第一篇:污水处理厂自动化系统工程
污水处理厂自动化系统工程
污水处理厂电气自动化控制系统设计 系统构成
1.1 控制装置构成
该装置计算机监控系统为主机选用美国COMPAQ 80486计算机,分站选用法国TELEMECANIQUE TSX7型可编程控制器(PLC)的集散型自动化控制系统。软件为采用AQUAMONITOR7平台开发的专用软件包。自动检测装置包括电能、进水流量、pH值、溶解氧、氧化还原、回流污泥流量、剩余污泥流量及水位、水温等八类过程自动检测仪表,其输出均为模拟量信号(4~20mA)。
该系统基本控制思想是:功能和危险分散,监督和管理集中。
1.2 受控对象构成
受控对象包括鼓风机、水下推进器和大部分泵共计45台设备,其输出状态信号均为开关量。
1.3 系统工作原理
现场自动检测仪表对生产中各个参数自动、连续地进行检测,同时将信号反馈给现场PLC和中心控制室计算机,并在中控室模拟屏和计算机显示器上显示出来;PLC和计算机比较程序中设定的工艺参数,自动地调节某台设备的工况(启动、停止或调速),从而自动满足生产过程需要。
系统功能
2.1 人机界面及功能
人机界面是操作者和系统交互联系的平台,它直接面向操作者,是用户认识评价一个系统的首要部分。本系统采用在DOS环境下运行的AQUAMONITOR7软件包把图形、文字有机地结合在一起,立体感强,操作简便,直观舒适。操作者可用鼠标完成对软件的全部操作,包括菜单选择、画面切换、实时数据显示、历史数据前/后翻页、报表生成及打印、故障查询及复位、文件管理、参数设定等等,每页图形均固定有即时报警信息栏、向上翻页、回到主菜单、打开报警显示屏,操作人员姓名注册显示、故障/维修/模拟报警实时显示等功能。本软件包不足之处在于它采用的是英文界面,而在现在的给排水引进项目中,一般都预先提出使用中文界面软件,外方也能满足。
2.2 自动控制过程
(1)选定所有受控对象运行模式为自动。
(2)输入或选择有关模拟量上、下限值等。
2.2.1 进水泵
在全自控状态,5#进水泵为备用,其余4台泵根据泵房液位高低和各自累计工作时间多少决定自动开停顺序。将设定的进水泵房液位高度,如6m定为100%,2m定为0%,则液位高度在0~25%时,第1台泵启动,25%~50%时,第2台泵启动,50%~75%时,第3台泵启动,75%~100%时,第4台泵启动。反之,当液位从75%~100%降到75%以下,则1台泵先停,随着液位逐渐下降到0,其余3台泵相继停机。
2.2.2 粗格栅
进水泵前粗格栅根据设定的栅前后液位差(如ΔH=10cm)或定时(如ΔT=5min)开停机。
2.2.3 细格栅
进水泵后细格栅自动工作原理同粗格栅。
2.2.4 刮砂桥和砂泵
细格栅后一道工序--沉砂池刮砂桥,则根据设定的运行周期(如每隔8h启动1次)自动控制开机,砂泵也同时运行,待砂桥在池上往返运动一个来回后,砂桥、砂泵自动停机。
2.2.5 进水流量和pH计
从沉砂池出来的污水流经巴氏计量槽,此处的超声波流量计记录瞬时流量和累计流量,瞬时流量如超过设定的上、下限值则报警;计量槽后的pH计可同时自动检测进水pH值和水温,如这两个模拟量超出测量范围也会报警。
2.2.6 水下推进器
厌氧池和缺氧/好氧池水下推进器设定为“自动”运行状态后将连续运行,除非故障或手动停机。
2.2.7 罗茨鼓风机
鼓风机为污水生化处理的关键性设备。传统的罗茨鼓风机旋转活塞片呈“8”字型,存在着噪音大,出口风压风量均为定值,不可调节之缺点。本工程共引进GM130L型罗茨鼓风机5 台(1#、2#为一组,4#、5#为另一组,3#风机备用),风机活塞片侧面近似呈三片夹角为120℃的椭圆,其中1#、5#风机设有变频调速装置用于调整风机的转速,起到调节风量大小的作用。供气干管共2根,每组风机各供1根,3#风机兼作备用,并与2根主管连通。每根供气干管对应1座缺氧/好氧池,PLC根据每组缺氧/好氧池出水口溶解氧计自动检测到的溶解氧值比较决定各组风机的开、停或1#、5#变频调速罗茨鼓风机的转速,以保证池中溶解氧满足工艺要求。
2.2.8 回流污泥泵
5#回流污泥泵为备用,其余4台泵工作程序同进水泵;不同的是,它们的开停除受回流污泥泵房液位高低控制外,还受进水流量大小变化控制。每台泵在以上任一开机控制条件满足后即可开机。反之,当两个关机控制条件同时满足后才会停机。
2.2.9 二沉池刮泥桥和浮渣泵
从2座缺氧/好氧池出来的泥水混合物都进入一座中心配水周边积泥的结合井,并通过结合井将污水均匀配至4个二沉池;二沉池采用中心进水、周边出水辐流式沉淀池,每池设1台 2/3式机械刮泥桥和1台依浮渣井液位高低自动开/停的浮渣泵,浮渣泵将刮泥桥上附有的浮渣刮板从池面刮入浮渣井的浮渣输送到剩余污泥泵房。由于比重不同,在二沉池中停留一段时间的泥水混合物即进行分离,上清液溢进出水槽作为尾水排放到厂外农渠,而沉降后污泥则依自重流向回流污泥泵房。
2.2.10 剩余污泥泵
剩余污泥泵房底部通过阀门与回流污泥泵房连通,3台剩余污泥泵依时间程序定时开机,直至将设定体积的泥、渣排至浓缩池待处理。
2.3 系统的调试完善过程
