第一篇:相遇分数应用题
相遇分数应用题
1、小牛乘汽车从县城到省城需2天,他第一天走了全程的1/2又72千米,第二天走的路程等于第一天的1/2,求县城到省城的距离。
2、甲乙两地相距60千米,汽车从甲地开往乙地,当汽车超过全程中点10千米时,还剩下全程的几分之几?
3、甲乙两车同时从AB两地相对开出,几小时后在距中点40千米处相遇。已知甲车行完全程要8小时,乙车行完全程要10小时,求AB两地相距多少千米?
4、甲乙两人同时从两地相向而行,在距离中点40米处相遇,已知甲行了全程的55%。甲行了多少千米?
5、甲乙两车同时从A地开往B地。当甲车行完全程的一半时,乙车离B地还有54千米,当甲车到达B地时,乙车行了全程的80%。AB两地相距多少千米?
6、甲乙两人同时从两地相向而行,在距离中点40米处相遇,已知甲行了全程的55%。甲行了多少千米?
第二篇:相遇应用题说课稿
相遇应用题说课稿
一、说教材
1.说课内容:九年义务教育六年制小学数学第九册第58-59页的准备题和例5,完成“做一做”的题目和练习十四的第1-3题。
2.教学内容的地位与作用:
学生在前几册教材中已经学过一个物体在运动中的速度、时间、路程之间数量关系的应用题。这为学习两个物体的运动情况作了充分的知识铺垫和思路孕伏。教材重点编入了两个物体(两人、两车、两船等)相向运动的应用题,主要学习“相遇求路程”和“相遇求时间”的知识。本课学习“相遇求路程”,它是在一个物体运动情况的基础上引伸发展的,使知识类推迁移到本课题。通过这部分内容的学习,使学生从整体上理解相遇问题的意义、结构特征、掌握数量关系、学会分析和解答这类应用题的方法,从而培养学生的思维品质,提高学生解决实际问题能力。
3.教材的结构层次及编排意图:
相遇应用题的知识从一个运动物体变成两个运动物体,涉及到物体运动的速度、方向、出发地点,出发时间等不同因素,学生在这方面的生活经验较少,难于理解相向运动的变化特点,为帮助学生更好地理解掌握知识,教材有层次地显示了本课题的知识结构:
(1)先出示一个准备题,学生通过图示加深对“两地、同时出发、相对而行”含义的领会。接着,通过填表分析每经过1分、2分、3分后,两人之间的距离变化,让学生理解什么是“相遇”,相遇时“两人所走的路程之和等于两地间的距离”这一数量关系式,为学习例题扫除障碍。最后通过例5的学习,引导学生按照两种不同的思路去分析应用题的数量关系。第一种解法:先求两人各自走的路程,再加起来就是总路程;第二种解法:先求每分两人所走的路程的和,即是两人的速度和,再乘以相遇时间,就得总路程。这种解法不仅比第一种解法简便,而且是学习“相遇求时间”的基础。通过新知的学习,培养了学习的初步逻辑思维能力和分析解决问题的能力。
(2)为了使学生熟练地掌握解答相遇求路程应用题的方法,教材在“做一做”和练习十四中,除编排了相向运动的相遇问题以外,还编入了一些稍有变化的题目,如:背向而行,不同时间出发的情况,这样不仅扩展了学生思维,防止思维定势,也培养了学生认真审题的良好习惯。
根据以上分析的结构特点和学生的认知规律,确定本课题的教学目标和教学重难点。
4.教学目标:
(1)使学生初步理解相遇问题的意义。
(2)使学生会分析相遇问题的数量关系和解题方法。
(3)培养学生初步逻辑思维能力。
5.教学重点:
相遇问题中数量关系的理解和解题思路的分析。
6.教学难点:
解答问题时对速度和的理解和运用。
7.教学关键:
理解清楚每经过一个单位时间,两物体之间的距离变化。
二、说教法学法的选择
1.运用知识的迁移规律,以旧引新,启动学生思维。
数学知识的连贯性很强。在教学新知识时,要注意新旧知识的内在联系,抓住新知识与原有知识结构、认识水平的共同点和分化点,为学生架起从旧知识到新知识的桥梁,启动学生的思维活动。由于相遇问题是由两个物体运动完成的,其数量关系和解题思路是在一般的行程问题的基础上发展而来的。所以先复习由一个物体运动求路程的行程问题,为学习新知作了适当的铺垫。
