第一篇:《因数和倍数》教学中要注意的事项
《因数和倍数》教学中要注意的事项
北师大版五年级上册第一单元是《因数和倍数》,属于“数论”的初步知识,概念比较多,有些概念比较抽象,概念前后联系又很紧密,部分学生学习时会有一定的困难。但许多老师实际操作时却普遍没有深究教材,认为内容较容易,照本操作简单,因此教学中要注意的事项有以下:
1、过去:用b÷a=n表示b能被a整除,b÷n=n表示b能被n整除。现在:用na=b直接引出因数和倍数的概念。虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。同时,教师可以根据自己的学生的具体情况来决定是否引入整除的概念,毕竟这概念也是比较重要。
2、因数和倍数是一对相互依存的概念,不能单独存在。所以在判断一个数是否是另一个数的因数(倍数)时,都可以用乘法去进行解释。如:2为什么是12的因数?可以教学生这样说:因为2×6=12,所以2是12的因数。同样,问12为什么是3的倍数?也可以这样说,因为3×4=12,所以12是3的倍数.如果学生用除法去进行解释,也是可以的。2为什么是12的因数?也可以这样说:因为12÷2=6,所以2是12的因数。同理,12为什么是2的倍数也同样可以如此说。个人觉得,用除法去进行判断,一个数是否是另一个数的因数(倍数),学生可能更容易判断,因为就是用题目中给出的两个已知的数相除来进行判断。特别是用除法去判断类似一个数为什么不是这个数的因数(倍数)更直接,效果更好。如:3为什么不是7的因数?因数用7÷3不能恰好得到整数商。
3、注意小结:在整数乘法中,两个因数就是积的因数,而积就是两个因数的倍数。在整数除法中,则被除数是除数和商的倍数,而商和除数则是被除数的因数。
4、注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。
5、注意区分“倍数”与前面学过的“倍”的联系与区别及教会学生用“倍”“倍数”这些概念去完整而正确的表达.一部分学困生总是不能很清晰的说出()是()的倍数这样的句子,甚至有学困生说出类似4是8的倍数这样的表达,究其原因,是因为8比4更靠近倍数这个词,所以就有学生认为那个倍数应该放在后面。对这样的句子是没有从整体上去理解的而是断章取义。本质上来说这样的学生的对文字和句子的理解是有一定的障碍的。
6、如何能有序的不遗漏不重复的找到一个数的所有因数,是本单元的重点和难点,要教会学生有序的思考,可以用乘法去想,乘的时候也要注意不能想到哪个乘法算式就写哪个,一般都是第一因数从小到大的写,从1×、2×、3×、…开始想,或者用除法有序的想:如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,这样的板书帮助学生有序的思考,并形成明晰的解题思路,教师能像教材中那样一头一尾地成对板书因数,这样不容易写漏,并且让学生观察出规律,当写的算式中两个因数越来越接近或相同时,或者说当第一个因数接近或达到那个数的一半时,就不用再找下去了。
能否快速的找到一个数的因数与其后是否能准确的约分有密切关系,可要求学生熟悉100以内的数的因数,特别是一些因数比较多的数如48,和一些特别的数如91.7、找一个数的倍数相对于找一个数的因数会容易掌握些,可以用加法也可以用乘法。8、2,3,5的倍数的特征很重要,特别是到了约分环节时,要教会学生熟练运用2、3、5的倍数的特征去找公因数进行约分,这样约分的准确性会高些。
至于3的倍数的特征的推导是利用9、99、999…能被3整除,然后把各个位上的数拆数来判断的,如个位上是2则拆成0个9余2;十位上是8则拆成8个9余8,百位上是9则拆成9个99余9,依此类推,若干个9肯定能被3整除的,能否被3整除就看各个位上的余数了,只要把各个位的余数起来的和能被3整除,那么这个数就能被3整除,而各个位上的余数恰与各个位上的数是相同的,所以只需把各个位上的数加起来再用3去除,就能判断出结果了。老师可以根据自己所教学生的情况决定是否讲解。
