第一篇:“倍数与因数”高效教学策略
“倍数与因数”高效教学策略
新课改理念下,培养学生实践能力、分析能力、解决问题的能力以及可持续学习能力是现阶段教学的主要目标。因此,小学数学教学需要挖掘学生潜力,关注学生发展,引导学生掌握知识与技能、过程与方法、情感态度与价值观。“倍数与因数”是苏教版小学《数学》四年级下册第九单元的内容,本文以该单元内容为例,讲述小学数学新课改理念下以生为本、因材施教理念的应用,结合建构主义思想,实施循序渐进、由浅入深的教学策略,为培养新一代的人才奠定基础。
一、巧妙分析,加强初步理解
科学的导入是高效课堂实现的基础。导入阶段是知识的引入阶段,在学习一个新概念、新方法之前,导入非常重要,影响到下一步的学习效果。强化学生数学意识与数学思想,需要教师巧妙分析,运用生活化、趣味化的语言,借助实验、举例、提问等教学方法,加强学生对知识的初步理解,提升学生学习的兴趣,鼓励学生思考、合作、交流与探究。
例如:“倍数与因数”的教学导入阶段,教师拿出12个相同的正方形,让学生拼成长方形。学生展开拼接过程,有的学生拼成2×6的长方形,有的拼成3×4,有的也拼成1×12的长方形。结合这个游戏过程,教师可以在学生拼接过程中,引入倍数与因数的概念。12是学生拼接长方形长、宽所有数的倍数,而这些数都是12的因数。一个整数(因子)乘以任意整数后,得出一个整数(乘积),那么这个乘积就是这个因子的倍数,这个因子就是这个乘积的因数,因子与乘积这两个数分别为对方的因数与倍数。再结合2、3与5的倍数,引导学生自己写出后面一系列倍数,得出数的最小倍数为其本身,一个数倍数的个数是无穷的。结合游戏引入与科学的语言巧妙分析,引导学生加深对知识的理解。
二、总结规律,构建知识网络
数学知识具有抽象性、系统性与规律性特点,如果想要更好地学习数学,就需要实时总结规律,找到方法并加以训练、应用与反思。结合小学数学学科特点,在小学生数学打基础的阶段,教师需要重视将数学思想与方法引入到教学中,鼓励学生探寻、思考与总结规律,构建较为完善的知识网络,促进学生潜力的开发。
例如:在百数表中用不同的颜色画出5的倍数、2的倍数、3的倍数与7的倍数,通过单独就某个数的倍数进行分析,教师引导学生连线出5的倍数,发现5的倍数位于2竖条,并且末尾均是0或5。另外,2的倍数均是偶数,有2、4、6、8、10开头的5竖条,3的倍数各个数位上数字的和也为3的倍数,7的可以由这个数截去个位数,再用得到的数减去个位数的2倍,得到的数若是7的倍数,则原数能被7整除,可以归纳为“截尾、倍大、相减、验差”。通过引导学生观察、分析、思考与总结规律,建构完善的知识网络,奠定学生进一步学习的基础。
三、灵活变通,鼓励发散思维
“倍数与因数”涉及的知识点比较多,既有对数的概念界定,也有关于数的基本思想与方法的概括。这一章节的教学需要教师引导学生灵活变通、发散思维、拓展延伸。例如:由第二阶段对倍数规律的总结,接下来引导学生灵活变通、发散思维,进一步学习公因数与公倍数。“1、2、3、4、6、12、18这几个数哪些是12的因数,哪些是18的因数,哪些既是12的因数,也是18的因数?”基于以上总结的规律,学生很容易发现12的因数有1、2、3、4、6、12,而18的因数有1、2、3、6、18,得出它们都有的因数为1、2、3、6。结合这一案例,教师引导学生发散思维,得出“公因数”的概念。继而拓展,那么2与3的公倍数性质为既是偶数,各个数位上和又为3的倍数,2与5的公倍数为末尾是0。
四、实践探究,强化应用实践
结合“倍数与因数”相关知识的理解、学习,之后可以拓展延伸与实践探究,提问“只有两个因数的数,它们的因数有什么特点”。教师可以引导学生结合2、3、5、7等数进行分析,发现类似的数的因数都为1和其本身。教师给出定义“只有1和其本身两个因数的数叫做素数(质数),反之叫合数”。再引入2~50的表格,将2、3、5、7的倍数全部画掉后(2、3、5、7本身不画掉),剩下的数即为素数。思考“所有素数都是奇数吗?所有偶数都是合数吗?”回答是否定的。得出除2以外所有素数都是奇数,除2以外所有偶数都是合数。这样引导学生灵活变通,不断发散思维,强化对数学思想方法的实践应用。