第二篇:污水处理厂自动化监控系统
污水处理厂自动化监控系统 一.需求分析
随着科技水平的不断发展和提高,采用计算机系统对生产的管理越来越深入到各行各业的企业之中。因此,采用计算机为核心建立一个对污水厂进行全面管理的自动化控制系统,不但切实可行,而且能够全面提高企业的管理水平和生产效率,从而增加企业的生产效益。我国污水处理产业发展进步较晚,建国以来到改革开放前,我国污水处理的需求主要是以工业和国防尖端使用为主。改革开放后,国民经济的快速发展,人民生活水平的显著提高,拉动了污水处理的需求。进入二十世纪九十年代后,我国污水处理产业进入快速发展期,污水处理需求的增速远高于全球水平。从总体上看,我国污水处理正在经历由规模小、水平低、品种单
一、严重不能满足需求到具有相当规模和水平、品种质量显著提高和初步满足国民经济发展要求的深刻转变,污水处理需求将逐步实现自给。
二.总体设计方案
1.计算机监控系统总体配置 2.1自动化系统整体结构
自动化系统整体结构如下图所示:
整个系统由三层构成:管理计算机子系统、监控计算机子系统、现场控制站。
1.管理计算机子系统
管理计算机子系统由数据服务器、生产管理及办公计算机、网络交换机、打印机等组成。
管理计算机子系统、监控计算机子系统通过以太网相连。2.监控计算机子系统
监控计算机子系统由两台中央监控计算机、投影仪系统、打印机、工业网络交换机组成。监控计算机子系统、现场控制站通过工业以太网环网进行数据交换。3.现场控制站
根据工艺特点和构筑物平面布置,共设三个现场控制站、一个变配电系统管理终端。中央监控计算机、现场PLC控制站、配电系统管理终端通过工业网络交换机,构成了工业以太光纤环网。现场PLC控制站与现场仪表通过屏蔽电缆连接。4.管理计算机子系统配置
管理计算机子系统为全厂的生产经营、管理决策、生产调度、日常办公搭建数字信息传输平台,连接监控计算机子系统和办公管理终端,提供全厂内部的信息管理结构。管理网络的建设完成基础硬件平台、基础软件、生产过程自动化控制子系统的数据库及通过WEB访问生产过程自动化控制子系统等工作。1.管理计算机子系统组成 如下图:
按照管理系统的功能划分为:生产经营辅助决策子系统、生产调度管理指挥子系统、设备管理子系统、综合办公管理子系统。
a)生产经营辅助决策子系统
能为决策层提供必要的经过综合的生产经营信息,进行必要的分析处理,提供辅助决策支持。b)生产调度管理指挥子系统
有多种数据监测措施,既能以表格的方式显示实时数据,又能以图形方式显示实时数据。有数据报警功能,包括报警提示音等多种形式。可发出特调指令。c)设备管理子系统
以设备的使用、保养、维修的管理为核心,将设备技术资料,日常设备管理活动,进行有效地分门别类记录、反映、统计、分析。
d)综合办公管理子系统 系统从通用、灵活、标准的设计思想出发,应用先进的文档数据库处理技术,为各级办公人员、领导干部提供了集成的工作环境。系统具有丰富实用的功能、友好的操作界面以及灵活的可扩展性,可以方便地处理各种文档数据、图形、声音、影像信息,并且安全可靠。主要包括一般的MIS(管理信息系统)的功能,是办公自动化的重要组成部分,它涉及到人、财、物等各个方面。
2.管理计算机子系统配置结构 设备配置及结构如下图:
三.监控系统总体结构
在污水处理厂综合办公区内设置中央控制室(中控室),集中监视、控制、管理整个污水处理厂的全部生产过程和工艺过程,实现对生产过程中的自动控制、报警、自动保护、自动操作、自动调节以及各工艺流程中的重要参数进行在线实时监控,对全厂工艺设备的工况进行实时监视。
中控室管理计算机子系统采用B/S(浏览器/服务器)结构形式的计算机网络,以一台数据及网络服务器为核心,构成100M交换式局域网络;监控计算机子系统采用C/S(客户机/服务器)结构,监控工作站冗余配置,以提高数据安全性。
中央控制室监控计算机子系统和厂内的各单体PLC控制系统采用光纤环网连接,网络形式为工业以太网,传输速率为100M。
在中控室配置1台数据服务器,网络打印机以及办公计算机,组成管理计算机子系统。管理计算机子系统为全厂的生产经营、管理决策、生产调度、日常办公搭建数字信息传输平台,连接监控计算机子系统和办公管理终端,提供全厂内部的信息管理结构。管理网络的建设完成基础硬件平台、基础软件、生产过程自动化控制子系统的数据库及通过WEB访问生产过程自动化控制子系统等工作。根据应用需求,管理计算机子系统包括生产经营辅助决策子系统、生产调度管理指挥子系统、设备管理子系统以及综合办公管理子系统。
在中控室配置2台监控工作站,双机热备。正常情况下,一台用于工艺监控,另一台作为备用,随时可以代替故障设备。2台操作站的硬件和软件的配置完全相同,功能和监控的对象可以互换。同时,配置2台打印机以及投影仪,组成一个完整的监控计算机子系统。
同时,根据系统规划以及以后的需要,在对中央控制系统软硬设计时,将预留远期工程需要增加的1~2个单体控制系统的接口。中央系统预留以太网网络接口以便和办公自动化系统连接,实现工程内部的数据共享和生产、管理一体化。四.总结