9、判断一个数是质数还是合数,与找一个数的因数有密切的关系,但是它与找一个数的所有因数又有所不同,只要找到除1和本身之外的第3个就能进行判断了,所以2、3、5的特征在这里又有很大的用武之地了。在判断一个数是合数还是质数时,要注意培养学生首先用2、3、5的特征去进行思考,特别是3的倍数的特征,学生往往会遗忘。
第二篇:倍数和因数
倍数和因数
【教学内容】第70-72页的例题和相应的试一试,想想做做1-3 【教学目标】 【基础性目标】
1.让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。【提高性目标】
2.让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会数学内容的奇妙、有趣,产生对数学的好奇心。【教学重点】
理解倍数和因数的意义,掌握找一个数的倍数和因数的方法。【教学难点】
理解倍数和因数的意义,掌握找一个数的倍数和因数的方法。【教学准备】教学光盘 【教学过程】 板块一:
(一)教学内容:教学倍数的意义,找一个数的倍数
(二)教学目标:目标
(三)教学过程:
一、导入 谈话:回忆一下,我们学过了哪些数?(学生自由发言)刚才有的同学谈到我们学习了自然数,你能举例说一说哪些数是自然数吗?(指名回答)对,o、l、2、3、4……都是自然数。这个单元我们将从一个特定的角度来对除了0之外的自然数进行研究,研究这些数的特征和相互关系,这个单元的题目就是倍数和因数。(板书课题)
二、教学倍数和因数的意义
1.那么什么是倍数和因数呢?我们还要从最熟悉的事只有一个自然数是两个自然数的乘积的时候,才能谈上它们之间具有倍数和因数的关系。
2.做“想想做做”第1题。(1)指名读题。
(2)指名口答,共同评议。
3.板书:24÷4=6。谈话:我能说24是4和6的倍数,4和6都是24的因数吗?(学生自由发言,可能引起争论,最后统一到根据24÷4=6,可以得到4×6=24,实际上24是6和4的乘积,所以24是4和6的倍数,4和6都是24的因数)
三、教学找一个数的倍数
1.谈话:下面我们研究如何找一个数的倍数。请大家找3的倍数。想想用什么办法找,能找多少个?在小组内讨论找的方法,然后动手找。2.谈话:谁来说一下你是怎样找3的倍数的?你找到了多少个? 学生发言时教师板书:3×1=3 3×2=6 3×3=9 3的倍数有3、6、9、12、15、18…… 提问:能写完吗?为什么? 3.提问:谁能总结一下找一个数的倍数的方法?(用这个数分别与1、2、3……相乘)4.谈话:你能不列式计算直接写出2的倍数和5的倍数吗? 学生独立书写。
指名回答,教师板书:2的倍数有2、4、6、8、10、12…… 5的倍数有5、10、15、20、25、30……
5.提问:观察上面的三个例子,你有什么发现?在小组内讨论。指名汇报,相机出示以下结论:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。【设计意图】
找一个数的倍数相对比较容易,在比较中让学生感受有顺序的找可以避免重复遗漏,强化数学思维有序性的培养。为下面找一个数的因数打下比较好的伏笔。板块二:
(一)教学内容:教学找一个数的因数
(二)教学目标:目标1、2
(三)教学过程:
1.谈话:下面我们研究如何找一个数的因数。你能找出36的所有因数吗?边想边写出来。
指名说出自己找的结果,学生很可能找不全.或顺序很乱。
2.谈话:刚才同学们找到了36的一些因数,感觉到往往找不全,而且小一个大一个地没有规律。那么怎样找才能不重复、不遗漏呢?我们一起研究。
先这样想,根据因数的意义,我们知道()×()=36,括号内的数就是36的因数。
如果第一个括号里填1,那么怎样算出第二个括号里的数(指名回答,板书:36÷1=36)这样一次找到了36的几个因数?是哪两个?