在小学数学教学过程中,教师应该以挖掘学生潜力、促进学生发展为方向,除了应该引导学生掌握知识与道理,还应该重点引导学生巧妙分析、总结规律、灵活变通、实践探究。让学生通过对概念与理论的初步理解,继而构建完善的知识网络,再次发散思维,最后强化应用实践,循序渐进、由浅入深、不断推进。要强化学生对课程的了解、学习、思考、实践与应用,不断强化学生数学意识、数学技能与数学素养。
第二篇:倍数与因数
《倍数和因数》教学设计
教学内容:
北师大版小学数学四年级上册第31--32页 教学目标:
1、通过动手操作并写出不同的乘法算式,认识倍数和因数,初步理解倍数和因数相互依存的关系。
2、使学生在认识倍数和因数以及探索一个数的倍数或因数的过程中,进一步体会数学知识之间的内在联系,并总结找一个数的倍数和因数的方法,从而提高数学思考的水平。
教学重点、难点:
掌握求一个数的所有因数的方法,学会有序地思考。教学过程:
一、谈话导入,激发兴趣
同学们,你们和老师是什么关系?你和妈妈呢?
我们在表达时要讲清谁是谁的什么,生活中许多关系都是相对应的。数学中自然数和自然数之间也有着对应的关系,这节课我们就来研究数和数之间的对应关系。
二、操作实践,认识倍数和因数
1、操作实践。
(1)你会用12 个同样大的正方形拼成一个长方形吗?同桌合作,动手摆一摆,想一想:每排摆几个?摆了几排?并用乘法算式把自己的摆法表示出来。(2)全班交流摆法和算式。
(3)用12个同样的正方形,大家摆出了三种不同的长方形,得出三道不同的乘法算式,我们要根据这些算式研究新的知识。
根据3×4=12,我们就说,3是12的因数,4也是12的因数;反过来,我们还可以说,12是3的倍数,12也是4的倍数。
(4)对照算式你能说一说吗?
(5)根据这两道乘法算式:2×6=12、1×12=12,你能分别说一说谁是谁的因数?谁是谁的倍数?
(6)你知道哪些是12的因数?你能用一句简洁的话说说吗?反过来呢?
(7)你能按顺序把12的因数都写出来吗?
2、举例内化。
(1)师:你理解什么是倍数,什么是因数吗?你能举一个乘法算式,让大家说说谁是谁的因数,谁是谁的倍数。
(2)同桌合作,你写一个给我说,我写一个给你说。(3)老师也想来出个算式。(板书:24÷3=8)你能说说谁是谁的因数,谁是谁的倍数吗?
(4)小结:我们不仅可以用乘法算式认识因数和倍数,同样也可以用除法算式认识因数和倍数。两个数之间的倍数、因数关系,不能单说哪个数是倍数,哪个数是因数,要说清()是()的倍数,()是()的因数
三、自主探究,意义建构,找倍数和因数。
1、自主探究。
(1)师:从古诗中找到3、6、9都是3的倍数,3还有其它的倍数吗?请你写一写,1分钟内,比一比谁写出的3的倍数最多。(教师巡视)(2)请写得又多又快的同学介绍自己的好方法、小窍门。在此基础上交流评价小结方法,评价时突出有序思维的策略。(板书:有序)(3)师:如果给你足够的时间,写得完吗?那我们就用……表示。
2、迁移内化。
(1)用自己喜欢的方法写出2和5的倍数。
(2)引导观察:请学生观察以上这些数的倍数,有什么发现?(一个数的倍数的个数是无限的,一个数最小的倍数是它本身。)
3、拓展提升。
(1)迁移尝试:请学生试着找出36的所有因数。(2)交流方法。
(3)启迪思考:怎样找才能不重复不遗漏?在小组里说一说。(4)尝试写出24的所有因数。
观察:对照36和24的所有因数,看一看你有什么发现?(一个数最小的因数是1,最大的因数是它本身。)
四、全课总结.同学们,今天这节课你有什么收获?还有什么不明白的地方?
