观测结果,表明坝体渗流量、坝基场压力以及坝体的水平位移都很大,按这些观测资料的计算分析,在发生百年一遇的洪水时,大坝将有倾覆的危险,因此,对大坝进行紧急加固,从而提高了它的稳定度,保证了安全。其次,通过在施工和运营阶段对工程构建筑物原体进行观测,分析研究,可以验证地基的基础的计算方法,为工程建筑物的设计、施工、管理和科学研究工作提供资料。例如某水库的土坝,由变形观测资料的分析表明,其变形量不大,而且日趋稳定,与设计相;坝体清润线的实测资料也与设计接近,这就是说,该坝设计正确,施工质量良好,可以按照设计能力运营。当然,上述的分析研究工作应该有工程地质、土力学、工程结构等专业人员共同进行,其中,测量人员要对变形资料提供几何解释。
为了达到上述目的,通常建筑物的设计阶段,调查建筑物地基负载性能、研究自然因素对建筑物变行影响的同时,就应着手拟订观测的设计方案,并将其作为工程建筑物的一项设计内容,一边在施工时就将标志和设备埋设在设计位置上。从建筑物开始施工就进行观测了,一直持续到变形终止。
在我们的土建的各个环节,都留下了我们测量人的足迹,正是有了我们这些测量工作者不懈的努力,时刻保持一颗严谨的工作态度,为土建打开了一盏导航灯灯,伴随着土建工程健康蓬勃的成长着。同时我们的测量技术理论也得到了检验和提升。我想不管土建工程怎么发展,我们的测量技术永远都会陪伴着它走下去,并不断的发展和改善自己!在工程建设的各个环节,测量任务都是艰巨而重要的,他可能直接威胁到整个工程的正常建设。这是对我们测量工作者的一次巨大的挑战和考验,这就需要我们从现在开始培养一颗严谨的工作态度,更好发挥测量技术的作用,为社会发展做出一份贡献!
第二篇:测绘技术在土木工程中的应用
测绘技术在土木工程中的应用
刘吉羽
(华南农业大学 信息学院 广东 广州 510642)
摘要:现今测绘技术在土木工程中的应用可以说是非常广泛,测绘技术是土木工程的必要技术支撑,两者是密切相关,不可分割的。本文简单的介绍了测绘技术的发展情况,引入工程测量学的概念,并通过对测绘技术在工程建设各个阶段的应用情况的说明,表明土木工程与测绘技术是密切相关的两个学科。
关键词:土木工程;测绘技术;工程测量
1.土木工程与测绘技术密切相关
土木工程是建造各类工程设施的学科,技术和工程的总称。是一种工程分科,指用石材,砖,砂浆,水泥,混凝土,钢材,钢筋混凝土等建筑材料修建房屋,铁路,道路,桥梁,隧道,运河,迪拜,港口等工程的生产活动和工程技术。如此多与人类生活息息相关的工程,在规划设计,施工建设和运营管理等各个阶段都会涉及到测量的相关工作。由此还产生了一门学科——工程测量学,主要研究在工程,工业和城市建设以及资源开发各个阶段所进行的地形和有关信息的采集和处理,施工放样,设备安装,变形监测分析和预报等的理论,方法和技术,以及对测量和工程有关的信息进行管理和使用的研究。所以,测绘技术在土木工程中的应用可以说是非常广泛,测绘技术是土木工程的必要技术支撑,两者是密切相关,不可分割的。
2. 现代测绘技术发展情况
随着科技的不断发展,先进的地面测量仪器日益增多,为工程测量提供了先进的技术工具和手段。如光电测距仪、精密测距仪、电子经纬仪、全站仪、电子水准仪、数字水准仪、激光准直仪、激光扫平仪等,为工程测量向现代化、自动化、数字化方向发展创造了有利的条件,改变了传统的工程控制网布网、地形测量、道路测量和施工测量等的作业方法。无需棱镜的测距仪解决了难以攀登和无法到达的测量点的测距工作;电子速测仪为细部测量提供了理想的仪器;精密测距仪的应用代替了传统的基线丈量[1]。
近年来,空间定位技术、航空航天技术地面仪器一体化技术和地理信息技术研究越见深入,导致测绘学科发生了革命性的飞跃,使得测绘的作业方式、生产手段和组织形式等发生了巨大的变化。3S技术以及数字化测绘技术的广泛应用,已成为测量工作发展的趋势。