2.运用多媒体教学手段,丰富感知,激发学习兴趣。
兴趣是最好的老师。针对学生好奇、好新、好动的特点,在教学中科学地运用多媒体计算机辅助教学,有效地激活课堂教学的各个环节,提高教学效率。相遇问题的教学运用线段图或教具演示等传统手法,学生较难感知两个 1
物体各自用不同速度运动的状态,给学生理解题意造成一定的困难。本课运用多媒体教学手段,提供丰富的表象信息,使学生多方位感知事物,既激发学生学习的欲望,又突破了教学重点、难点,从而促进学生积极参与学习过程。
3.引探教学,发挥学生的能动性。
随着科学技术的发展,未来的文盲将不是不识字的人,而是不会学习的人。教学过程中,要充分调动和发挥教师的主导作用和学生的主体作用,激发学生主动探索的精神。在本课教学中,先让学生读题审题,利用直观的多媒体演示,加深理解关键的字、词、句,并引导学生通过观察、比较、分析,发现出相遇问题的特征、规律,概括出其数量关系式。在已有第一种解题思路的基础上把学习的主动权交给学生,尝试第二种解法,并归纳出两种解题的方法。使学生在发现矛盾、解决矛盾的过程中更牢固地掌握知识,自学能力,独立思考能力和逻辑思维能力也得到不同程度的培养。
4.精心设计课堂练习,提高教学效率。
学生的认知过程是一个不断深化的过程。学习完一个新知识后,教师精心设计一些有层次、有坡度、发展性的课堂练习,是全面落实双基教育,提高教学效率的有效措施。因此在教学中,设计了四个层次的练习:对应练习、深化练习、综合练习、发展练习。多形式的练习,不仅激发了学生的学习兴趣,也反馈了对此类应用题结构、解法的掌握,防止了思维定势,还培养了学生细心审题,认真分析的良好学习习惯。有效地促进了素质教育。
三、教学程序设计
(一)复习铺垫:
1.张华每分钟走65米,走了4分钟,一共走了多少米?(口答)
提问:为什么这样求?谁会用一个数量关系式表示?
2.李诚每分钟走70米,走了4分钟,_____________?
由学生补充问题并进行计算。
以上练习,复习了由一个物体运动求路程的应用题的结构和数量关系。唤起了学生对旧知的回忆,使学生能顺利地应用旧知识和学习方法去获取新知识,为学习准备题做适当的铺垫。
(二)新知探索:
1.导入新课:刚才我们复习了一般的求路程应用题,它是由一个物体运动完成的。下面我们研究两个物体运动的行程应用题。
承上启下的谈话,把学生引入到与所提问题的情景之中,激发学生迅速进入学习状态。
2.学习准备题:
(1)读题看电脑演示,初步理解题意。
问:题中告诉我们,张华和李诚是怎样出发的?他们行走的方向又是怎样?学生边回答,教师边归纳板书:“两地、同时出发,相向而行”的相遇问题的结构特征。
(2)边演示边填写P58表格的数据,并分析数量关系。
先由教师引导学生填写1分钟的路程变化表,再让学生独立填写2分、3分的路程变化情况表,并通过电脑演示,学生校对答案。最后引导学生观察表格的第4列数据,归纳出:当两人距离为0时,说明两人相遇了,并推导出:两人所走路程的和与两家的距离正好相等的数量关系式。
通过多媒体演示,积累表象认知,在屏幕上呈现出相遇问题的特征和数量关系式,帮助学习顺利理解题意,为学习新知扫除障碍。同时,生动清晰、新鲜活泼的画面,有效地引起学生的注意力和兴趣,激发了学生的求知欲。
3.小结并揭示课题:
像上题,两人从两地同时出发,相向而行,最后相遇,他们所走路程之和正好等于两地的距离。我们称它为相遇问题。现在我们就学习解答相遇求路程的方法。板书课题:相遇应用题。
4.讲授例5:
①出示例5,教师读题,学生说出已知条件和问题。
②启发学生学习第一种解法。
演示后提问:a.小强和小丽走的路程各是哪一段?用色段表示。
b.两人4分钟所走路程的和与两家相距的米数有什么关系?