《因数和倍数》教学反思
这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化。我创设有效的数学学习情境,数形结合,变抽象为直观。在学生已有的知识基础上,从动手操作到直观感知,概念的揭示突破了从抽象到具体。让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
第三篇:倍数与因数
一、自然数无限大,所以奇数和偶数无限大。
二2、5的倍数特征 : 个位是0或5的数是5的倍数
个位是0、2、4、6、8的数是2的倍数
个位是0的数是2和5的倍数
三、3的倍数特征: 一个数的各个数字之和是3的倍数,这个数就是3的倍数
四、撑握:同时是2和3的倍数(末位数是偶数,而且这个数的每个位数相加之和是3的倍数)
同时是2和5的倍数(10、20、30…… 个位是零的都是)
同时是3和5的倍数(第一:数字和是3的倍数第二:个位数是0或5)
同时是2、3、5的倍数(末位数是0,而且这个数的每个位数相加之和是3的倍数)
五、100以内质数表共25个:2、3、5、7、11、13、17、1923、27、2931、3741、43、4753、5961、6771、73、7983、89
六、判断一个数是不是另一个数的倍数(用除法)
判断一个数是不是质数(只有1和它本身两个因数)
判读是不是合数(至少有3个因数)
找一个数的倍数(用乘法)
找一个数的因数(用乘法算式,注意有序思考,明确一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身)
七、偶数+偶数=偶数
奇数+奇数=偶数
偶数+奇数=奇数
偶数-偶数=偶数
奇数-奇数=偶数
偶数-奇数=奇数
奇数-偶数=奇数
第四篇:倍数和因数
倍数和因数
【教学内容】第70-72页的例题和相应的试一试,想想做做1-3 【教学目标】 【基础性目标】
1.让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。【提高性目标】
2.让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会数学内容的奇妙、有趣,产生对数学的好奇心。【教学重点】
理解倍数和因数的意义,掌握找一个数的倍数和因数的方法。【教学难点】
理解倍数和因数的意义,掌握找一个数的倍数和因数的方法。【教学准备】教学光盘 【教学过程】 板块一:
(一)教学内容:教学倍数的意义,找一个数的倍数
(二)教学目标:目标
(三)教学过程:
一、导入 谈话:回忆一下,我们学过了哪些数?(学生自由发言)刚才有的同学谈到我们学习了自然数,你能举例说一说哪些数是自然数吗?(指名回答)对,o、l、2、3、4……都是自然数。这个单元我们将从一个特定的角度来对除了0之外的自然数进行研究,研究这些数的特征和相互关系,这个单元的题目就是倍数和因数。(板书课题)
二、教学倍数和因数的意义
1.那么什么是倍数和因数呢?我们还要从最熟悉的事只有一个自然数是两个自然数的乘积的时候,才能谈上它们之间具有倍数和因数的关系。
2.做“想想做做”第1题。(1)指名读题。
(2)指名口答,共同评议。
3.板书:24÷4=6。谈话:我能说24是4和6的倍数,4和6都是24的因数吗?(学生自由发言,可能引起争论,最后统一到根据24÷4=6,可以得到4×6=24,实际上24是6和4的乘积,所以24是4和6的倍数,4和6都是24的因数)
三、教学找一个数的倍数
1.谈话:下面我们研究如何找一个数的倍数。请大家找3的倍数。想想用什么办法找,能找多少个?在小组内讨论找的方法,然后动手找。2.谈话:谁来说一下你是怎样找3的倍数的?你找到了多少个? 学生发言时教师板书:3×1=3 3×2=6 3×3=9 3的倍数有3、6、9、12、15、18…… 提问:能写完吗?为什么? 3.提问:谁能总结一下找一个数的倍数的方法?(用这个数分别与1、2、3……相乘)4.谈话:你能不列式计算直接写出2的倍数和5的倍数吗? 学生独立书写。
指名回答,教师板书:2的倍数有2、4、6、8、10、12…… 5的倍数有5、10、15、20、25、30……
5.提问:观察上面的三个例子,你有什么发现?在小组内讨论。指名汇报,相机出示以下结论:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。【设计意图】
找一个数的倍数相对比较容易,在比较中让学生感受有顺序的找可以避免重复遗漏,强化数学思维有序性的培养。为下面找一个数的因数打下比较好的伏笔。板块二:
(一)教学内容:教学找一个数的因数
(二)教学目标:目标1、2
(三)教学过程:
1.谈话:下面我们研究如何找一个数的因数。你能找出36的所有因数吗?边想边写出来。
指名说出自己找的结果,学生很可能找不全.或顺序很乱。
2.谈话:刚才同学们找到了36的一些因数,感觉到往往找不全,而且小一个大一个地没有规律。那么怎样找才能不重复、不遗漏呢?我们一起研究。
先这样想,根据因数的意义,我们知道()×()=36,括号内的数就是36的因数。
如果第一个括号里填1,那么怎样算出第二个括号里的数(指名回答,板书:36÷1=36)这样一次找到了36的几个因数?是哪两个?