3. 测绘技术在工程建设各个阶段的应用情况
3.1在工程勘测设计阶段
任何一项工程都必须按照自然条件和预期目的进行选址和勘测设计。在此阶段的测量工作,主要是提供各种比例尺的地形图设计人员进行设计。
由于卫星定位方便快捷,布网和观测不受时间和空间的限制,高精度、高效率,观测和数据处理高度自动化,所以,勘测坐标框架即控制网的建立,已由卫星定位代替了传统的二角测量。目前,国家大地网、城市控制网、工程控制网的建立与改造己普遍地应用GPS技术,在石油勘探、高速公路、通信线路、地下铁路、隧道贯通、建筑变形、大坝监测、山体滑坡、地震的形变监测、海.岛或海域测量等也已广泛的使用GPS技术[2]。
规划、设计用的地形图则普遍由数字摄影测量技术或野外数字测图技术获得。利用数字地形图,实现二维虚拟现实和工程设计仿真,可及时计算相应的土石方工程量,进行多种设计方案的比较,选取最优化设计方案。
3.2在工程施工建设阶段
工程施工建设阶段的测量工作主要是按设计要求将设计的建筑物位置,形状,大小及高程在实地标定出来,以便进行施工;另一方面作为施工质量的监督,还需进行工程质量监理。测量工作是工程施工的眼睛,在工程建设中起着至关重要的作用。
在该阶段可用采用具有自动跟踪和连续显小功能的测距仪或者全站仪进行放样和土石方测量,或者利用GPS的RTK技术算出定位点的工程独立坐标,在测区根据工程需要进行相关的定位放样和测绘工作。该方法方便快捷、精度可靠,配合移动通信和网络通信等手段,还可以实现远程实时监控。在进行城市大面积大比例尺地形图、地籍图测绘与更新以及大型工程勘测时,可以利用航空摄影测量的方法,提供数字的、影像的、线划的多种形式的地图成果[1]。利用智能全站仪、CCD摄像机和其他相关控制器件,可以实现工程机械的自动化运行和远程工程质量及安全监控,不仅快速高效,而目能有效保护施工人员的安全健康。
3.3在工程竣工验收阶段
应用现代测绘技术能快速地测绘竣工图和进行工程设计尺寸的检核,并按数字工程的要求进入二维可视化、网络化的工程管理信息系统,作为工程验收评估和日后长期安全监护的原始依据。
3.4在工程运行管理阶段
工程运营管理阶段测量工作的主要任务是工程建筑物的变形观测。在工程建筑物运营期间,为了监视其安全和稳定的情况,了解其设计是否合理,验证设计理论是否正确,需要定期对其位移,沉降,倾斜以及摇摆等进行观测,称为变形观测。
现代测绘技术提供了连续、实时的安全监控乎段,如:无棱镜测距全站仪实现无人作日标测量;自动跟踪与照准全站仪(测量机器人)实现无人值守自动跟踪观测;智能脉冲图像全站 仪实现定位与拍摄同步;电了水准仪实现精密测高自动读数;二维激光扫描实现快速获取特定日标的立体模型等。卫星定位技术也被应用于自动化监测系统,如武汉大学研制的C PS自动化位移监测系统.;青华大学研制的CPS桥梁安全监测系统、河海大学研制的GPS一机多天线系统等都已成功应用于实际工程监测[3]。
4.结语
总之,土木工程和测绘工程是两个无法分割的学科。随着现代测量技术的不断创新和新设备的发明,测量科学在突飞猛进中发展,这些技术和设备同时也促进着其他相关学科或技术的发展,尤其在对建设精度要求越来越高的土木工程项目建设中这种进步尤为重要。两个领域的研究者都应该要互相学习彼此的知识。测绘人应该积极了解土木工程的相关知识,以便于在测量工作时能够提高效率,处理各种问题。土木工程的建设者应努力掌握现代测绘新技术,自觉地应用现代测绘技术,以促使土木工程测控技术自动化,使工程建设安全高效的进行。
参考文献:
[1] 王延鑫,张学军.我国工程测量技术发展现状与展望[J].中国新技术新产品,2010(3):60.[2] 高海清,GPS定位技术在土木工程测量中的应用[J].西北电力技术,2004(5):93.[3] 王晏民,洪立波,过静珺,等.现代工程测量技术发展与应用[J.]测绘通报,2007(4): 1-4.