如果第一个括号里填2,那么怎样算出第二个括号里的数?(指名回答,板书:36÷2—18)这样又找到了36的哪两个因数? 你能接着写出几个这样的除法算式吗?(学生回答后教师板书:36÷3=1236÷4=936÷6=6)从36÷6这道除法算式中找到了36的几个因数? 还要再写除法算式吗?为什么? 现在你能按从小到大的顺序说出36的所有因数了吗?指名到黑板前指着算式中的数说答案,教师板书:36的因数有1、2、3、4、6、9、12、18、36。
3.谈话:在小组里讨论一下,我们可以用什么办法找一个数的因数。4.谈话:你能找出15的因数和16的因数吗?如果用除法找,算式可以写出来,也可以想在心里,不写出来。学生独立做题后,指名回答,教师板书:
15的因数有:l、3、5、15。16的因数有:1、2、4、8、16。
5.提问:观察上面的三个例子,你有什么发现? 学生自由发言,教师相机出示以下结论:
一个数最小的因数是1,最大的因数是它本身。一个数的因数的个数是有限的。【设计意图】
教学的开始主要是对找一个数因数的方法进行指导,无论是乘法还是除法算式都能找到一个数的两个因数。然后以小组的形式,引导象找倍数一样有顺序的去找一个数的因数,尽可能找全。教学的层次有坡度,能照顾到绝大多数学生。板块三:
(一)教学内容:巩固练习
(二)教学目标:目标2、3
(三)教学过程:
一、组织练习
1.做“想想做做”第2题。(1)让学生自己读题填表。(2)提问:表中的“应付元数”都是4的倍数吗?为什么? 2.做“想想做做”第3题。(1)让学生自己读题填表。
(2)提问:题中的排数都是24的因数吗?每排人数呢?为什么排数和每排人数都是总人数的因数?(3)提问:通过以上两题的练习,你对倍数和斟数有什么新的认识?(倍数和因数在生活中被广泛应用)3.做“想想做做”第4题。(1)学生各自在书上填写。
(2)展示部分学生的答案,全班共同校对、评议。(3)发现做错的学生,找出错误原因。
4.游戏每人发一张卡片,标有1—30的数。(正好30名同学)a.要求:全体活动起来:7的倍数站起来。30的因数站起来。1的倍数站起来。
得出:任何非0的自然数都是1的倍数,反过来1是任何非0的自然数的因数。
b.小组内说说数与数之间的倍数和因数关系。
c.这里要注意了,我们在研究倍数和因数时,都是指非0的自然数。
二、全课总结
提问:这节课你学到了哪些知识?掌握了哪些方法?你理解了哪些结论? 【设计意图】
这节课的容量比较大,所以后面的练习我没有选择都做,主要是后面的游戏需要花一定的时间。这个游戏的设计主要想通过几的倍数、几的因数站起来这样一个全体同学互动活动,充分调动学生参与学习、主动学习的积极性。并渗透了任何非0的自然数都是1的倍数,1也是任何非0的自然数的因数。【课堂练习设计与布置】
【必做题】课本第72页“想想做做”第1题。【选做题】《补充习题》第53页 【板书设计】 倍数和因数
4*3=123*1=3()*()=36 2*6=123*2=636÷1=36 1*12=123*3=936÷2=18 一个数最小的倍数是它本身36÷3=12 没有最大的倍数36÷4=9 一个数倍数的个数是无限的36÷6=6 一个数最小的因数是1最大的……
因数是它本身,一个数因数的个数是无限的。
第三篇:因数和倍数
成功之举:
创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
败笔之处:
找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数对于刚刚对倍数因数有个感性认识的学生来说有一定困难。
问题发现:
整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。
教学机智:
练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。
再教设计:
要注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。
第四篇:倍数和因数教学设计教学设计
倍数和因数教学设计
合肥市螺岗小学 何婉
一、教学内容:
教科书70-72页的例题及相应的“试一试”,第72页“想想做做”第1-3题。
二、教学目标:
1、知识与技能目标:结合整数乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法,并能找出一个数的倍数和因数。
2、过程与方法目标:使学生在探索数的特征的活动中,进一步培养观察、比较、分析和归纳等能力,学会从不同角度验证猜想,进一步发展数感。
3、情感与态度目标:使学生进一步体会数学知识的内在联系,感受数学思考的严谨性和数学结论的确定性,增强学习数学的兴趣。
三、教材的分析与处理:
本节知识属于“数论”的初步知识,概念抽象,前后联系又很紧密,部分学生学习时会有一定的难度。因此教学时注重数形结合的思维方式,帮助学生理解倍数和因数概念间的关系,注意引导学生进行有效的合作学习,在教学寻找一个数的倍数和一个数的因数时充分放手给学生,让其自主、发现、归纳总结方法,其实就是学生逐步完成自主构建的过程,在发现倍数和因数的特征时,充分发挥多媒体的作用,提供必要的素材、显现共同的特征,学生从而归纳总结出共同特征。练习设计紧密练习生活,感受数学知识与生活的紧密联系。