c.要求两家相距多少米?可先求什么?再求什么?
学生回答后,指一名学生口述解题方法,教师板书。
③启发学生学习第二种解法。
先让学生尝试学习,再提问其解题思路,最后通过电脑演示来验证答案,重点理解“速度和”的含义。④小结两种解题方法。
⑤学生看P58例5。
通过教师有机的设问、引导,学生的观察分析,很快得到第一种解题思路和解法;尝试学习第二种解法后,通过电脑演示分析过程,学生很容易知道“两人每分钟共行多少米?”,“经过4分,两人相遇”的条件,形象地揭示速度和、相遇时间、总路程之间的关系,加深学生对第二种解法的理解,也验证了学生的第二种解题思路,从而顺利突破了教学难点。
(三)巩固练习:
1.对应练习:P59“做一做”的两小题。
2.深化练习:P61练习十四的第2题。
运用多媒体演示两辆汽车背向而行的动态,直观生动、引入意境。使学生马上明白:当两个物体同时从一个地方背向而行,它们的结果是相距,同样可用“相遇求路程”的解法求相距路程。这样既巩固所学知识,又扩展了学生思维。
3.综合练习:
(1)两辆汽车同时从A、B两城相对开出,甲车每小时行38千米,乙车每小时行46千米。经过4小时,两车还相距50千米,A、B两城相距多少千米?
正确的算式是()。
A.(38+46)×4B.38×4+46×4+50
C.(38+46)×4-50D.(38+46)×4+50
(2)A、B两城相距386千米。甲、乙两辆汽车同时从这两地相向开出。甲车每小时行38千米,乙车每小时行46千米,开出4小时后,还相距多少千米?
正确的算式是()。
A.(38+46)×4B.(38+46)×4+386
C.386-(38+46)×4
4.发展练习:P61练习十四的第3题。
此题是两列火车相向行驶的相遇求路程的扩展题,由于甲车先开出1小时,即运动时间改变,求相遇路程的方法也有了变化,给解题带来一定的困难。因此,教学时运用多媒体直观形象的演示,帮助学生突破难点,在此基础上进行一题多解的练习,发展思维的深刻性和创造性。
(四)课堂总结:
这节课我们学习了两个物体相向运动的行程问题,其中求路程的解答方法通常有两种:一是先求出两个物体各自走的路程,再将它们各走路程合起来,求得总路程;二是用速度和乘以相遇时间也求得总路程。
(五)布置作业: P61第1题,P62第12题。
《相遇问题》说课稿
各位领导、各位老师:
大家早上好!