第三篇:绘图技术在矿山测量中的应用
四川师范大学成人教育学院
题 目办 学 站 专 业 年 级 指导教师 学生姓名 学 号
专科毕业论文
绘图技术在矿山测量中的应用 攀 煤 教 学 点 矿 山 机 电 2010 级
代 晓 川 _
2012年 5月 10日
摘要:伴随着现代科学技术的不断进步与经济社会发展日益完善,人民日益增长的物质文化与精神文化需求同时对新时期的矿采行业提出了更为系统与全面的要求。矿采行业作为整个国民经济建设发展中的基础性行业,在社会主义市场经济体制健全完善的过程中同样面临着前所未有的发展机遇与挑战。矿山测量作为整个矿产资源开采作业的最基础环节,其质量好坏将直接关系着整个矿采作业的安全性与工作效率,需要引起相关工作人员的特别关注。本文依据这一实际情况,以新时期矿山测量为研究对象,对其应用现状与新型绘图技术的探索与实践进行了较为详细的分析与阐述,并据此论证了做好绘图技术与矿山测量工作的融合在不断提升矿山开采工作质量及工作效率,并兼顾矿采安全生产的过程中所起到的至关重要的作用与意义。
从理论上来说,矿山测量是指一项在矿山建设与矿采过程中,围绕着矿山的规划设计、勘探建设、生产运营管理以及矿山报废处理等工作而进行的一项测绘工作。在全球经济一体化进程不断加剧与城市化建设规模持续扩大的推动作用下,矿采建设行业全新的发展阶段使得矿山测量工作也需要从各个方面做出相应调整与改进。我们需要清醒的认识到一点:现代高端科学技术蓬勃发展下电子技术的兴起是我们在进行矿山测量中不可忽视的一股中坚力量。矿山建设与生产质量标准的提升要求矿山测绘加大与高端电子应用技术的融合。而绘图技术正是这种融合过程中所产生的一种典型代表。它将矿采企业传统意义上的井下测量技术与高端电子技术充分融合,能够在各种规模、类型与地质环境的矿山中发挥相应的测绘作用。在绘图技术支持下,矿山测量不仅能够得到精确性与科学性的保障,最大限度的避免矿山开采作业中的各类型安全问题,同时它也使得矿山测量的数据结果获取更加及时,能够持续为矿山开采作业提供个方位实时监测数据。笔者现结合实践工作经验,就绘图技术与矿山测量的应用问题谈谈自己的看法与体会。
一、CAD绘图技术在矿山测量中的应用分析
何谓CAD呢?CAD是指利用计算机及其图形设备辅助设计人员进行相关的设计规划工作。而CAD中的绘图技术就是指以计算机为载体与平台,通过一系列的算法与程序将图形构造并呈现在终端显示设备当中的一种技术,其最大的特点在于能够持续处理大批量、大规模的综合性数据信息,因此这种绘图技术的适应能力也特别强。就矿山测量特别是贯通测量工作而言,在CAD绘图技术支持下,相关工作人员能够由原始的生产测量数据或是地质探测数据生成相应的采矿生产计划图。特别值得注意的是:就矿采企业而言,矿山开采项目作业中诸如地质构造、人员配备、施工技术等客观条件均会在采矿作业不断推进的过程中发生一定的变化,要想使CAD绘图技术下所得出的采矿生产计划图及时有效,就势必需要建立起相应的数据库管理系统专门负责对这些动态原始数据的检测与管理工作,注重数据信息的定期更新与设计系统响应时效。笔者认为,具体到贯通测量当中,以三心拱断面图的绘制为例,这种形式巷道断面层的绘图需要首先建立起有关矿车、电缆钩以及风筒的数据模型,在数据库信息系统接收并响应CAD绘图任务的时候能够直接根据参数指标调用该数据模型,并及时生成相应的计算机图形。笔者现对这一技术系统中较为典型的AUTO CAD绘图技术在矿山测量中的应用问题做出详细分析与说明。
(一)AUTO CAD绘图软件在矿山测量中的应用优势分析。依托现代电子技术的新型绘图技术已成为矿山测量,尤其是贯通测量工作的必然选择与发展趋势。各种尖端绘图技术能够兼顾矿山测量质量与时效的要求,值得我们加大对其的研究与应用力度。特别是AUTO CAD,在当前矿山测量中又具备了怎样的应用优势呢?具体而言,可以归纳为以下几个方面。1.首先,全站仪在矿山测量中的广泛应用使得传统意义上的经纬仪偏角测量技术不再使用,坐标放样法成为了矿山测量的关键。我们必须明确一点,在坐标放样技术支持下,矿山测量的关键点出现在了内业方向,这也就意味着测量预测点坐标位置的确定工作变得更加复杂,在考虑传统地形、地质构造的同时它还需要注重曲线要素与构造物特点对于坐标点的特殊要求。而AUTO CAD绘图软件与坐标放样法的融合则很好的解决了这一问题,它将世界坐标系统设定为默认坐标,进而使得预测点坐标位置的确定变得简单有效。2.其次,全站仪在矿山测量中的应用形成了一种新的放线方式,及极坐标放线方式,然而这种放线方式在坐标计算上一直存在很大的缺陷。AUTO CAD绘图软件与其坐标计算功能的融合,可以使坐标计算在CAD预设坐标系与绘图取点等功能的应用中,根据矿采过程中所规划的点、线、面以及圆弧等诸多元素绘制出精确的矿采图形,并利用AUTO CAD绘图软件所特有的取点功能去除倒球点上的夹角、坐标的等等,进而正确放线。