四、学情分析:
这一内容是在学生已经分阶段认识了亿以内的数,较为系统地掌握了十进制记数法,同时也基本完成了整数四则运算基础上进行的教学。学生在学习中,已具备了初步的观察、比较、分析、归纳的学习能力。
五、教学重点和难点:
重点:理解因数和倍数的含义,知道它们的关系是相互依存的。探索并掌握找一个数的因数和倍数的方法。
难点:探索并掌握求一个数倍数和因数的方法。
六、教学方法与手段:
本课教学中我将主要采取“尝试、指导、交流”的教学方法,引导学生完成学习任务。
七、教学理念:
《数学课程标准》指出:数学教学是数学活动的教学,是师生、生生之间交往互动与共同发展的过程。有效的数学学习活动是从学习者的生活经验和已有知识背景出发,提供给学生进行数学实践活动和交流的机会,使他们在自主探究,合作交流的过程中真正理解和掌握数学知识。
八、教具准备:
12个小正方形纸片,学号卡片,投影仪,计算机。
九、教学过程:
一、直入课题:
[课前,我深深地苦恼此课的导入。首先新旧知识的联系不可用,复习以前学习哪些数来导入一是误时、另对后面的学习作用也不大。其次,很多老师都借用生活中的关系来切入倍数和因数的关系。如“两个爸爸和两个儿子的问题”,以及从“师生关系开始谈话”,感觉联系也不是很紧密。后来又看到借用高斯的一句名言“如果把数学比喻科学的皇后,那数论就是皇后头顶上的皇冠”从而激发学生的兴趣,想摘取皇冠上的一颗宝石,那么就来学习“倍数和因数”一课。此处我慎用的顾虑是学生对于数论这些专业的词根本就不了解,反而变成老师的故弄玄虚了。又兼顾到课堂的容量很大,要解决的问题很多。既然没有联系非常紧密的知识点,还不如直入课题。除非能设疑,比如曾听一位老师精心编排了一个喜洋洋与灰太狼的故事。既用到倍数和因数的知识,激发探究的欲望,且学生对此情境又很感兴趣】 1.提出活动要求:课前,老师让每位同学都准备了12个同样大小的正方形纸片,听好要求:
你能用这12个正方形摆成一个长方形吗?每排摆几个?摆了几排?用乘法算式把自己的摆法表示出来。
【无论课堂的时间有多紧张,此处摆一定不能省,一是注重数形结合的思想,另老教材上提到整除的概念,此处通过摆12个小正方形,正好可以既让学生感知分的数都是整数,又不至于解释让学生听不懂。这正是苏教版的优点】
2.汇报交流:师:你的摆法是?生:每排摆3个摆了4排。师:还有不同的摆法?生:每排摆4个摆了3排。师:还有补充吗?生继续汇报到:也可以每排摆6个,摆了两排;每排摆两个,摆了6排。师还有两种比较简单的摆法:每排摆12个摆成一排;同样每排摆一个摆成12排。还有吗?生:没有了。师:在这6种摆法里,其中把每排摆3个摆成4排这种图形旋转90度就变成和每排摆4个摆成3排,因此就保留一种。后面两种演示同上。
【此处在多媒体的运用上我花了一番心思。把这12种方法分开作了许多个小插件,当学生随意说出一种,我便能立即出示。另外课件通过演示旋转九十度便发现两种归为一种,这样也很好地为了后面因数不找重复的数做铺垫】
3.师:那么这3种摆法用三道乘法算式表示就是? 生:3×4=12、2×6=12、1×12=12(并板书)
【从下到上非常有秩序的写上,也为后面学生有序地找因数埋下伏笔】
二、建立概念
1、师:可别小看黑板上的这3道算式,我们今天研究倍数和因数关系将从这3道算式拉开帷幕。(板书课题)补充说明:为了方便,在研究倍数和因数时,所说的数都是不为0的自然数。以3×4为例,我们便可以说12是3的倍数、12是4的倍数,3是12的因数、4是12的因数。谁可以像老师这样说一说,请两三位同学练说。师:老师这里还有两道算式,选一道说给你的同桌听。后各请一位汇报交流,师指出如果说12是倍数,2是因数、6也是因数可不可以?让学生感知说话必须完整。
其中1×12=12,学生说完时,师追问哪两句比较拗口,“12是12的倍数,12是12的因数”确实一个数既是它本身的倍数又是它本身的因数。
【此处充分利用写出的三道乘法算式教学倍数和因数的意义,为学生设计了“接受、领会—模仿、理解”的学习过程:先结合算式4 × 3 = 12 介绍“12是4的倍数,12也是3的倍数,4和3都是12的因数”,让学生读读、想想这几句话的意思,初步感受倍数和因数的意义是与乘法有联系的,表达的是自然数之间的关系;接着要求学生根据6 × 2 = 12、12 × 1 = 12说说哪一个数是哪一个数的倍数(或因数),在迁移中进一步认识倍数和因数的意义。其中12是12的因数、1是12的因数,12是12的倍数等特例,为后面的教学扫除难点】
2、倍数和因数概念的拓展练习
师:现在给你们一个当小老师的机会,谁能说出一道算式?其他同学根据这道算式说说谁是谁的倍数谁是谁的因数?师借机指出,能不能说某数是因数或某数是倍数,让学生感知数学概念的表达必须清楚、完整。
二、探索找因数的方法
1、共同找12的因数
师:请同学们再次观察这三道算式:刚才我们说了哪些数都是12的因数?