如果第一个括号里填2,那么怎样算出第二个括号里的数?(指名回答,板书:36÷2—18)这样又找到了36的哪两个因数? 你能接着写出几个这样的除法算式吗?(学生回答后教师板书:36÷3=1236÷4=936÷6=6)从36÷6这道除法算式中找到了36的几个因数? 还要再写除法算式吗?为什么? 现在你能按从小到大的顺序说出36的所有因数了吗?指名到黑板前指着算式中的数说答案,教师板书:36的因数有1、2、3、4、6、9、12、18、36。
3.谈话:在小组里讨论一下,我们可以用什么办法找一个数的因数。4.谈话:你能找出15的因数和16的因数吗?如果用除法找,算式可以写出来,也可以想在心里,不写出来。学生独立做题后,指名回答,教师板书:
15的因数有:l、3、5、15。16的因数有:1、2、4、8、16。
5.提问:观察上面的三个例子,你有什么发现? 学生自由发言,教师相机出示以下结论:
一个数最小的因数是1,最大的因数是它本身。一个数的因数的个数是有限的。【设计意图】
教学的开始主要是对找一个数因数的方法进行指导,无论是乘法还是除法算式都能找到一个数的两个因数。然后以小组的形式,引导象找倍数一样有顺序的去找一个数的因数,尽可能找全。教学的层次有坡度,能照顾到绝大多数学生。板块三:
(一)教学内容:巩固练习
(二)教学目标:目标2、3
(三)教学过程:
一、组织练习
1.做“想想做做”第2题。(1)让学生自己读题填表。(2)提问:表中的“应付元数”都是4的倍数吗?为什么? 2.做“想想做做”第3题。(1)让学生自己读题填表。
(2)提问:题中的排数都是24的因数吗?每排人数呢?为什么排数和每排人数都是总人数的因数?(3)提问:通过以上两题的练习,你对倍数和斟数有什么新的认识?(倍数和因数在生活中被广泛应用)3.做“想想做做”第4题。(1)学生各自在书上填写。
(2)展示部分学生的答案,全班共同校对、评议。(3)发现做错的学生,找出错误原因。
4.游戏每人发一张卡片,标有1—30的数。(正好30名同学)a.要求:全体活动起来:7的倍数站起来。30的因数站起来。1的倍数站起来。
得出:任何非0的自然数都是1的倍数,反过来1是任何非0的自然数的因数。
b.小组内说说数与数之间的倍数和因数关系。
c.这里要注意了,我们在研究倍数和因数时,都是指非0的自然数。
二、全课总结
提问:这节课你学到了哪些知识?掌握了哪些方法?你理解了哪些结论? 【设计意图】
这节课的容量比较大,所以后面的练习我没有选择都做,主要是后面的游戏需要花一定的时间。这个游戏的设计主要想通过几的倍数、几的因数站起来这样一个全体同学互动活动,充分调动学生参与学习、主动学习的积极性。并渗透了任何非0的自然数都是1的倍数,1也是任何非0的自然数的因数。【课堂练习设计与布置】
【必做题】课本第72页“想想做做”第1题。【选做题】《补充习题》第53页 【板书设计】 倍数和因数
4*3=123*1=3()*()=36 2*6=123*2=636÷1=36 1*12=123*3=936÷2=18 一个数最小的倍数是它本身36÷3=12 没有最大的倍数36÷4=9 一个数倍数的个数是无限的36÷6=6 一个数最小的因数是1最大的……
因数是它本身,一个数因数的个数是无限的。
第五篇:因数和倍数
成功之举:
创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
败笔之处:
找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数对于刚刚对倍数因数有个感性认识的学生来说有一定困难。
问题发现:
整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。
教学机智:
练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。
再教设计:
要注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。