此污水处理厂工程监控系统包括了对厂区内部整个污水处理工艺流程的监测和控制。从系统功能方面看,本污水厂计算机监控系统由三层构成:管理计算机子系统、监控计算机子系统、现场控制站。管理计算机子系统、监控计算机子系统属于上级系统,通过以太网相连,监控计算机子系统、现场控制站通过工业以太网进行数据交换,而现场控制站属于下级系统。
第三篇:污水处理厂自动化控制系统要点
污水处理厂自动化控制系统
0
摘 要主要介绍了佛山三山污水处理厂污水处理自控系统其构成、功能、控制模式、故障与报警、运行与维护等,并结合实践经验,总结了自动化在线仪表的日常维护保养问题。
关键词污水处理厂;在线仪表;自控系统;PLC控制
中图分类号X703文献标识码A文章编号1673-9671-(2011)012-0109-01
三山污水处理厂位于佛山南海市三山港镇,营顺油库对面。该工程规划总规模5万m3/d,分两期建设,一期工程设计污水处理能力2..5万m3/d,采用了A2O(厌氧 缺氧 好氧)工艺。一期工程于2009年7月进入调试期。该工程自动化程度较高,多数设备运行及数据监测可由计算机自动控制。自动控制系统调试完成并投入运行后,运营、管理效果良好。下面就该系统构成、功能、控制模式、故障与报警、运行与维护等作一粗浅介绍。
1系统构成
1)控制装置构成。根据A2O污水处理的工艺流程、自控设计蓝图、设备I/O点数布置,PLC系统分六个控制站及两个远程I/O站。六个控制站为配电房控制室PLC1#站,风机房控制室PLC2#站,A2O生化池2-1#远程I/O站,二沉池2-2#远程I/O站,与设备配套的脱水机房加药系统PLC工作站、两个脱水机PLC工作站及紫外线消毒PLC工作站。自控系统主要由各检测仪表、各PLC控制站和中控室上位监控计算机操作站组成,现场控制站和上位机通过光纤以太网相连,与设备配套的PLC控制站采用MODUBUS通讯方式与PLC2#通讯,并由PLC2#控制站将加药系统,脱水机系统,紫外线消毒系统等三个PLC站的控制设备的运行状态及数据传送到上位计算机。
自动检测装置包括变频器、进出水流量计、风管风量计、pH仪、溶解氧仪(DO)、化学需氧量仪(COD)、污泥浓度仪(SS)及超声波液位计和液位差计等八类自动检测仪表,除各流量计的累计流量输出信号为脉冲,其余仪表测量数据的输出信号均为模拟量4~20mA。
2)设备构成。受控设备包括进水提升泵,粗、细格栅、吸砂行车,砂水分离器、搅拌器、推流器、刮吸泥机、电动闸门,罗茨风机、脱水机等40多台设备,除进水提升泵,曝气罗茨风机输出状态为开关量及模拟量(控制频率),其余设备的输出状态信号为开关量。脱水间自动加药系统、脱水机系统、紫外线消毒系统、恒压供水系统在上位计算机只能监视其状态,控制操作需在现场PLC控制站中的触摸屏上进行,其余设备可在计算机进行控制。
2系统功能
2.1系统工作原理
现场仪表对生产中各个参数自动、连续地进行检测,同时将信号传送给现场PLC,现场PLC通过计算后得出的数值在上位机的监控软件相应的画面和报表中显示出来;PLC和上位计算机监控软件中设定的工艺参数进行比较,自动地调节某台设备的工况(运行频率,启动或停止),也可手动对某台设备进行控制,从而满足生产的需要。
2.2自动控制过程
1)PLC1#站。PLC1#站主要控制进水提升泵房及粗细格栅系统设备。主要监测数据为提升泵运行电流、频率,进水泵房超声波液位,粗格栅超声波液位差及储泥池超声波液位。监控设备为:粗格栅、进水提升泵、细格栅,吸砂行车,砂水分离器,储泥池推流搅拌机。本站实现以下主要功能:根据进水泵房液位控制提升泵的启停,粗格栅前后液位差或时间周期控制格栅机的启停,粗格栅螺旋输送机与格栅机联动;根据液位控制提升泵的启停台数,按照运行时间,先开先停某台水泵;根据液位差或时间周期控制细格栅机的启停,细格栅螺旋输送机与细格栅机联动;实现砂水分离器和吸砂行车系统的联动运行。
2)PLC2#站。PLC2#站控制系统由PLC2柜,2-1#远程I/O柜,2-2#远程I/O柜组成。PLC2柜监控对象主要为曝气罗茨风机,主要检测信号为曝气罗茨风机运行电流,频率,风管压力,风管瞬时流量及累计流量,进水瞬时流量及累计流量。2-1#远程I/O柜监控对象为生化池12台搅拌机,6台内回流污泥泵,除臭系统;检测信号主要有生化池DO(溶解氧)、SS(浊度)。2-2#监控对象为二沉池两台刮吸泥机,二沉池配水井的两台外回流污泥泵,两台剩余污泥泵,及两台电动闸门,主要检测信号为出水COD,出水瞬时流量及累计流量,出水PH。本站实现以下主要功能:根据好氧池上的DO仪检测值,通过控制风机变频器的运行频率,实现对好氧区域DO的调节,达到最佳处理效果;DO的设定值可人工任意设定,控制范围在设定值的上下区间内;远程控制搅拌器、外回流污泥泵,剩余污泥泵,刮吸泥机等设备;采集各个设备状态及仪表信号。
3)加药系统PLC控制站。脱水机房自动加药系统,管理和控制污泥处理的加药系统设备。
4)脱水机PLC控制站。两套脱水机PLC柜分别控制两套脱水机设备。根据工艺要求控制泥切割机,进泥螺杆泵,脱水机。