生:3和4是12的因数,2和6是12的因数,1和12是12的因数。师进一步指出:你能把12的所有因数都找出来吗?
生汇报:12的因数有1和12、2和6、3和4。(结合学生的汇报,教师板书12的因数)
师:谁注意观察刚才老师是怎么写的? 生:一对一对从小到大的顺序写的。
【此处我再次利用这三道算式,目的是减轻了学生找因数的难度。给学生一种找因数和写因数的模式,让其潜移默化地感知如何有序、完整地找一个数的因数。另外充分利用这三道算式,不光是为了建立概念,更让学生感知如何去把一个数分成两个整数的成绩】
2、找36的所有因数
师:考验你们的时刻到了,你能找出36的所有因数吗?你可以独立完成也可以同桌合作完成,想一想怎么有序的一个不漏的写全,最好把怎么找的方法也写在自己的草稿本上。学生填写时师巡视搜集作业。
展示学生中间出现的作业情况,请三位学生板演。(有用口诀的,用除法的,随意找的。)
师:说说你是怎么有序思考的?你们对他的想法怎么看?有不同的想法吗?
生:可能出现用乘法口诀的方法一组一组找的,突出一对一对找;
也有学生用除法来找,出示算式,也是一对一对找。
师:先想到了哪道除法算式?36÷1=36 这一个除法算式可以找到几个36的因数?接着找。不管用乘法口诀找还是用除法找,都是从几开始的?这几种写法你最喜欢哪一种?我们一般都是把这些因数按照从小到大的顺序排列整齐。【让学生感知从谁开始找很关键】
为什么36÷6=6或者算到六六三十六之后就不再继续找下去了呢?我们来感觉一下【同样感知找到何时为止也同样重要】
师:体会体会老师板书
1、学生:36、2、学生:18、3、12、4、9、6这两个因数在不断接近,接近到相差无几。我们一共找到了几个36的因数呢?
师:通过刚才的交流,你们有办法一个不漏地找一个数的因数了吗?【整个过程一定要发挥学生的主体作用,让其不断去发现、探讨、完善,自主构建一个找因数的好方法,而师最重要的是学会引导】
3、巩固练习:练写15和16的因数(分组写)
四、归纳一个数因数的特点
师:观察大屏幕上这些数的因数,都有什么共同的特点?结合学生的回答,多媒体演示,归纳出一个数的因数最小是
1、最大是它本身。(多媒体出示并简要板书)
【此处同样发挥学生的观察、发现、总结能力】
五、探索找一个数倍数的方法 1.找3的倍数
师:一个数的因数我们会找了,那一个书的倍数呢?在30秒内你能找出多少个3的倍数?
交流方法:用不为0的自然数依次乘
3、不停地加3.而后板书,强调我们一般只要写出五六个打上省略号。2.巩固练习:找2和5的倍数
【找因数的方法比较简单,我开展限时写倍数的活动,再让写的最多的同学谈自己写的快的秘诀,充分激发了学生的积极性,另外也达到了相应的教学目的】
六、归纳一个数倍数的特点
通过观察总结并板书:师:观察这些数的倍数都有什么共同的特点? 一个数最小的倍数是它本身,没有最大的倍数,一个数的倍数个数的无限的,进而对比发现一个数的因数是有限的。(多媒体出示并简要板书)【此书处理同因数一致】
七、巩固练习:
师:倍数和因数的知识在生活中还有很多应用。出示巩固练习: 1.“想想做做”第2题
出去游玩,乘坐小艇每人应付4元,你能把下表填写完整吗? 师:先动手在书中填一填。学生汇报,进而追问:表中“应付元数”都是4的什么数? 生:都是4的倍数
师:你还能说出哪些4的倍数? 能把4的倍数全部说完吗?