3.再次,在整个AUTO CAD绘图系统当中最值得一提的当属AUTO CAD2010。这一绘图软件所特有的二次开发与指令接收功能,能够使相关工作人员依据矿山测量工作的需要,指定AUTO CAD2000自动进行人工模拟作业,在及时提供精确矿山测量数据的同时,节约大量的人力、物力开支。
4.在当前技术条件支持下的矿山测量工作当中,相关工作人员在AUTO CAD绘图软件的支持下不仅能够完成一系列有关测量信息输入、输出、记录以及模拟的工作任务,还能够按照一定的顺序建立起一个较为完整的基础信息库系统。这一系统最大的特点在于它将各种矿山测量数据,如图件信息数据库、生产进度控制数据库以及边坡监测信息数据库等子数据库系统聚为一体,便于查阅与汇总。
(二)AUTO CAD绘图功能与新技术的结合在矿山测量中的应用分析。针对上文有关AUTO CAD绘图技术在矿山测量工作中的优势分析,我们需要充分肯定AUTO CAD绘图在矿山测量中的关键地位。但伴随着矿采产业结构不断的优化与升级,在加上各种高端技术的研发与应用,如何有效融合AUTO CAD绘图技术与新型高端科学技术已成为相关工作人员的又一大关键任务,空间信息技术以其特有的数据检测性能,成为了这一融合任务中的首要工作。一般来说,我们可以将空间信息技术定义为一种由遥感技术、全球定位系统技术以及地理信息系统技术这三大技术所组成的综合性技术。空间信息技术不仅能够依托于数据地面模型为矿区资料环境信息系统的构建及更新提供实施数据,在矿山测量、矿区安全生产的工作当中发挥着关键作用。与此同时,它所具备的全天候、高精度、持续性的监测特点使得矿山测量不必考虑造标问题、测点通视问题,进而有效控制了监测误差。再者,空间信息技术与AUTO CAD绘图技术的结合,使得矿山测量人员能够通过野外调绘、象片校正以及目视判断等工作,高质量的完成矿区地形图的测绘与资料信息输出工作。
二、数字化绘图技术在矿山测量中的应用分析
数字化绘图技术从本质上来说是现代矿山测绘技术与计算机信息处理技术
相结合的一种产物。它能够将地球表面的各规模、各类型空间要素信息资料以数字化的形式进行高度抽象,并在这些要素之间建立起一种坐标或是图像图像的关系,进而将其储存在相应的关系数据文件当中。计算机信息处理系统及其应用技术的大范围研究与推广使得新时期的矿山测量作业面临着前所未有的发展机遇与挑战。在当前的矿山测量工作中,地形图的测绘、矿岩量的测绘、台阶分层图的测绘等关键工作都明确了数字化的发展方向,数字化绘图技术也因而在矿山测量中具备了极为深远的发展意义与价值。笔者现从以下两个方面对这一绘图技术在矿山测量工作中的应用情况做详细分析与说明。
(一)数字化绘图技术在矿山测量工作中的实施分析。首先是控制测量。在GPS技术发展日趋完善以及全站仪测量仪器性能不断提升的推动作用下,传统意义上的三角测量已不再适应于当前矿采企业的测量工作,一种较为灵活的GPS网测量技术悄然兴起,在确保检测质量精度的同时大大减轻了矿山测量的工作强度。笔者认为这一改变使得传统矿山测量中地面点平面位置的测量误差得到了有效控制。数字化的绘图技术在计算机自动展点功能的作用下,实现了地物点与图根点的“零误差”,更确保了矿采作业的安全稳定运行;其次是碎步测量。在当前技术条件支持下,应用比较广泛的碎步测量技术可以划分为全站仪极坐标法与GPS-RTK测量技术这两种。当外业测量工作顺利完成之后,相关工作人员可以将实测的多数碎步点坐标输入计算机终端储存系统,计算机处理程序根据预设指令将这些坐标点以展会编码的形式呈现出来,使得相关工作人员有关各个碎步点的连接工作变得更加简便与精确。
(二)数字化绘图技术在矿山测量中的优势分析。这种新时期的,以科学技术发展为导向的数字化绘图技术在矿山测量实践运行过程中,与传统意义上的绘图、成图技术相比,有着以下几个方面的显著优势:第一,精度高。数字化绘图技术赋予了计算机操作终端大量的自动化处理程序,计算机数据处理、绘图处理、成图处理等功能的实现使得传统绘图技术中所无法避免的人为误差得到了合理且有效的控制,矿山测量进而能够为矿采企业相关决策的制定提供更为精确与全面的信息数据支持;第二,应用程度高。在数字化绘图技术作用下,矿山测量所获取的各种数据成果分层存放在储存终端当中,不受图面负载量的限制与制约,进而也使得各种数据成果的应用更加便捷与及时。