5)紫外线消毒系统PLC控制站及恒压供水控制站。紫外线消毒系统采用紫外线灯对出水进行消毒,PLC柜为设备配套提供。二沉池上清液经出水管进入紫外线消毒系统消毒后大部分排出,小部分由恒压供水系统将输送回厂区进行回用。
3控制模式
粗格栅、细格栅、吸砂行车、提升泵、搅拌器、推流器、曝气罗茨风机、回流泵、刮吸泥机等设备的控制模式均分就地控制和远程控制两种模式:就地控制由现场设备控制柜对设备进行操作;远程控制是由操作员通过中控室上位机操作界面控制设备的启停;下面主要谈谈远程自动控制模式。
1)粗、细格栅。粗格栅、细格栅前后各安装了1套超声波液位差计,通过格栅前后的液位差来反映格栅阻塞程度,并传输到PLC控制器,进行分析计算。当液位差超过预设的数值,则启动格栅机,清除垃圾,保障正常过水,且合理的减少了设备磨损。粗、细格栅还可根据设定的启停时间间隔自动控制格栅的启停。
2)吸砂行车系统。细格栅后一道工序--沉砂池吸砂行车系统及砂水分离器则根据设定的运行周期(如每隔0.5h启动1次)自动控制开机。
3)水下搅拌机。各水下搅拌器在操作画面中如设定为“自动”运行状态后将连续运行,除非故障或手动停机。
4)提升泵。集水池共设置3台提升泵,两台变频,一台工频。根据提升泵房的液位值,为实现进水提升泵的自动控制,粗格栅机前后的超声波液位差计,采集集水池的液位信号,实时传输到PLC控制器及上位机,进行系统分析,与预设值进行比较,自动判断决定启动泵的类型和台数。
5)罗茨风机。风机房一期共安装两台220KW曝气罗茨风机,PLC根据生化池内DO反馈值与设定值比较,并根据偏差和变化趋势调节风机变频器的频率及控制风机的启动台数,使DO保持在给定值。系统设置了罗茨风机超压力保护。
6)回流泵。内外回流泵在操作画面中如设定为“自动”运行状态后将连续运行,除非故障或手动停机。系统设置了低液位保护,液位过低系统将强制所有的泵停机并报警。
7)进出水流量。进水泵房每台提升泵至细格栅之间的直管段各安装一台电磁流量计传感器,共安装三台电磁流量计传感器;每台变送器显示相应提升泵提升污水的瞬时流量,累计流量。瞬时流量之4-20mA信号,累计流量之脉冲信号传送至鼓风机房PLC中。出水流量计安装于出水流量计井,流量信号传送至2-2#PLC控制站。进出水流量信号再通过光纤以太网传送至中控制室电脑,在监控画面及报表系统中显示。
8)二沉池刮吸泥桥。从2座好氧池出来的污水都进入二沉池配水井,并通过二沉池配水井将污水均匀流至2个二沉池;二沉池采用中心进水、周边出水辐流式沉淀池,每池设1台全桥式周边刮泥机。由于比重不同,在二沉池中停留一段时间的泥水混合物即进行分离,上清液经出水管道进入紫外线消毒池消毒后作为出水排放或由恒压供水泵提取作为回用水。刮泥机把泥刮向池中心,流向污泥泵房,污泥泵房泥水混合液一部分通过外回流污泥泵回流至生化池;一部分通过剩余污泥泵输送到储泥池,之后储泥池内泥水混合物由污泥螺杆泵抽至脱水机房进行压滤脱水处理。
4故障与报警
系统拥有完备的参数保护和报警功能,设备出现故障,如:泵的低液位停机保护、设备过载保护,参数的超出高低限报警等。当发生报警时上位机画面中会自动弹出一个报警提示窗口,在该窗口中显示了发生报警的设备名称和报警状态。点击“确认”或者“总确认”按钮,再点击关闭按钮才能正确关闭该报警。
5维护与保养
每天应定时巡查,查看设备的运行是否正常,听设备的运转声音是否正常,如发现异常,为确保设备不被损坏应及时停机并由通知专业人员进行维修,部分设备需注意适时加油。
自动检测仪表故障报警主要是由于被测参数超出测量范围或仪表本身误差累积造成测量值偏离真实值过多而报警。对于一些精密仪表、探头而言,污水厂的工作环境是比较恶劣的。因此,对它们必须定期维护与保养。
1)保持自动化检测仪表传感器的清洁。由专人定期清洗探头,保证数据采集准确性。特别是DO,SS,PH仪等直接与污水接触的分析仪表,必须定期由专人清洗,每一个月清洗1次,保证仪表的正常工作;清洗时要求使用柔软的材料,以免损坏仪表。
2)定期校正各种仪表。仪表在长期运行过程中难免会产生测量误差,为了保证仪表测量的准确性,对分析仪表需每月定期校正1次;而且要求水质化验技术人员利用化验室仪器检测相应的项目,并与现场仪表测量结果比较,如果偏差太大,那么应适时对仪表进行校正,确保仪表测量数据准确。
第四篇:污水处理厂
关于申请运营资质的报告
一、资质类别
环境污染治理设施运营资质证书分为甲级和乙级两个级别,持有甲级资质证书的单位,可在全国范围内从事该专业类别任何规模的生活污水治理设施的运营业务;持有乙级资质证书的单位,可在全国范围内从事单个项目处理水量30000吨/日以下的生活污水治理设施运营业务。甲、乙级资质证书各分为正式证书和临时证书两种,甲级资质证书和乙级资质证书有效期为3年,临时甲级资质证书和临时乙级资质证书有效期为1年。
二、基本条件
1、具有独立企业法人资格或者企业化管理事业单位法人资格,且注册资金符合要求。
2、具有维护设施正常运转的专业技术人员;
(1)申请甲级资质的单位应具备不少于10名具有专业技术职称的技术人员,其中高级职称不少于5名;申请乙级资质的单位应具备不少于6名具有专业技术职称的技术人员,其中高级职称不少于3名。
