第一篇:人教版五年级数学下册《容积和容积单位》教学设计
容积和容积单位的教学设计
教学内容:容积和容积单位。
教学目标:
1.使学生理解容积意义,认识常用的容积单位升和毫升。感受1毫升、1升等容积单位的实际意义,掌握常用的容积单位以及它们之间的进率。
2.掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。
3.培养学生应用数学的意识以及细心观察的良好习惯 教学重点、建立容积的概念,掌握容积单位之间的进率。
教学难点:容积与体积的联系和区别。教具准备:课件
教学过程
一、复习导入
1.什么叫物体的体积?它常用的计量单位是什么? 2.提问:相邻的两个体积单位间的进率是多少? 3.怎样计算长方体和正方体的体积?公式呢?
二、新课
1.教学容积的概念。(1)课件演示,揭示课题。
(2)教师:箱子、油桶、仓库所能容纳的物体的体积,通常叫做它们的容积,这节课我们就来研究容积和容积单位。2.容积的计量。
(1)因为物体的容积通过所容纳物体的体积表现出来的,因此容积的计算单位一般就用体积单位。
(2)计量液体的体积,如水、油等。通常容积单位升和毫升也可以写成L和ml。(3)说一说,在生活中哪些物品上标有升或毫升。(4)容积和体积间的联系。
提问:大家想一想1升是多少毫升?相互讨论。汇报:因为1升是1立方分米,1毫升是1立方厘米,而1立方分米=1000立方厘米,所以,1升就等于1000毫升。即1L=1000ml。3.感知升和毫升。
4.容积的计算方法。出示课本第51页教学例题 5。①让学生尝试解答。
②解答:5×4×2=40(dm3), 40dm3=40L 答:这个油箱可装汽油40L。注:讲评时要强调是从容器面量长、宽、高,并要注意,要把立方分米换算成升。
三、巩固练习1、1.8L=()mL
3500mL=()L 15000cm3 =()mL=()L
1.5dm3 =()L
2、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?
3、完成课本第53页练习九第1题、第3题。
四、全课小结
五、布置作业
1、课堂作业:P53 2、4、5题。
板书设计:
容积和容积单位
1升=1000毫升
例5 5×4×2=40(立方分米)1升=1立方分米
40立方分米=40升 1毫升=1立方厘米
答:……
第二篇:五年级数学容积和容积单位教学设计
教具准备:木盒,黄砂,l立方分米、1立方厘米的正方体及容器,量杯、量筒,水。教学过程:
(开课语:“同学们,很高兴和大家在这节课共同探讨数学知识,大家有没有信心积极投入?下面我们开始上课”。)
一、复习
1.同学们已经学了体积和体积单位,谁能说说什么叫体积? 2.常用的体积单位有哪些?相邻体积单位之间的进率是多少?(板书:体积 立方米m、立方分米dm、立方厘米cm)3.如何计算长方体和正方体的体积呢?(板书:v=abh v=a3)
二、导入新课
1.教师拿出一只装满黄砂的木盒,说:这个木盒里装满了黄砂,你会计算木盒里面黄砂的体积吗? 2.师:同学们,这只木盒里面装满的黄砂的体积,就是这个木盒的容积(板书课题:容积)。
3.今天我们就来学习物体的容积和容积单位。(学生齐读课题)
三、新授
“那么什么叫做物体的容积,常用的容积单位有哪些呢?请同学们看书38页解读,同时思考下面几个问题”: ① 什么叫做物体的容积? ② 容积的计算方法是什么? ③ 计算容积,一般用什么单位? ④ 计量液体的体积,常用什么单位?它和体积单位之间有什么关系? 要求:把认为重要的圈圈点点,看完后同桌围绕思考题展开讨论
2.学生回答思考题,教师同时板书: ①概念 师:同学们,我们把容纳物体的这些箱子、油桶、仓库等一般称为容器;(板书:容器)②在v=abh、v=a 后板书:从里面量;③常用的容积单位:升、毫升④1升=1立方分米,1毫升=1立方厘米
3.师:根据容积单位和体积单位间的关系,你能推导出1升等于多少毫升吗?(板书:1升=l000毫升)4.师提问。
拿起装满黄砂的木盒,说:”同学们,老师说,这个木盒的容积就是这个木盒的体积,这句话对吗?为什么?那么,木盒的体积指什么?本盒的容积指什么?”