今天,我说课的内容是人教版六年制五年级第九册第二单元《整数、小数四则混合运算和应用题》中的相遇问题。从以下四方面进行我的说课:分析教材,理清思路;把握目标,确定重难点;优选教法,注重学法;优化程序,突出主体。
一、分析教材,理清思路
本节知识是在学生初步掌握了速度、时间、路程的关系之后进行的教学。本内容和实际生活有一定的联系,教材借助生活原型,首先编写了准备题,通过观察1——3分钟内两人所走的路程、路程和、相距的距离之间的变化,初步理解相向、相距、相遇等术语的意义。接着编写了学生在上学时经常遇到的相遇问题,使学生在利用不同方法解决探究解决问题的过程中掌握相遇问题的解题方法。最后通过做一做加深对新知的理解。从而培养学生解决实际问题的能力。学好此内容,也为后继学习做好铺垫。
二、把握目标,确定重难点
根据课程标准,确定本节课的三维教学目标是:
1、知识与技能:明确相遇问题的特征;理解基本数量关系;正确分析解答相遇问题。培养学生动手操作、分析、推理能力和解决实际问题的能力。
2、过程与方法:联系生活实际在演示与探究的过程中掌握解决相遇问题的方法。
3、情感态度与价值观:激发学生的学习兴趣,让学生体验到成功的喜悦。探索创新、合作学习的意识。体会数学知识与生活实际的密切联系。在实施教学目标过程中,重点是让学生在“探究”中发现规律,从而弄清相遇问题的数量关系,掌握解答方法。难点是明确数量关系,会用不同方法解决相遇应用题。
二、优选教法,注重学法
学生学习知识是接受的过程,更是发现、创造的过程,好的教法是引导学生自己去发现,主动去探索。课上我为学生创设一系列活动,如观察填表、合作讨论、自主尝试,自由设计运动现象等,给学生自主探究的时间和空间,让学生做中学,学中做;做中悟,悟中创。充分体现学生的主体地位。教师则是一个组织者、指导者、帮助者及促进者。注重联系学生生活中的实际问题和已有经验实施教学,充分体现数学来源于生活,用之于生活的教育理念。让学生说说生活中相遇问题的实例,使学生感受到数学与现实生活的紧密联系,增强学习和应用数学的信心,调动学生学习数学的积极性,在这一良好状态下去发现数学知识。除此之外,我还有针对性地引导学生选择学习方法,使不同层次的孩子学到不同的数学,使每个孩子都体验到成功的喜悦。充分发挥多媒体资源优势,将抽象的问题形象化、直观化,将简单复杂的问题简单化,为学生降低难度,便于理解掌握。
三、优化程序,突出主体
本节课的教学流程是:创设情境、实践探究、巩固深化、课后小节。
(一)创设情境[游戏激发兴趣,创设与现实生活紧密联系的生活事例作情境,使学生能主动地在与情境的交互作用中,在比较、讨论的过程中对两个物体相遇的运动现象有初步感知。使知识间联系紧密,过渡自然。]
1、传纸(记录单)游戏。
2、生活问题,引发思考。
3、补充条件并计算。
4、导入新课。
(二)实践探究 [在例题的教学中,突出让学生借助实践经验解决问题。屏弃了过去的整齐划一的教法,对在实践活动中体验好的学生,让他们独立完成;对善于与人交往的学生,让他们向同学请教;对乐于借助教材的学生,让他们看书,依提示解决问题,最大限度地发挥了学生的主动性。]
1、观察填表,初步掌握相遇问题特征。
2、利用课件演示、线段图分析弄清数量之间的关系。
3尝试解答。
4指名板演,讲解思路
5、总结归纳方法。
(三)巩固深化[通过不同层次、不同类型的练习,先说说解答思路,再列式计算——目的是巩固新知让,不同程度的学生逐步加深对相遇问题的特征、解题方法的掌握]
1、做一做。
2、选一选。
3、提高练习。
4、挑战自我题。[设计开放性的练习,使学生在发散性、多维度的思维活动中提高解决实际问题的能力。]
(四)课后小结[对所新知归纳总结加深印象]
谈一谈本节课有什么收获?
板书设计:相 遇 问 题
速度×时间=路程
速度和×相遇时间=路程
第三篇:分数应用题(本站推荐)
一个筑路队修筑一段公路。第一周修了1/8千米,第二周修了1/7千米,两周正好修了这段公路的1/4。这段公路全长多少千米?