说明:申请甲级运营资质的5名高级职称专业技术人员中,应至少有3名全职人员,申请乙级运营资质的3名高级职称专业技术人员中,至少应有1名全职人员。甲乙级上述条件中均可以有2名兼职人员(该2名中也可以由中级职称连续从事环保领域工作5年以上的全职人员视同高级)。上述人员全部应提交合同聘用文本及聘期、合同期间社保证明等。
(2)申请每一专业类别应有本专业领域至少3名以上专业技术人员。
说明:本专业领域大学本科以上毕业生从事本领域工作3年以上可视为专业技术人员。上述两项要求不累加计算,第(1)项条件中的人员也可作为上述第(2)项专业类别中的技术人员条件。
(3)申请甲级资质证书的单位至少应有3名运营现场管理人员和10名操作人员取得污染治理设施运营岗位培训证书,申请乙级资质证书的单位至少应有2名运营现场管理人员和6名操作人员取得污染治理设施运营岗位培训证书。
说明:所有从事设施运营现场管理人员和操作人员均应取得污染治理设施运营岗位培训证书。申请资质证书时应满足上述人员条件数。
3、连续一年以上从事环境污染治理设施运营管理,达到本标准资质类别条件之一,且负责、承担运营管理的污染处理设施所排放的污染物应连续、稳定达到国家或地方的排放标准,没有违反国家法律、法规的行为记录并没有发生重大运营责任事故。
4、从事环境污染治理设施运营服务不足一年,尚未达到相应类别业绩条件的,但符合除业绩条件外其它申请条件的单位,可申请环境污染治理设施运营甲级或乙级临时资质证书。
三、分级标准
1、甲级资质证书条件
.注册资金300万元以上;
.具有从事环境污染治理设施运营管理的经历,承担过1个处理水量10000吨/日以上工程的运营管理,或2个处理水量5000吨/日以上工程的运营管理,负责运营的设施正常运行一年以上,并达到国家或地方规定的污染物排放标准;
.具有设施完备的固定化验室(实验室),至少配备能满足监测需要的pH、SS、CODcr、BOD5,NH3-N、总N、总P、粪大肠杆菌等监测化验设备。具有自动监测系统的管理能力。
2、乙级资质证书条件
.注册资金100万元以上;
.具有从事环境污染治理设施运营管理的经历,承担过1个以上处理水量5000吨/日以上工程的运营管理,或2个以上处理水量1000吨/日以上工程的运营管理,负责运营的设施正常运行一年以上,并达到国家或地方规定的污染物排放标准;
.具有固定化验室(实验室),至少配备能满足监测需要的pH、SS、CODcr、BOD5,NH3-N、总N、总P、粪大肠杆菌等监测化验设备。
四、情况分析
申请正式资质时,每一专业类别应有两项运营管理实例,我公司目前只能申请临时乙级资质,按照公司的实际情况需要完善如下几点:
1、聘请2名高级职称专业技术人员作为兼职。
2、聘请或培养1名初级或中级职称专业技术人员作为全职。
3、要达到“2名运营现场管理人员和6名操作人员取得污染治理设施运营岗位培训证书”的要求。(此岗位培训证书必须是环保部门颁发的,我公司目前尚无人员参加过环保部门组织的培训)
4、
第五篇:污水处理厂
污水处理,就到中国污水处理工程网!
污水处理厂
从污染源排出的污(废)水,因含污染物总量或浓度较高,达不到排放标准要求或不适应环境容量要求,从而降低水环境质量和功能目标时,必需经过人工强化处理的场所,这个场所就是污水处理厂,又称污水处理站。
一、污水处理厂厂址的选定
污水处理厂址的选定是城市和工业区的总体规划的组成部分。厂址的选择同城市和工业区排水管道的布置、处理后污水出路密切相关,应进行深入的调查研究和技术经济比较,并应考虑以下原则:
1、厂址必须位于给水水源的下游;如果城镇、工业区和生活区位于河流附近,厂址必须在它们的下游,而且要在夏季主风向的下风向,并应同城镇、工业区、生活区以及农村居民点保持一定的距离,但又不宜太远,以免增加管道的长度。
2、厂址应尽可能与处理后出水的主要去向(如灌溉农田)或受纳水体靠近。
3、充分利用地形,选择有适当坡度的地区,以满足污水处理构筑物和设备高程布置的需要,节省能源和动力。
4、尽可能少占和不占农田,并考虑有发展的可能性。
二、污水处理厂工艺流程
污水处理厂的处理工艺流程以及处理构筑物和设备型式的选定是污水处理厂设计的重要环节。确定污水处理工艺流程的主要依据是污水所需要达到的处理程度,而处理程度则取决于处理后出水的去向。处理后的出水如果排入水体,则污水的处理程度既要能够充分利用水体自净能力,又要防止水体遭到污染。不考虑水体自净能力,而任意采用高级处理方法是不经济的,但也不宜将水体自净能力耗尽,要留有余地。处理后污水如用于灌溉农田,污水水质应达到所要求的标准。处理后的出水如果回用于工业企业或城市建设,要考虑两种情况:直接回用;作某些补充处理后再行回用。污水处理厂一般是以去除 BOD(生化需氧量)物质作为主要目标。在大型污水处理厂中多采用以沉淀为中心的污水一级处理和以生物处理为中心的污水二级处理。有时为了去除氮、磷等物质,还在生物处理后,进行污水三级处理。