三、虚拟现实技术在矿山测量中的应用分析
笔者翻阅大量有关矿采企业安全事故报告资料发现,近几年以来,井下安全事故成为了矿采过程中最频发的安全事故,究其原因,往往是由开采技术不合规范、工程质量缺乏保证以及采矿作业中管理制度的缺失这几方面问题所造成的,其中,工程质量缺乏保证这一问题表现的尤为突出,是我们在矿山安全生产体系构建中的关注重点。笔者认为,结合新型绘图技术来说,虚拟现实技术与矿山井下开采作业的融合能够使得整个矿采作业环境变的更加逼真与形象。计算机软件系统支持下的三维图像构建与加工技术能够在计算机终端平面中再现各种安全事故的发展过程,相关工作人员能够接收到最真实,最全面的事故信息,从而分析出井下事故的最根本原因,这些原因中涵盖了传统意义上事故分析技术所无法分析到的现场工作人员动作行为原因。与此同时,MapInfo、MapGIS以及GIS等将基础数据与地质测量专业图形充分融合的计算机管理系统软件能够实现各种矿山测量基础数据的输入、修改、更新以及输出等功能,并且能够面向数据库系统服务终端为矿采企业管理者及上级领导部门提供各种地测数据远程查询与管
理软件支持。可以说,虚拟现实技术与矿山测量工作的融合对于进一步推动煤矿管理信息化、现代化乃至数字化发展而言都有着极为深远且重要的意义。
四、结束语
总而言之,绘图技术在矿山测量中应用并不是一朝一夕的事,而是一项长期且复杂的系统工程。矿采企业由上自下的支持与认同、测量装置与仪器的配备、测绘人员的综合技术能力等因素都会对绘图技术与矿山测量的融合产生深远影响。贯通测量作为矿山测量中的基本环节,更需要加大与绘图技术的融合。本文对这一问题做出了简要的分析与说明,希望能够为今后相关研究与实践工作的开展提供一定的意见与建议。
第四篇:测量在土木工程中的作用
测量在土木工程中的作用
测量学是研究地球的形状和大小以及确定地面(包含空中、地下和海底)点位的科学。它的内容包括测定和测设两个部分。测定是指使用测量仪器和工具,通过测量和计算,得到一系列测量数据,或把地球表面的地形缩绘成地形图,供经济建设、规划设计、科学研究和国防建设使用。测设是指把图纸上规划设计好的建筑物、构筑物的位置在地面上标定出来,作为施工的依据。测量学按照研究范围和对象的不同,产生许多分支科学,在工程建设中所进行的各种测量工作,就叫工程测量学。
一、工程测量学的内容
如果按工程测量服务的对象来讲,包括工业建设测量、铁路公路测量、桥梁测量、隧道及地下工程测量,水利工程建设测量、输电线路及输油管道测量及城市建设测量。一般的工程建设基本上可以分为三个阶段,即规划设计阶段、建筑施工阶段与经营管理阶段。
第一,工程建设规划设计阶段的测量工作。在本阶段中,主要是提供各种比例尺的地形图与地形数字资料,另外还要为工程地质勘探、水文地质勘探及水文测验进行测量。对重要的工程或地质条件不良的地区进行建设则还要对地层的稳定性进行观测。
第二,工程建设施工阶段的测量工作。每项工程建设的设计经过讨论审查和批准之后即进入施工阶段,这时首先要将所设计的建(构)筑物,按施工要求在现场标定出来,作为实地建设的依据。为此,根据工程现场的地形、工程的性质,建立不同的施工控制网,作为定线放样的基础,然后采用不同的放样方法,逐一将设计图纸转化为地上实物。
第三,工程建设经营管理阶段的测量工作,在工程建筑物运营期间,为了监视其安全和鉴定情况,了解其设计是否合理,验证设计理论是否正确,需定期地对建筑物、构筑物进行位稳、沉陷、倾斜以及摆动进行观测,并及时反馈测量数据、图表等工作。
由此可见,工程测量学就是研究各项工程建设在勘测,设计,施工和管理阶段所进行的各种测量工作的学科,它是直接为工程建设服务的,而且在土木工程中具有极其重要的作用。
二、工程测量的重要性
(一)建筑用地的选择,道路、管线位置的确定等,都要利用测量所提供的资料和图纸进行规划设计
1.在工程设计中提供图纸资料、明确占地范围、了解周边工程、了解占地范围内有无城市地下管线、是否对勘探和机械设施造成影响,如果没有工程测量带来的各种比例尺地形图及管线探测图,工程设计就成了无米之炊。2.在施工过程中,工程的第一步就是建筑物、构筑物的实地定位放样,因为建筑物在什么地方摆放,不可能随随便便找个地方,根据建筑物的用途、工艺流程或对于同一建筑物的个不同部分,其精度要求是不一致的,而且往往相差非常悬殊,此时应正确制定工程建筑物定位的精度要求,如果定得过宽,就可能造成质量事故,反之若定得过严,则给放样工作带来不少困难,从而增加放样的工作量,延长放样时间,也就无法满足现代化高速度施工的需要。