不能,打上省略号
2.“想想做做”第3题
师:六一节24个同学表演团体操,你能把队伍的排列情况填写完整吗?同样拿出书快速填一填!汇报交流.师:表中的“每排人数”都是怎样算出来的?(24去除以每一个数所得的结果)师:排数和每排的人数与24有什么关系?(因数关系)
【虽然课堂的时间较紧,但是必要的巩固练习是要的,而课本上这两题的编排,还是比较贴切孩子的生活。在处理上,第一题稍快,可以直接汇报,第二题稍稍引导一下即可】
八、总结全课
师:谁来谈谈,这节课中你都有哪些收获?
同学们总结的真好。课我们就上到这,今天请大家以一个特别的方式离开课堂
九、活动(动脑筋离课堂)1.是30的因数先离场 2.是5的因数再离场
师:谁能说一句话让我们大家都能离开? 对了,就请是1的倍数同学全离场
【此处是参考黄爱华老师的分数认识一课的结尾而设计,形式新颖,学生也感兴趣,另又很好地用到本节课所学的知识】
第五篇:倍数和因数 教学设计
小学数学教学设计评比
《倍数和因数》教学设计
[教材简析]“认识倍数和因数”是苏教版国标本小学数学第八册第70—73页的内容。教学时,充分利用学生已有的知识,引出倍数和因数的概念;探索找一个数的倍数和因数的方法。认识倍数和因数时,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,引导学生在操作中得到乘积相同的不同乘法算式。学习找一个数的倍数和因数时,利用学生对乘、除法运算及其相互关系的已有认识,启发学生进行灵活的、有序的思考。这样安排,不仅有利于学生在新旧知识之间建立起联系,而且也为学生的动手操作、自主探索、合作交流提供了机会。
[目标设计]
1、经历“活动构建”过程,使学生领会因数和倍数关系,通过独立思考、合作交流,熟练地找一个数的因数和倍数。
2、在“玩学号游戏中”学会从数学角度思考问题,从而感受数学知识的内在联系,发展数学思维。
3、积极参与数学活动,体验数学学习的乐趣。
[重点、难点]掌握求一个数的因数和倍数的方法,学会有序地思考。[设计理念]
1、在求一个数的倍数和求一个数的因数活动过程时,利用摆纸片、猜学号等现实的、有意义的、富有挑战性的内容,呈现采用动手实践、自主探索与合作交流等表达方式,以满足多样化学习需求。
2、在学习倍数与因数活动过程时,利用学生对乘法和除法及长方形、正方形的已有认识,通过师生合作、生生合作、进行师生互动、生生互动,给学生展示的机会,构建倍数和因数的意义,感知倍数和因数的内在关系。
[设计思路]
1、概念揭示变“逻辑演绎”为“活动建构”,借助学生利用摆正方形的操作和想象活动,唤起学生的“因倍意识”,自主建构起“因数和倍数”的意义。
2、解决问题变“关注结果”为“对话生成”。在教学中为学生营造一个“对话场”,在生生、师生多度度、多层面的对话中,能让师生彼此分享经验、沟通思考,生成新的看法。
3、教学宗旨变“关注知识”为“启迪智慧”。通过对“因数和倍数”内涵的深度挖掘,在教给学生数学知识的同时,更教会他们数学思考的方法,让他们在数学课堂上释
小学数学教学设计评比
放潜能,开启心智。
[课前准备]学号卡、正方形纸片、每人一个信封。[教学过程]
一、意义构建
1、活动准备。同学们,你的信封里有12个同样大小的正方形纸片,请拿出来好吗?现在,你们前后4个同学一小组,用12个正方形拼成一个长方形,看哪个小组的拼法最多。
会意:要用乘法算式表示。
2、分小组操作,把不同的摆法记录下来。
3、组织交流:要说出每排摆几个、摆了几排,还要说出相应的乘法算式。
4、汇报板书:4×3=12 6×2=12 12×1=12
5、揭示意义:刚才我们用12个同样的小正方形,摆出了三种不同的长方形,且得出三道不同的算式。现在以4×3=12为例,想一想这几个数字之间有什么关系呢?启发学生说一说,然后老师揭示:从数学角度看,我们可以说4是12的因数,3也是12的因数。反过来,我们还可以说,12是4的倍数,12也是3的倍数。这就是今天我们要研究的“因数和倍数”。
相机板书课题:因数和倍数
6、应用。根据黑板上另两道算式,你能说出哪个数是哪个数的倍数,哪个数是哪个数的因数吗?