污水处理的产物──初级沉淀池产生的污泥,由污泥处理系统处理。污泥处理系统是污水处理厂的组成部分,污泥采用需氧消化和厌氧消化两种方法处理。需氧消化多用于服务人口在 5万以下的小型污水处理厂;而厌氧消化则普遍用于大中型污水处理厂。污泥处理的程序是:污泥浓缩、污泥厌氧消化、污泥干化、焚烧。工业废水处理工艺流程的确定较为复杂,应综合考虑各方面的因素,如去除的主要对象,对处理出水水质的要求,废水的水量、水质的变化等。对各种污染物可以采用的处理单元如表:处理工艺流程的排列顺序,是先简单后复杂;从去除对象考虑,则先去除悬浮的污染物,然后去除胶体物质和溶解性物质。
三、污水处理厂设计
污水处理,就到中国污水处理工程网!提升泵房的设计与运行
提升泵房的电耗一般占污水处理厂总电耗的10%~20%,是污水厂节能的重点。提升泵房的节能首先要从设计入手,尤其是水泵的选型要科学;在实际运行中也要使水泵常在高效区运行,科学合理地创造最佳运行工况。1.1 污水提升泵的选型应以平均时低水位确定水泵的扬程
在常规设计中,一般取极限最低水位和最高水位作为确定水泵扬程的选型依据。这就造成除在最低水位以外的绝大多数工况下,实际扬程低于设计扬程,导致水泵的运行工况在平时大部分时间里都偏离水泵运行的高效区以外,从而水泵运行效率较低,造成能量的浪费。更有甚者,如果按最低水位和最高水位确定水泵扬程所选水泵的所配电机的运行功率随水泵实际流量的增大而升高的曲线时,由于在平时的运行中水泵的实际扬程比设计扬程小,固其实际流量增大,由此引起电机的实际运行功率上升而超负荷运行,从而导致电机的经常跳闸停机,这种频繁的启停对于电机和水泵造成极大的损坏。如图1所示,实线表示选定的型号及参数,箭头表示实际运行情况。
所以必须采取科学的水泵选型方法,在设计和运行中总结出的经验如下:
(1)以平均时低水位作为确定水泵扬程的选择依据,再以极限最低水位对其校核,如此则能满足实际需求,且能保证水泵在其高效区范围内运行,节省能耗(一般污水处理厂的提升泵房后为沉砂池,其水位相对恒定,所以提升泵的扬程取决于提升泵房集水井的水位);
(2)选择功率曲线比较平缓的全扬程水泵,这样可以保证在实际扬程与设计扬程不符时电机仍能正常运行,避免频繁启停对电机和水泵的损害,并节省能耗(电机和水泵的启动电流远大于正常运行时的电流)。如图2所示,实线表示选定的型号及参数,箭头表示实际运行情况。1.2 提升水泵应在高水位时启动以保证其在正常水位内高效运行
污水处理,就到中国污水处理工程网!
由于污水厂的进水流量变化较大,使水泵井的水位变化较大。如果在水泵井的水位达到水泵的设计运行水位时即启动,则由于污水从管道中来水的速度远小于水泵的抽水速度,这样水泵井的水位就会下降很快,当低于设计水位时,水泵就要停止运行以等待来水,到设计水位时再行启动。由此造成水泵和电机的频繁启停,对其造成严重损害,并增加了能耗。
通过在实际运行中总结的经验,提倡水泵要在水泵井处于高水位(可以达到最高水位)时方才启动,这样即使来水速度远小于抽水速度,由于在最高水位启动相当于储备了备用水量,这样就可以保证水泵在其正常水位内高效运行,节省能耗,并避免频繁的启停对水泵和电机的损害。同时由于在高水位下管道中为满流,提高了污水在管道中的流速,避免了管道淤积,减少了大量管道疏通的工作量。2 沉砂池的设计与运行
沉砂池的功能是去除比重较大(其相对密度约为2.65)、粒径大于0.2mm的无机颗粒如泥砂、煤渣等。沉砂池一般设于泵站、倒虹管前,以便减轻无机颗粒对水泵、管道的磨损;也可以设于初次沉淀池前,以减轻沉淀池负荷及改善污泥处理构筑物的处理条件。
沉砂池的效率对于后续处理效果有很大的影响,然而大多污水厂在建成后没有严格校核其沉砂效率,以至于运行后发现沉砂池的沉砂效果不佳,对后续的水泵及二级生化处理造成不良影响。如采用CAST工艺的污水处理厂,其旋流沉砂池的后续构筑物为曝气池,如果沉砂池沉砂效果不理想,则砂粒会在曝气池内逐渐累积,对活性污泥或生物膜的正常生长、繁殖及其对污染物的降解产生一定的破坏,影响曝气池的处理效果;另外,会造成沉淀污泥中无机颗粒比重超标,影响污泥的进一步处理效果,如脱水对污泥脱水机的损害或影响污泥堆肥的效果和污泥的肥力。
所以,污水处理厂建成后,在工艺调试的单机调试和设备联动调试阶段有必要对沉砂池的沉砂效果作严格的校核。以下根据实际经验对沉砂池沉砂效果的检测校核方法作一说明。
以采用CAST工艺的某污水处理厂的旋流沉砂池为例。旋流沉砂池是替代传统沉砂池及其刮砂设备的新型装置。旋流沉砂器通过水力旋流作用,并依靠机械搅拌辅助加强旋流而产生离心力,达到离心分离污水中固体颗粒的作用。其检测校核方法如下:
启动CAST池回流泵(利用清水试验后的曝气池中的清水回流入沉砂池)和搅拌机,使沉砂池处于工作状态。从沉砂池进水口处投入砂砾(细格栅后),并采取水样(沉砂池进口闸板后),测定进水中0.2mm的砂砾重量;在沉砂池出口处(巴氏槽处)采取水样,测定出水中0.2mm砂砾重量,以此计算沉砂池对粒径0.2mm以上的砂砾去除率。
计算方法为:P=(W1-W2)/W1×100% 其中:P——沉砂池对0.2mm以上的砂砾去除率;
污水处理,就到中国污水处理工程网!