小结:一般说来,物体的容积比体积小。拿起一只薄纸盒,说:有的时候,容器的壁比较薄,像这只纸盒,而且我们在做题目时,题后有要求:壁的厚度忽略不计(看书第39页第二小节),那么,这时候,就可以说,容器的容积就是这个容器的体积。
6.认识量杯和量筒。(1)师出示量杯和量筒,问:这是什么?我们在量杯和量筒上,能看到刻有升和毫升的刻度。(2)那么,一升水到底有多少呢?演示
①把l立方分米的正方体模型放到容积为1分米的容器里,得出:容器的容积是1立方分米。
②往容器里装入红颜色的水,装满为止,得出:容器里面水的体积就是1升。
③从而得出1升=1立方米(3)同理演示1毫升=1立方厘米(4)练习:练习九2题第一横行(5)你们见过量杯和量筒吗? 举例:①配制农药时用的量筒。
②遵照要求吃药。演示:药瓶用法上的是“每次20毫升”,从量杯倒人汤匙,就是一汤匙。指出药瓶上的“ml”就是指毫升。
③那么,1立方米等于几升?1立方分米等于几毫升?l升等于几立方厘米? 7.练习:练习九第1题,学生齐练。
四、课堂总结
同学们“今天学习什么内容?知道了什么?学会了什么?”
五、巩固练习1.第40页第7题,练完后集体校对,并订正。
2.判断下列说法是否正确,对的在()内打√,错的打“x”。①计算容积或体积都是从容器外面量长、宽、高。()②冰箱的容积就是冰箱的体积。()③游泳池注满水,水的体积就是游泳池的容积。()④钢笔一次墨水,大约能吸1至2升墨水。()
六、课堂作业:练习九2题剩余、5、6
板书设计
体积 单位间的关系 容积
1dm=1L 1cm=1mL 单位: 单位:
第三篇:人教版小学数学五年级下册《容积和容积单位》教学设计
《容积和容积单位》教学设计
教学内容:新人教版数学五年级下册教材第38页。教学目标:
1、知识与技能:使学生理解容积的含义,知道容积单位及它们之间的进率,会计算容积。
2、问题解决与数学思考:从具体的实践活动中得出升与毫升的关系、容积单位和体积单位间的关系,提高学生观察和解决问题的能力。
3、情感、态度和价值观:通过让学生辨别体积和容积的概念,培养学生独立思考、严肃认真的学习态度。
教学重点:建立容积和容积单位观念,知道容积单位和体积单位的关系。教学难点:理解容积的含义和升、毫升的实际大小。教法与学法:
教法:引导观察表述,实际操作演示。学法:观察思考,动手操作,小组合作交流。教学准备:
教具:多媒体课件,纸箱,魔方,1L的水,量筒和量杯,注射器1支,1cm3的正方体。
学具:一瓶550ml的水,一次性纸杯,习题纸。教学过程:
一、创设情境,生成问题
今天,能和大家一起上课老师感到非常开心,和老师一起大声地说出我们的学习口号吧:学中玩,玩中学,开开心心学数学。(师和同学们
拍着手说口号。)
那么对今天的学习,同学们有没有信心? 复习:
1、什么叫物体的体积?
2、常用的体积单位有哪些?它们之间的进率是多少?
3、怎样计算长方体、正方体的体积?
二、探索交流,解决问题
(一)教学容积的概念。
1、观察发现,引出容积的概念。
(多媒体课件出示杯子、油桶、仓库图片)师:这是我们生活中的物体,箱子可以(生答装东西),油桶可以(生答装油),仓库也可以(生说堆放货物)。
出示老师手中的纸箱、魔方,它们谁能装东西?为什么? 师强调:只有里面是空的物体,才能装东西,才能容纳物体。那么像箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
生读:箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
师板书:油桶、仓库等所能容纳物体的体积,叫做它们的容积。
2、让生利用生活中的物体来巩固容积概念。
(课件出示水桶、集装箱图片)这些物体,它们有容积吗?为什么? 那你能说说什么是它们的容积吗?
(二)、认识容积单位。
1、学生小组活动:组内互相交流容积的计量单位。
我们已经认识了容积,那容积的计量单位又是什么呢?(师板:容积单位)请同学们自学课本38页,自学完以后在小组内互相交流。
生小组组内交流容积的计量单位,师巡视。
2、汇报反馈。
师生小结:容积的计量单位一般用体积单位,计量液体的体积时就用容积单位升(L)和毫升(ml)。
(师随机板书:升L、毫升ml)
3、说说生活中哪些物品上标有毫升和升。师:生活中哪些物品上标有升和毫升呢?(课件显示:调料瓶、果汁、易拉罐、药瓶、水杯、洗发水)
4、师生互动,探究毫升和升之间的关系。
认识度量液体体积的工具——量筒和量杯,师出示量杯(大)和量筒(小),倒入1升的水进行演示,让学生得出1升=1000毫升(1L=1000mL)
5、探究容积单位与体积单位的关系。
试验:出示1L的水,然后把1L的水倒入1dm3的正方体容器里面,刚好倒满。
提问:这个实验说明什么?1L=1dm3。(板书)
大家想一想1毫升和哪个体积单位有关?相互讨论,得出:1mL=1cm3。(板书)出示1毫升的一次性针管,猜猜1毫升有多少滴?师演示,大约16、7滴。
过渡:同学们真是太聪明了,下面我们来做做活动,好不好?