7、问题预设:12是倍数,2是约数。明确:倍数和因数都是指两个数之间的关系。
8、拓展:你能先说出一道乘法算式考考同桌吗?再根据算式说说哪个数是哪个数的倍数,哪个数是哪个数的因数吗?谁再来一道算式考考全班?
问题预设:0×1=0 明确:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。
9、质疑:你还有什么要告诉老师和同学的?
[设计理念]本环节设计旨在让学生借助表象进行操作和想象活动,自主体验数与形的结合以及其中的“因倍关系”,进而生成因数和倍数的意义。这种意义的建构是基于学生原有经验之上的,是学生自主操作、积极思考的结果。
二、探索方法
(一)探索求一个数的倍数的方法。
小学数学教学设计评比
1、游戏引入:现在我们来玩毽子游戏,好不好?毽子到哪位同学那儿丢了,哪个同学的学号就是下一步要研究的数字,把这个机会让给第一排的同学好吗?
2、问题:你能用几种方法求出3的倍数?
3、生生合作:预设出现的情况(板书)(1)3×1=(3)
3×2=(6)3×3=(9)
(2)3的倍数有3、6、9 „„„„
4、师生交流。
(1)问题:什么样的数是3的倍数?(指名回答)(2)明确:3的倍数是3与一个数相乘的积。
5、问题:谁能按从小到大的顺序有条理地说出3的倍数?(3分别与1、2、3„„相乘所得的结果)能把3的倍数全部说完吗? 应该怎样表示问题的答案?
相机板书:3的倍数有3、6、9„„„„。
6、试一试:
(1)分别写出2和5的倍数。一名学生板演,其他学生写在本在上。(2)问题:观察上面的几个例子,想一想一个数的倍数有什么特点?
7、小结:一个数的倍数,最小的是它本身,没有最大的倍数;一个数的倍数的个数是无限的。
8、练一练。
9、质疑:你们谁还有什么要补充的问题吗?
[设计理念]利用游戏引出学生自身的学号,再以学号为研究内容,从而使学习内容现实、有意义。
(二)探索求一个数的因数的方法。
1、猜一猜:现在我们来玩学号游戏,老师手里握的是第5排某个同学的学号,而且不是单号,看哪个小朋友能猜出来?
2、确定数字:恭喜你,答对了,是36号。现在我们就来找一找36所有的因数是哪些同学的学号。
(1)问题:谁能说一说哪些数是36的因数?
小学数学教学设计评比
(2)明确:如果有两个整数相乘的积是36,那么这两个整数都是36的因数。板书()×()=36。
(3)交流:你的学号数是不是36的因数?为什么?
1我的学号是36的因数,因为我是2号,2×18=36。○2我的学号数不(4)汇报:○是36的因数,因为我是7号,7无论和什么数相乘都不得36。
3、问题:怎样才能有序地找出36的因数?谁能告诉大家,并说出算式。预设:(1)×(36)=36 36÷(1)=36(2)×(18)=36 36÷(2)=18 „„„„
(6)×(6)=36 36÷(6)=(6)
板书:36的因数有1、2、3、4、6、9„„36。对于(1)×(36)=36和(6)×(6)=36这两道算式你不想对同学说两句吗?
4、启发
(1)在(1)×(36)=36中,36即是36的因数,又是36的倍数。
(2)在(6)×(6)=36中,6是36的因数。当两个因数相同时,通常只需要说出一个。
5、现在请两位同学说说你们的学号是多少? 8 16
6、问题:你能很快找出这两个学号的因数吗?直接写出答案。8的因数有1、2、4、8。16的因数有1、2、4、8、16。
7、问题:观察上面几个例子,你发现一个数的因数有什么特点?