W1——进水水样中0.2mm的砂砾重量; W2——出水水样中0.2mm的砂砾重量。
当砂粒直径Φ≥0.30mm时,除砂效率P≥95%; 当砂粒直径Φ≥0.20mm时,除砂效率P≥85%; 当砂粒直径Φ≥0.15mm时,除砂效率P≥60%。
一般情况下,沉砂池对于粒径0.2mm以上砂粒的去除率需要达到85%方能满足要求。3 在生物脱氮除磷工艺中优先选择A/O(+化学除磷)工艺
当前能够进行脱氮除磷的工艺很多,其中使用最为广泛的是A/O工艺(早期)、A2/O工艺(近期)。由于当前对氮和磷的指标必须兼顾,A/O工艺虽然在脱氮或除磷中有很好的效果,但是不能同时脱氮除磷,所以近年来能够同时进行生物脱氮除磷的A2/O工艺更是为大多设计者所采用,而A/O工艺应用越来越少。
按传统生物脱氮除磷机理,要达到同时脱氮除磷的效果,则必须创造相对独立的厌氧、缺氧和好氧环境,并让各反应必须具备的因素(一定量的细菌,反应物如氨氮、硝酸盐、作为碳源或能源的有机物,O2等)在该环境下实现。常规A2/O工艺(厌氧-缺氧-好氧)及其各种改良型工艺(增设预缺氧池的两点进水A2/O工艺和两点进泥A2/O工艺,缺氧池前置的倒置A2/O工艺,以UCT工艺为代表的其它工艺)的流程是设立三个独立的反应区以分别实现厌氧、缺氧和好氧环境,通过污泥回流和混合液的回流使各反应的细菌和对应的反应物在各环境下完成各自功能。
以下就A2/O工艺的缺陷及其各种改良型工艺的不足和A/O(+化学除磷)工艺的相对优势做一番有益的探讨:(1)常规A2/O工艺的缺陷 1)污泥龄方面不可调和的矛盾。
硝化菌的世代周期较长,则脱氮必须具有较长的污泥龄;除磷是利用聚磷菌将磷贮存在体内然后通过排出剩余污泥的方式排出系统的,所以除磷要求较短的污泥龄。这是一对不可调和的矛盾,工艺中所能采取的一切措施皆只能在其间找到一个合适的平衡点,不能取得两者俱佳的效果。另外,硝化需要长泥龄以保证硝化菌的数量,而反硝化则需较短泥龄,以促进反硝化菌的更新并保持高活性。所以,在硝化和反硝化容量的配置间存在着泥龄的矛盾。
2)混合液回流方面的矛盾。
污水处理,就到中国污水处理工程网!
好氧池位于流程的末端,氨氮基本上完全氧化,出水中氮的主要形式是硝酸盐氮。从理论上说,好氧池混合液回流比越大,则出水硝酸盐氮越少,去除总氮的效果越好。但是过大的回流比会使硝酸盐混合液中携带的溶解氧对缺氧环境的破坏愈趋明显,而在有分子氧条件下,脱氮菌优先利用游离氧而不是硝酸盐氮作为电子受体,从而反硝化受到阻碍。在运行中有时要保持好氧池末端低溶解氧浓度以保证脱氮除磷的效果,但是这引起另一个问题:即较低的溶解氧浓度使二沉池容易处于厌氧状态,沉淀的污泥会重新将磷释放到水体中,而且会发生内源反硝化,造成高磷污泥上浮,影响出水水质,尤其是总磷。同时,高回流比使动力消耗增加,运行费用升高。
3)污泥回流方面的矛盾。
污泥回流是为了保证各反应池中有一定数量的完成各自功能的细菌。理论上说,参与释磷吸磷的聚磷菌越多,参与反硝化和和硝化的细菌越多,则除磷脱氮效果越好。但是,除磷是通过排出高磷污泥来实现的。这样剩余污泥的排放量就和污泥回流量发生了矛盾。并且,回流污泥中携带的硝酸盐氮会对厌氧释磷效率产生抑制,导致好氧吸磷动力不足,从而降低除磷效率。4)在碳源竞争方面的矛盾。
碳是微生物生长需要要最大的营养元素。在脱氮除磷系统中,碳源大致上消耗于释磷、反硝化和异养菌正常代谢等方面。从上述脱氮除磷机理可以看出,释磷和反硝化的反应速率都与进水碳源中的易降解部分,尤其是挥发性有机脂肪酸(VFA)的数量关系很大。一般来说,城市污水中易降解碳源有机物的数量是十分有限的。以脱氮来说,只有当进水中C/N比达到8时,其中的易降解碳源有机物部分才能保证高反硝化效率所需的碳源是充足的。所以,在A2/O工艺中(尤其是进水C/N比较低时)的释磷和反硝化之间,存在着因碳源不足而引发的竞争性矛盾。
5)对水质、水量变化很敏感
(2)各种改良型A2/O工艺的不足之处
常规A2/O工艺中的缺陷在各种改良型A2/O工艺中仍然存在。除此之外,各种改良型A2/O工艺还存在如下问题: 1)两点进水改良型A2/O工艺在常规型的厌氧池前增设了预缺氧池,虽然可以消除回流污泥中的硝态氮对后续厌氧池聚磷菌释磷的影响,同时也能保证厌氧池严格的厌氧环境以提高释磷效率。然而,其增设预缺氧池要求两套配水系统,基建投资加大,运行管理趋于复杂;且使整体流程更长,水力停留时间增大,处理效率和运行费用提高。
2)两点进泥改良型A2/O工艺也增设预缺氧池,并将大部分回流污泥回流至缺氧池,将少部分污泥回流至预缺氧池。这种方式只能减轻回流污泥中的硝态氮对厌氧释磷效率的影响,而且使参与厌氧释磷的污泥量减少,影响最终的除磷效率。
污水处理,就到中国污水处理工程网!