1、一个发电厂原有煤2500吨,用去3/5,还剩多少吨?
2、某渔业队五月份捕鱼2400吨,六月份比五月份多捕了1/4。六月份捕鱼多少吨?
3、某工厂四月份烧煤120吨,比原计划节约了1/9。四月份原计划烧煤多少吨?
4、一个县去年造林1260公顷,超过原计划的1/5。原计划造林多少公顷?
5、一段公路,甲队单独修要10天完成,乙队单独修要15天完成。两队合修几天可以完成?
第四篇:分数除法应用题
小学分数应用题大全
1、一批零件,甲乙两人合作20天完成,甲每天比乙多做3个,乙中途休息了5天,所以完成时,乙只做了甲的一半。这批零件共有多少个?
2、商店促销一种商品,按原价的六五折出售。已知现价比原价降低了350元,现价是多少元?
3、一种盐水用盐和水按2:25配制成重量216克的盐水。现加入多少克盐,使盐和水的比为1:5?
4、一件工作,甲独做要20天,乙独做要30天。现甲乙合作,中途甲出差了几天,这样经过15天才完成,甲出差了几天?
5、一份稿件,原计划5天抄完,结果只用4天就抄完了,工作效率提高了百分之几?
6、三角形的底增加10%,高缩短10%,则现在三角形的面积是原来的百分之几?
7、甲乙两车同时从A地开往B地。当甲车行完全程的一半时,乙车离B地还有54千米,当甲车到达B地时,乙车行了全程的80%。AB两地相距多少千米?
8、希望小学要买50个足球,现有甲乙丙三个商店可以选择。三个商店足球的价格都是25元,但各个商店的优惠的方法不同。甲店:买10个足球免费赠送2个,不足10个不赠送。乙店:每个足球优惠5元。丙店:购物满100元,返还现金20元。为了节省费用,希望小学应该到哪个商店购买呢?
9、老张有一套住房价值40万,由于急需现金,他以九折优惠卖给老李。过了一段时间后,房价上涨10%,老张又想从老李处把房子买回来。想一想,如果老张买回房子,总共损失多少万元?
10、有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,甲、乙两桶油原来各有多少千克?
11、一项工程,甲、乙合作6天完成,乙、丙合作10天完成。现在先由甲、乙、丙三人合作3天后,余下的乙再做6天,正好完成。乙单独做这项工程要多少天完成?
12、制造一个零件,甲要6分钟,乙要5分钟,丙要4.5分钟。现在有1590个零件,分配给他们三人,要求在相同的时间内完成。甲、乙、丙三人各应分配多少个?
13、一架飞机所带的燃油最多可以飞6小时,飞出时顺风,每小时飞行1500千米,飞回时逆风,每小时飞行1200千米,这架飞机最多飞行多少千米就应往回飞?
14、甲班学生人数的3/10等于乙班学生人数的2/5,两班共有学生105人,甲、乙两班各有多少人?
15、师徒俩人共加工零件84个,徒弟加工零件数的1/5比师傅的1/4少3个,师徒俩人各加工零件多少个?
16、爱达花园小学部分学生为社区服务,其中男生人数是女生人数的2/3,后来又有3名男生参加,有3名女生有事离开,这时男生人数是女生的3/4。原来参加社区服务的男、女生各有多少人?
17、食堂新购进大米和面粉共有100千克,已知大米的1/3比面粉的3/10多9千克,大米和面粉各有多少千克?
18、某小学3/5的学生是女生,新学期学校又转来258名学生,使女生增加了1/3,而男生正好翻一倍。原来学校共有多少名学生?
19、商店进了一批水果,第一天卖出30%,第二天卖出150千克,比第一天多卖出20%。这批水果有多少千克?
20、甲乙两人同时从两地相向而行,在距离中点40米处相遇,已知甲行了全程的55%。甲行了多少千米?