8、小结:一个数的因数的个数是有限的;最小的是1,最大的是它本身。
9、回顾:刚才的过程,你觉得要找一个数的因数,有什么诀窍?(通过对话、讨论,让学生体会思考的合理性、有序性)
[设计理念]通过多角度、多层面的交流与对话,师生之间彼此分享经验、沟通思考。在解决问题的过程中,学生的思维能力得到了提高,情感、态度、价值观得到了升华。
三、拓展提高:
1、出示: 45 30 5 3 2 要求:选2个数字,用今天学到的知识来造个句。
2、猜一猜:
老师的年龄能被7整除,老师可能是多少岁?同时又是4的倍数?
小学数学教学设计评比
3、请你拿出学号卡,在纸上写下你的学号数的所有因数。
(1)、汇报:学号数只有一个因数的学生请举手。只有一人,你很幸运,你不想说什么吗?
(2)、学号数只有2个因数的学生请举手。(2、3、5、7、11„„)
(3)、其它数的因数个数多少不一,同学们猜一猜,在它们中间,因数个数最多的是哪一个?理由?你有什么方法可以把这个尽快地找出来。
[设计理念]练习题设计时,考虑到不同的学生要有不同的发展,既有层次,又有坡度,同时还将知识性、趣味性有机地结合。学生兴趣盎然,思维敏捷,体会到数学知识本身的无穷魅力,体验到学习成功的无限喜悦,更是为后继学习埋下了一个伏笔。
四、收获反馈。
通过今天的学习,你有什么收获呢?你还想提什么问题?今天,这节课我们就上到这儿,关于“因数和倍数”,还有许多的知识等我们去学习、去研究、去探索„„。
教学反思
《因数和倍数》是一节理论性较强,内容相对较抽象的数学课。面对这样的课,我所坚持的教育理念就是:教法创新,让学生主动参与到数学学习活动中来。在这堂课的教学中,我认为有以下几个方面对课改新理念落实比较到位:
(一)巧妙借助生活实例,轻松解决概念难点。
常言说,良好的开端是成功的一半。课前,我用聊天的方式,用一个十分贴近学生生活实际的例子,用他们十分熟悉的人物关系,既引出了新课内容,又帮助学生理解这堂课中“因数与倍数”相互依存的关系做了一个良好的铺垫,避免了后面教学中生硬的讲解,使学生易于接受。
(二)关注学生的发展,尊重学生的选择,充分体现学生的主体性。
新课标指出:“学生是数学学习的主人。”教师要向学生提供充分的从事数学活动的机会。本课根据学生对游戏的选择,使整节课的数学活动都始发于学生,终结与学生,学生的主体性得到充分地展现。课堂上,每个学生根据自己的幸运号码找朋友,介绍自己与编号的关系,既巩固了知识,又体验了学习的乐趣,教师尊重了学生的选择,满足了学生的愿望,迎合了学生的喜爱,使学生真正成为学习的主人,数学学习活动也成为生动活泼的,富有个性的过程。
(三)营造开放型的学习氛围,调动学生学习的主动性。1.让学生大胆的,自由的想,说,做。
小学数学教学设计评比
语言是思维的外壳,天真烂漫的孩子是怎样想的,只有通过他们的说才能反映出来。为此,在进行整除意义的教学时,首先让学生们自主探究,通过自己的分一分,想一想,然后再小组合作交流彼此的想法,分法,求同存异,最后得出正确结论,这样的方法正符合新课程标准所倡导的学习方法。
2.让学生在游戏中体会,感悟。
玩,是孩子的天性,让孩子在玩耍中,轻松的获取知识是极好的学习途径,又可以将学生很好的吸引住,让他们积极主动地参与到课堂学习中。因此,在课堂教学中,我利用游戏活动,使学生在轻松愉快的“对对碰”“找朋友”中感受整除的意义,约数和倍数的含义,从而也使教学的难点的以突破解决,用这种学生喜欢的,乐于参与的方式来让学生感悟知识的内涵,比枯燥的说理,讲解,乏味的练习题,有着更强的吸引力与调动性。学生在课堂中自始自终兴趣盎然,学生对数学知识的认知兴趣和发现热情展露无遗。
(四)幽默生动的语言与亲和力,创建了轻松,自然,和谐的课堂氛围。课堂中巧妙运用幽默,激励性的语言有效的调动着学生的学习积极性,使学生一直保持着兴奋的学习状态。此外,还置身于学生当中,做学生的一员,增强与学生的亲和力,在学习约数和倍数中,我把自己也编入了学生的幸运号码中,并与学生共同游戏,置身学生当中,使学生感受到教师就是他们的朋友,就是他们中的一员,这也体现了师生平等的新概念。