3)缺氧区前置的倒置A2/O工艺使回流混合液和回流污泥中的硝态氮优先利用进水中的有机物进行反硝化,保证很高的脱氮效率,同时也消除了硝态氮对厌氧释磷的影响,并使后续厌氧池能够形成严格厌氧环境。但是先进行反硝化将进水中易降解有机物消耗殆尽,使后续厌氧池中聚磷菌的厌氧释磷过程由于缺少碳源而释磷不充分甚至不释磷(只降解贮存的糖原获得能量),则后续的好氧吸磷动力严重不足,影响最终的除磷效率。4)UCT工艺把常规A2/O工艺的缺氧区分为前后两个部分,将硝化混合液回流至缺氧区,再将缺氧区前部的混合液回流至厌氧区;回流污泥先进入缺氧区前部。这种作法实际上是划出一个小的缺氧区专门消耗回流污泥中的硝酸盐,故避免了回流污泥中的硝酸盐对厌氧区的冲击,改善了聚磷菌的释磷环境。但是,进入缺氧区前部的回流污泥只有一小部分进入厌氧池经历了释磷过程,其实际除磷效果因此显著降低。(3)A/O(+化学除磷)工艺的相对优势
1)A/O(+化学除磷)工艺不必在生物脱氮除磷系统中同时兼顾脱氮和除磷二者都具有很高的去除率,只用考虑脱氮取得高去除率同时有一定的除磷效果(一般可以达到50%)即可,再通过设置化学除磷系统保证磷的去除率。所以在A2/O工艺及其各种改良型工艺中存在的缺陷和不足都可以得到很好的解决:脱氮和除磷的污泥龄方面的矛盾基本不存在,混合液回流和污泥回流中的硝态氮对聚磷菌释磷的影响可以通过化学除磷来解决,混合液回流中携带的溶解氧对缺氧环境的破坏可以通过降低好氧池末端的溶解氧达到降到最低,脱氮和除磷对碳源的竞争导致的碳源不足问题基本不存在。所以,A/O(+化学除磷)工艺在保证脱氮除磷效果的前提下,具有流程简单、占地少、运行管理方便、投资和运转费用较低的优点。
2)西方国家在生物脱氮除磷方面的理论研究比国内深入,运行经验比国内丰富。当氮、磷要求严格时,鉴于传统脱氮除磷理论下二者的矛盾,普遍采用生物脱氮+化学除磷的工艺。所以我们国内的污水处理厂在工艺的选择上不能不深入分析,能用工艺流程精简、能耗较低、运行管理比较方便的A/O(+化学除磷)工艺,就不用A2/O工艺及其各种改良型工艺。
3)当前在脱氮和除磷研究发面发现了很多新现象,由此产生了很多新理论如:短程反硝化(亚硝酸盐型反硝化)理论、厌氧氨氧化理论(氨氮和亚硝酸盐氮直接反应转化为氮气)、好氧反硝化(在好氧条件下,由异养型硝化菌和好氧反硝化菌同时完成硝化和反硝化)理论、DPB菌(反硝化除磷菌)在缺氧条件下的同时反硝化除磷理论。在这些新理论基础上开发出的新工艺表现出的共同点在于工艺流程精简,能耗较小,运行管理方便。所以采用A/O(+化学除磷)工艺在流程上更接近于新工艺,只需变换运行参数和适当变化即可,有利于新工艺应用后的改造或者扩建。
选择污水厂的处理工艺是一件复杂的事情,目前的各种处理工艺,都各有优缺点,只有最适合某个工程的工艺,并不存在最先进的工艺。设计者应该优先选择运行管理简单、运转费用低的工艺。
根据设计经验和对当前众多使用A2/O工艺及其各种改良型工艺的污水处理厂的实际运行情况的总结和研究,我们认为:A2/O工艺及其各种改良型工艺在理论上虽然可以达到很好的同时脱氮除磷的效果,但是其流程长,运行管理复杂,能耗大,运转费用高,且在实际运行中很难实现最佳运行条件,往往是脱氮与除磷的效果不能两全。而相比来说,A/O(+化学除磷)工艺流程精简、占地少,投资和运转费用较低,运行管理比较方便,污水处理,就到中国污水处理工程网!
并且便于在新理论基础上开发的工艺应用到工程实践后的改造。所以我们推荐使用A/O(+化学除磷)工艺。
四、污水处理厂处理技术
污水再生回用工程包括污水收集系统、污水净化处理技术及其系统、出水输配系统、回用水应用技术和监测系统。其中污水净化再生技术及其系统是关键,污水净化处理的流程要简单可靠,投资和运行费用要为该城市经济实力所能承受,处理后出水的水质要满足回用的要求。
沿用了多年的传统的“一级处理”及“二级处理”水处理工艺技术和设备已经难以适应当今的高浊度和高浓度污水的净化处理要求,处理后出水更不能满足城市对水回用的水质要求。沿着传统的工艺技术路线只能进一步附加传统的“三级处理”设备系统,既回避不了庞大复杂的传统二级生化处理系统,也回避不了投资和运行费用都十分昂贵的传统三级过滤吸附处理系统。这些恰恰是实现污水回用的忌讳之处。所以,环保市场十分迫切需要净化效率更高、处理后出水能满足现有环保标准并且能回用于城市,投资和运行费用又要为现有城市的经济实力所能接受的污水处理新技术和新设备。
五、污水处理厂发展趋势
污水处理厂的发展趋势,除了数量上不断增加外,一是二级处理厂所占比重逐渐增大,并开始建设三级处理厂。美国和德意志联邦共和国,二级处理厂占70%以上;英国则全部为二级处理厂;日本二级处理厂占90%以上。另一个趋势是向大型发展,几个甚至十几个城镇共同建设统一的污水处理厂,如法国的阿谢尔污水处理厂就接受巴黎地区一个市和三个省的污水,日本也在发展接受几个城镇污水的“流域下水道”。美国芝加哥市的西-西南污水处理厂是世界最大的污水处理厂之一,服务人口为260万,面积15万公顷,日处理水量340万立方米。目前,中国约有50座城市污水处理厂。