3.是确定建筑物放样的精度,建筑物竣工时的定位误差是由施工误差和测量放样误差所引起的。由于各种建筑物或同一建筑物中各不同的建筑部分,对放样精度的要求是不同的,因此应考虑到施工现场条件与施工程序和方法,分析这些建筑物是否必须直接从控制点进行放样,对于某些建筑元素,虽然它们之间相对位置精度要求很高,但在放样时,可以利用它们之间的几何联系直接进行。因此工程测量工作前,制定必要的合理的精度,是关系到该工程建设中周期长短的一项重要的工作。
(二)施工阶段需要通过工程测量工作来衔接,配合各项中建筑工程中工序的施工,才能保证设计意图的正确执行在工程施工过程中,从工程开工一直到工程结束,均离不开工程测量工作。常见的质量通病不外乎钢筋、模板、混凝土等方面的问题,与测量放线有关的分别如下:钢筋偏位、模板平整度、墙柱垂直度、混凝土表面平整度、楼地面平整度、外墙门窗工程垂直度等。要预防上述通病的发生,除了施工人员的主观原因之外,必须为施工人员提供准确的、周到的、详细的测量控制水平线、平面控制线、垂直控制线等。如果测量工作方面出了问题,势必会引起施工质量问题的发生。我们在施工中只要把测量工作做好,对防治质量通病就起到非常积极的作用。首先对建筑物进行有效的定位,确定建筑物的实际位置,有了准确的地面标识然后才能确立次区域是否有设计后新增建(构)筑物及新埋入地下管线,以保证机械设备的使用,在基槽开挖完毕后,要进行基槽验收,以及后续的垫层、底板线的投测,对于重要设备基础,如有螺栓、预埋件及预留孔等,在稳固好后,应及时进行测量轴线标高复验,并在砼浇筑过程中进行连续监测,以防备砼浇筑过程中,发生位移、沉降等质量事故的发生。在基础施工完毕后,进行竣工线的投测,接下来设备安装需连续对设备的平整度、标高进行跟踪测量,以确保设备的工艺流程完好,保证设备联动达到设计要求。
(三)竣工后的竣工测量,为工程的验收、日后的扩建和维修管理提供资料 最后的竣工测量是规划管理竣工验收的一项重要程序,竣工测量形成的成果报告是规划竣工验收审核的重要依据,竣工测量既有工程测量的普遍性要求,也有规划管理的特殊性要求,不仅涉及到影响测绘管理部门掌握现状地理信息的正确性,而且涉及到影响规划管理部门规划审批的落实和监督管理,因此竣工测量是关系到城市建设管理和规划实施落实的一项重要测绘工作。
(四)在工程管理阶段,对建(构)筑物进行变形观测,确保工程安全使用在建筑物运营管理阶段,工程测量起着极其重要的作用。由于各种因素的影响,建筑物及其设备在运营过程中,都产生或多或少变形。这种变形在一定限度之内,所以应认为是正常现象,但如果超过了规定的限度,就会影响建筑物的正常使用,严重时还会危及建筑物的安全。例如,建筑物的沉降观测在施工过程中有着重大的意义。通过观测取得的第一手资料,可以监测建筑物的状态变化和工作情况,在发生不正常现象时,及时分析原因,采取措施,防止重大质量事故的发生。变形观测具体包括:基础边坡的位移观测;建筑物主体的沉降观测;高层建筑物的水平位移观测等。准确的观测成果为施工期间的工程质量、人民财产安全提供了最有效的保证。特别是在深基坑施工、填海区、地质断层构造带的施工工程显得尤为重要。而由于建筑物沉降、位移引起的边坡及道路坍塌、楼房及桥梁倒塌等安全质量事故屡见报端。因此我们必须努力作好建筑物的变形观测,确保工程的施工质量。因此在工程建筑物的施工和运营期间,必须进行监视观测,通过变形观测取得第一手的资料,可以监视工程建筑物的状态变化和工作情况,在发现不正常现象时,应及时分析原因,采取措施,防止事故发生并改善运营方式以保证安全。另外通过在施工和运营期间对工程建筑物原体进行观测,分析研究,可以验证地基与基础的计算方法,工程结构的设计方法,对不同的地基与工程结构规定合理的允许沉陷与变形的数值,为工程建筑物的设计施工管理和科学研究工作提供资料。