21、小明的妈妈去年的八月份工资收入扣除1000元后,按5%的税率缴纳个人所得税15元。小明的妈妈去年八月份工资收入多少元?
22、甲船的载货量比乙船的载货量多25%,甲、乙两船共载货3600吨。甲、乙两船各载货多少吨?
23、张大夫给病人看病,需要75%的酒精,现在有95%的酒精18千克,需要加水多少千克?
24、一个正方形的一边减少20%,另一边增加2米,得到一个长方形,这个长方形的面积与原来的正方形的面积相等。原来正方形的面积是多少平方米?
25、甲乙两班共有79人,甲班女生人数是男生人数的60%,乙班男女生人数的比是6:7,求两班共有男生多少人?
26、粮库储存的大米是面粉的7/8,大米运走20%后,储存的面粉比大米多120吨,粮库原来储存大米、面粉各有多少吨?
27、有两段布,一段布长40米,另一段布长30米,把两段布都用去相同的长度后,发现短的一段布剩下的长度是长的剩下部分的3/5,每段布用去多少米?
28、甲书架的书是乙书架的4/7,两个书架各增加154本后,甲书架上的书是乙书架上的5/6。甲、乙两个书架原来各有多少本书?
29、“探索自然”课外活动小组,上学期男生占5/9,这学期新加入21名女生后,男生只占2/5,这个小组现在有女生多少人?
30、李师傅加工一批零件,不合格零件是合格零件的1/19,后来又仔细挑选,从合格产品中发现2个不合格,这时产品合格率是94%。合格产品共有多少个?
应用题
(二)(1)水果店一天运进苹果、香蕉、梨共390千克,苹果的重量是梨的1.5倍,香蕉的重量是梨的3/4,三种水果各运进多少千克?
(2)一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?
(3)有一快棱长20厘米的正方体木料,刨成一个底面直径最大的圆柱体,刨去木料的体积是多少?
(4)一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?
(5)两个小组装配收音机,甲组每天装配50台,第一天完成了总任务的10%,这时乙组才开始装配,每天装配40台,完成这批任务时,甲组做了多少天?
(6)修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?
(7)师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?
(8)两队修一条公路,甲队每天修全长的1/5,乙队独做7.5天修好。如果两队合修2天后,其余由乙队独修,还要几天完成?
(9)仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?
(10)前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长。
(11)甲数是甲乙丙三数的平均数的1.2倍。如果乙丙两数和是99,求甲数是多少?
(12)有一工程计划用工人800名,限100天完成。不料从开工起,做35天后因事故停工,停工25天后继续开工,如果要在限期内完工,应增加工人多少名?
(13)水果店以2元钱1.5千克的价格买进苹果若干千克,又以4元钱2.5千克的价格卖出去。如果店里想得到100元钱的利润,这个水果店必须卖出水果多少千克?
(14)甲乙丙三人行走的速度分别为每分钟30米、40米和50米。甲乙同在A地,丙在B地。甲乙与丙同时相向而行,丙遇见乙后10分钟又和甲相遇,求AB两地相距多少米?
(15)甲从东村去西村需10分钟,乙从西村去东村需行15分钟,两人同时动身相向而行,相遇时离中点150米,求两村间的距离。
(16)一辆汽车,第一天跑完全程的2/5,第二天跑完剩下的1/2,第三天跑的路程比第一天少1/3,这时剩下的路程是50千米。求全程是多少千米?
(17)客船从甲港开往乙港,每小时行24千米。货船从乙港开往甲港,12小时行完全程。现同时相对开出,相遇时,客船和货船所行路程之比为6:7,甲乙两港间的距离。
(18)甲乙两站相距1134千米,一客车和一货车同时从两站相向开出,10小时30分钟相遇,货车速度是客车速度的5/7,客车每小时行多少千米?
(19)某装配车间男职工人数的40%和女职工人数的20%相等,已知这个车间有女职工130名,男职工人数比女职工人数少多少名?