由以上所述几点可以看出,工程测量是建筑施工和建筑工程中一项非常重要的工作,服务于建筑工程建设的每个阶段,贯穿于整个建筑工程的始终。在工程勘测阶段,测绘地形图为规划设计提供各种比例尺地形图和测绘资料;在工程设计阶段,应用地形图进行总体规划和设计;在工程施工阶段,要将图纸上设计好的建筑物、构筑物的平面位置和高程按要求测设于实地,以此作为施工的依据;在施工过程中的土方开挖、基础和主体工程的施工测量;在工程管理阶段,对建筑和构筑物进行变形观测,以保证工程的安全使用。由此可见,测量工作贯穿于工程建设的整个过程,是一项具有先导性的工作。测量工作的质量直接关系并决定了工程建设的速度和质量。而我们在实际工程中必须认识到工程测量的重要性,做到科学管理让工程测量为整个建筑工程的没到工序更好的服务,提高施工质量和建筑物的品质和安全系数。
第五篇:GPS测量技术在电子地图测绘中的应用
GPS测量技术在电子地图测绘中的应用
前言
随着互联网、汽车电子和无线手持设备对导航系统需求的剧增, 使得中国电子地图产业得到迅猛发展。面临这些需求, 许多城市和地区出现了各类电子地图。在电子地图的制作过程中,地图数据采集约占整个工作量的70%~80%。目前, 电子地图的数据获取主要有三种方法: 扫描现有地形图资料、图像资料(航片、卫星影像等)数字化以及数字测图。其中数字测图是利用GPS、电子全站仪等在野外实测直接生成数字地图, 这一方法适合于在没有现成图纸和航片时的大比例尺的地形测图,随着GPS测量技术的发展与广泛应用, GPS 数字测图已经成为电子地图数据采集的首选方式。
1、电子地图测绘的软、硬件设备
电子地图测绘采用的是集PDA 掌上电脑技术、GPS全球卫星定位系统技术和GIS 地理信息系统技术的软、硬件为一体的公路数据采集系统, 如图1 所示。在整个系统中对硬件部分的要求是: PDA 采用的是Windows Mobile 2003 微软操作系统;中央处理器主频率CPU 为624 MHz, 内存容量RAM185M, 外加1G PDA 扩展卡容量。GPS 采用蓝牙接口, 数据更新频率1 次/s , 自动定位时间45s , 定位精度小于5 m;对软件部分要求是:e-Road For PDA 和e-Road For PC 软件操作系统。前者是将GPS 接收的信号传输到PDA 上, 后者是将PDA 的数据传输到电脑上, 并对导出的地图数据进行合并和编辑。
2、电子地图测绘的原理
全球卫星定位系统GPS 分成3 个部分: GPS 卫星星座、地面监控系统、GPS 接收机。一般在测绘中所使用的是第三部分GPS 接收机。GPS 使用测距交会的原理确定点位, 其基本定位原理是每颗太空卫星在运行时, 任一时刻的位置都用一个坐标值来表示, GPS 接收机所在的位置坐标为未知值, 而太空卫星的讯息在传送过程中存在时间差, 将此时间差值乘以电波传送速度, 就可计算出太空卫星与GPS 接收机间的距离, 如此就可依三角向量关系列出一个相关的方程式。每接收到一颗卫星就可列出一个相关的方程式, 因此, 至少同时接收到三颗卫星发出的信号后, 即可计算出平面坐标(经纬度)值, 收到四颗卫星信号则可同时测出高程值, 五颗卫星以上可大大提高其测量精度。一般来说, GPS 接收机在运动中每秒的坐标数据都是最新的, 也就是说GPS 接收机会自动不断地接收卫星讯息, 并实时地计算其所在位置的坐标数据, 同时记录下来。
在GPS 定位中, 根据其运动状态可以将GPS 定位分为静态定位和动态定位。静态定位指的是对于固定不运动的待定点,将GPS 接收机安置于其上, 观测数分钟乃至更长的时间, 以确定该点的三维坐标, 又叫绝对定位。若将2 台或2 台以上分别固定不变地安置在待定点上, 则通过一定时间的观测, 可以确定这些点之间的相对位置, 又叫静态定位。而动态定位则至少有一台接收机处于运动状态, 测定的是各观测时刻运动中的接收机的点位。在电子地图测绘系统中采用的是动态定位。GPS 以全天候、高精度、自动化、高效率等特点赢得广大测绘工作者的信赖。
3、电子地图测绘的方法
3.1 外业采集
外业采集是整个测绘的核心工作, 采集组一般由4 名成员(PDA 操作员、记录员、带路者、驾驶员)和1 台作业车组成。PDA操作员要熟练掌握PDA 操作技术, 事先对要测的路线进行编号, 对于已经有编号的路线要进行核对, 做到不重复, 不遗漏每一条路线;记录人员要求反应速度快, 能领会操作员的意图, 配合操作员进行记录, 做到不遗漏, 准确率达到100%;带路者要求熟悉当地地形, 对整个地区的路线了如指掌, 做到不走重复路,以最佳路线测绘。驾驶员要平稳、匀速驾驶作业车, 并保养维修好。另外还要确保测绘设备具有充足的电量, 避免设备自动关机, 造成数据丢失。因此, 要求在测绘之前做好各项准备工作, 只有这样才能达到最佳的效果。
准备就序后, 首先要对GPS 进行定位, 然后打开GPS 蓝牙, 将其连接到PDA 上, 待其在PDA 上显示为“3D”状态时就表示GPS 已联接上PDA, 可以开始数据采集。采集数据前还要对将其测量数据进行命名, 方式建议采用当天的时间来命名, 并存入SD 卡上, 这样方便数据的合并和校核。测绘过程中常见问题的原因及解决的办法有:
(1)测绘过程中GPS 无法定位。
GPS 无法定位的原因可能是接收不到卫星信号, 这时可到一个空旷、周围建筑物少、天线少、外界干扰小的地带进行定位,待其定位好后再进行测绘。为了减少接收干扰, GPS 不能安置在根本接收不到卫星直射讯号的地方, 如室内、地下停车场、天桥下、树木密集、四面环山及隧道中。在汽车内, 应使用有长天线的GPS , 并把天线用磁石置在汽车外。在地形复杂、建筑物多、干扰多的地方, 建议使用带有延长天线的GPS。如果碰到信号好的地带最好不要采用天线。
(2)测绘过程中GPS 信号飘逸。
GPS 信号飘逸问题有多方面原因: ①在阴雨天卫星信号较弱, 很容易造成飘逸。②当地某些地区使用了卫星信号屏蔽, 使信号飘逸。③在信号很强时还使用了延长天线, 也会造成信号的飘逸。④操作错误所造成。对于不可避免的信号飘逸可以在内业顶点编辑中进行处理。
(3)测绘过程中行车速度过快。
对于一般的车载GPS 其数据更新频率是1 次/s, 因此测绘过程中车速要保证匀速行驶, 速度不宜过快, 车速一般控制在50 km/h, 防止在测绘过程中出现GPS 接收信号中断, 而使测绘数据不准确。
(4)测绘过程中不应长时间停留在某个区域。
当正在进行路线测量时, 如果较长时间在某个区域停顿时,要求PDA 操作人员暂停测量。避免长时间停滞在这个区域造成在PDA 显示的路线发生飘逸。
(5)测绘过程中基本信息处理。
由于PDA 对路线的线形和里程是自动记录的, 为使测绘过程中保证测绘准确迅速, 要求PDA 操作员对路线的基本信息不要过多输入, 只需旁边的记录员详细记录每一条路线的基本信息以及附属设施的基本参数。对于路线的基本信息可在内业处理过程中进行补充和完善。
(6)测绘过程中跨区路线处理。
由于地形复杂, 一些路线的基本信息在同一条线上都不尽相同。对于一些路线里程比较长, 是跨省或跨市(区)或跨乡(镇)的, 要对这些路线进行分段, 对于带路者要熟悉这一区域的地形, 做到不出现任何误差。记录员要在记录本上详细记载分段情况以及分段路线的基本信息。对于跨省或跨市(区)乡(镇)的路线一定要在当天测完, 方便以后的内业处理。
3.2 内业处理
外业采集到的地图数据还需要经过整理修饰才能应用, 路线上的附属设施信息也需要完善, 因此要最后得到完美的电子地图, 内业处理工作是必不可少的。内业数据处理操作的流程如图2 所示:
内业处理是一个重要的环节需要各人员协同完成, 其具体有以下几个方面:
(1)测绘地图的数据传输。
将测绘的地形图通过数据线拷贝到PC 机的硬盘上, 启动e-Road For PC 进行数据的编辑。e-Road For PC 上的功能同PDA 上的e-Road For PDA 是一样的。因此, 可在e-RoadFor PC 上进行内业的处理。
(2)测绘地图的数据编辑。
通过e-Road For PC 在地形图上进行地图编辑。要求外业测量时的数据记录员将路线的基本信息和附属设施信息进行编辑完善, 保证不丢失任何数据。
(3)测绘地图的数据合并。
编辑完成所有的路线基本信息和附属设施信息后, 需要进行地形图的合并。合并前要选择好底图, 最好使用空底图, 这样可尽量减少路线的飘逸, 然后再进行合并, 合并时要按照外业测绘的时间顺序来合并。
(4)测绘地图的顶点编辑。
由于外业测绘过程中存在信号飘逸, 因此在内业处理中, 需要PDA 操作者对飘逸的路线进行顶点编辑, 将飘逸的顶点拉到实际位置, 对于一些重复的顶点要进行删除。
(5)测绘地图的校核。
校核时最好让熟悉地形的带路者进行校核, 这样能确保每一条路线的准确性。如果当地有其他的地形图时, 可对照测绘地图的路线有无偏差。如果路线偏差比较严重或者信号飘逸严重,为保证数据的准确性最好是进行重测。
4、结束语
随着国民经济的高速发展, 交通等领域对导航技术的需求更加迫切, 电子地图对于公路的设计和管理、公路交通的信息化都有着强大的推动作用, 推广与总结GPS 和PDA 技术在电子地图测绘中的应用势在必行, 必将会逐渐代替传统测绘技术。