(20)有盐水25千克,含盐20%,加了一些水后含盐8%,加了多少水?
(21)甲乙丙三个仓库存粮共307吨,各运出40吨后,甲乙仓库剩下粮食重量的比是3:5,乙丙仓库剩下粮食重量的比是3:4,丙库原有粮食多少吨?
(22)甲乙两车间要加工一批面粉,实际完成计划的130%甲乙两车间完成任务的比为8:5,乙车间比甲车间少加工面粉13.5吨。原计划加工的面粉是多少吨?
【应用题三】
(1)有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?
(2)计划装120台电视机,如果每天装8台能提前一天完成任务,如果提前4天完成,每天应装配多少台?
(3)甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?
(4)学校买来图书若干本分给各班,若每班分25本则多22本,若每班分给30本则少68本,共有几个班级?买来图书多少本?
(5)果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10,这时有苹果多少箱?
(6)绿化队修整街心花园,用去900元,比原计划节省了300元,节省了百分之几?
(7)某修路队修一条公路,原计划每天修200米,实际每天多修50米,结果提前3天完成任务,这条公路全长多少米?
(8)有一长方体钢锭,底面周长2米,长与宽的比是4:1,高比宽少25%它正好可以铸成高为3分米的圆锥体,圆锥体的底面积是多少?
(9)一根电线,第一次用去全长的37.5%,第二次用去27米,这时已用的电线与没用的电线长度比是3:2。这根电线原来长多少米?
(10)某班男生人数比全班人数的5/7 多6人,女生人数比全班人数的1/4少4人。全班共有多少人?
(11)甲仓原来比乙仓少存粮50吨。从甲仓往乙仓调运30吨粮食后,甲仓存粮比乙仓少1/4。乙仓现在存粮多少吨?
(12)将柴油装入一只圆柱形的油桶,已知油桶的底面直径6分米、高10分米装满后连桶重280千克。已知一升柴油重0.85千克,桶重多少千克?
(13)某商店以每支10.9元购进一批钢笔,卖出每支14元。卖出这批钢笔的4/5时,不仅收回了全部成本,而且获得利润150元。这批钢笔一共有多少支?
(14)加工一批零件,师傅每天可加工54个,徒弟如果单独加工,17天可以完成。现两人同时工作,任务完成时,师徒两人加工零件的个数比是9:8,这批零件有多少个?
(15)六(一)班原有1/5的同学参加劳动,后来又有两个同学主动参加,这样实际参加人数是其余人数的1/3,实际参加劳动的有多少人?
(16)有大小球共100个,大球的 1/3比小球的1/10多16个,大、小球各有多少个?
(17)妈妈买3千克香蕉和2千克梨共付13元,已知梨的单价是香蕉的2/3, 每千克梨多少元?
(18)师徒俩共同做一批零件,原计划师傅和徒弟2人做零件个数的比是9:7结果完成任务时,师傅做了总数的 5/8,比原计划多做了30个零件,师傅原计划做零件多少个?
(19)一盒糖果共有80粒,分给兄弟二人,哥哥吃掉自己的1/3,弟弟吃掉10粒,后来又吃掉5粒,剩下的两人正好相等,兄弟两人原来各分得多少粒?
(20)有甲乙两根绳子,甲绳比乙绳长35米,已知甲绳 1/9和乙绳的1/4相等,两根绳子各长多少米?
【应用题四】
(1)一个圆柱体底面周长是另一个圆锥体底面周长的2/3,而这个圆锥体高是圆柱体高的2/5,圆锥体体积是圆柱体体积的几分之几?
(2)有一只圆柱体的/玻璃杯,测得内直经是8厘米,内装药水的深度是6厘米,正好是杯内容量的4/5,再加多少药水,可以把杯子注满?
(3)有两筐苹果,甲筐比乙筐少31个,如果从甲筐中取出7个放入乙筐,那么甲筐与乙筐苹果个数的比是4:7,现在乙筐有多少个苹果?
(4)甲乙丙三人共同生产一批零件,甲生产的零件是乙丙总和的1/2,甲丙生产的零件总和与乙生产零件个数的比是7:2,丙生产200个零件,甲生产了多少个零件?
(5)一个工人师傅制造一个零件用5分钟,他的徒弟制造一个零件用9分钟,师徒两人合做一段时间后,一共制造了84个零件。两人各制造了多少个零件?
(6)一个直角梯形,上底和下底的比是5:2,如果上底延长2米,下底延长8米,变成一个正方形,求原来梯形的面积?
(7)甲乙两队的人数的比是7:8,如果从甲队派30人去乙队,那么甲乙两队人数的比是2:3。甲乙两队原来各有多少人?
(8)一辆货车从县城往山里运货,往返共走20小时,去时所用时间是回来时的1.5倍,已知去时每小时比回来时慢12千米,求往返的路程。
(9)一项工程,若由甲乙两个施工队合做要12天完成,已知甲乙两个施工队工作效率的比是2:3,这项工程由乙队单独做要多少天完成?
(10)一堆煤,第一次运走它的1/4,第二次又运走120吨,这时余下的煤的吨数与运走的吨数的比是2/3。这堆煤原有多少吨?
(11)甲乙两辆汽车同时分别从两地相向而行,6小时相遇,相遇时,甲车比乙车多行了72千米,已知甲乙两车的速度比是3:2,求两地间的距离。
(12)把一批化肥分给甲乙丙三个村子,甲村分得总数的1/4,其余按2:3分给乙丙两村,已知丙村分得化肥12吨。这批化肥共多少吨?(13)一批货物按5:7分给甲乙两个车队运输,乙车队运了840吨,完成本队任务的4/5,后因另有任务调走,以后由甲队运完,甲队实际运了多少吨?
(14)甲乙两队共210人,如果从乙队调出1/10的人去甲队,那么现在甲乙两队人数比是4:3,甲队原有多少人?
(15)甲乙丙三名工人共同做一批零件,甲加工了总数的2/5,比乙多加工了125只,乙丙加工数的比是3:2。这批零件共有多少只?
(16)货车速度与客车速度比是3:4,两车同时从甲乙两站相对行驶,在离中点6千米处相遇,当客车到达甲站时,货车离乙站还有多远?
(17)山湖乡运来一批农药,第一天用去总数的4/7,比第二天用去的二倍还多12千克,这时用去的与余下的农药的比是27:8,这批农药重多少千克
第五篇:分数除法简单应用题
《分数除法简单应用题》教学反思
保亭思源小学
黄晓霞
“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣。”教学改变复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目,再让学生介绍本班的情况,引发学生参与的积极性,向他们提供充分的从事数学活动和交流的机会。
一、让学生获得亲身体验。
教学中,为让学生认识解答分数乘法应用题的关键是什么时,让学生通读题目、细读题目,圈出题目中的重要词句,理解题意。画出线段图分析数量之间的关系。亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。
教学中把“自主、合作、探究”的教学方式。和教师分析讲解相结合。把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。学生毕竟是初学者,他们的自主、合作、探究肯定是不全面的,各种水平的学生在自主、合作、探究中所学的层次也是不一样的。所以教师的讲解是必要的,尤其是概念性的知识,可以为学生节约许多时间。但教师在教学中要准确把握自己的地位。帮助优生建构知识结构,帮助一般学生理解题意掌握知识。真正把自己当成了学生学习的帮助者、激励者。发挥学生的主体地位,重视教师的主导地位。
二、多角度分析问题,提高能力。
在分析应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,注意启发学生从例题中抽象概括数量关系,总结经验规律。如“是、占、比、相当于“后面的数量就是作单位“1”的数量,画线段图就先画作单位“1”这个数量,再画与之对应的数量的线段图;“知“1”求几用乘法,知几求“1”用除法”等等的做法。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。