6、动手操作,建立1升、1毫升的表象。
小组交流活动:①将一瓶矿泉水倒在纸杯中,看看可以倒几杯。②估计一下一杯水大约有多少毫升,几杯水大约是1升。(课件出示)每个小组拿出准备好的矿泉水,一次性杯,动手合作完成活动,师巡视。
汇报、评价,验证估算结果,并进行节约用水教育。
师:我们该怎么处理桌面上的矿泉水呢?我国是一个淡水资源缺乏的国家,所以我们平时生活要怎么样?(随机展示相关的图片)
7、容积的计算方法。
刚才我们认识了容积和容积单位,那长方体或正方体容器的容积该怎样计算呢?指生说。
师小结:长方体或正方体容器容积的计算方法,跟体积的计算方法相同,但要从容器里面量长、宽、高,因为容器都有一定的厚度,所以,任何容器的体积都比容积要(大)。
(三)、解决生活中的数学问题
过渡:下面我们运用所学的知识来解决生活中的问题,好不好?
1、尝试解答例5。(课件出示:一种小汽车的油箱,里面长5dm,宽4dm,高2dm。这个油箱可以装油多少升?)
(1)生读题,理解题意。(2)学生尝试独立解答。
(3)汇报方法,互相评价,归纳解题方法与技巧。(让学生把做法展示出来,并说出自己的方法。)
三、巩固应用,内化提高
过渡:同学们还敢接受新的挑战吗?我们来进行智力闯关比赛。
1、勇闯第一关:当小法官,判断对错。(1)一个游泳池的容积大约是2000毫升。()(2)一个冰箱,它的体积和容积一样大。()(3)计算长方体木箱的容积,要从木箱里面量长、宽、高。()
2、勇闯第二关:请你填上合适的容积单位。一瓶墨水约50()。一桶色拉油约5()。
“神舟五号”载人航天飞船返回舱的容积为6()。泡泡液约100()。
3、再攀高峰:走进生活。
(课件出示:一种微波炉,产品说明书上标明:炉腔内部尺寸400×225×300(单位:mm)。这个微波炉的容积是多少升?你们小组商量一下,应该怎么解决这个问题,课后再帮老师解决。
四、回顾整理,反思提升
今天,你开心吗?通过这节课的学习,你有哪些收获呢? 小结:同学们的收获真不少,你们表现非常棒,老师佩服你们。生活中我们经常见到一些不规则的物体,比如鹅卵石、苹果等,它们的体积怎样求呢?能不能利用本节课学到的知识来解决,有兴趣的同学可以课下研究。
板书设计:
容积和容积单位
箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
体积单位:m3 dm3 cm3
(液体):升L 毫升 mL
1mL=1 cm3
1L=1000mL
1L=1 dm3
第四篇:容积和容积单位教学设计文档
课 题:容积和容积单位 主 备 人:牛晓菲 课 型:新授课
学习内容:课本50---51页及53页1---3题。
学习目标:
1、通过观察、实验,指出常用的容积单位升和毫升。
2.通过操作知道升和毫升之间的进率及体积和容积单位之间的进率。
3、通过看书交流会说体积和容积单位之间的联系与区别。
学习重点:建立容积和容积单位观念,知道容积单位和体积单位的关系. 学习难点:理解容积的含义和升、毫升的实际大小. 学习方法:探究教学法、小组合作交流、归纳教学法。
学习准备:量杯、量筒、矿泉水瓶子、1立方厘米和1立方分米的容器各一个、一盆水。
评价设计:
1、通过活动、提问、板演检测学习目标1的达成率。
2、通过评价样题,检测学习目标2、3的目标达成率。
评价样题:
1、填空
3升=()毫升 2700毫升=()升
2.57升=()毫升 640毫升=()升
2.4升=()毫升 3.5升=()立方分米
500毫升=()升 760毫升=()立方厘米 学习流程:
一.铺垫孕伏.
1.什么是体积?
2.常用的体积单位有哪些?它们之间的进率是多少?
3.这个长方体的体积是多少?是怎样计算的?
二.探究新知.
我们已经学习了体积和体积单位,今天我们继续学习一个新的知识:容积和容积单位.(板书课题)
(一)建立容积概念.
1.学生动手实验(每四人一组,每组一个有厚度的长方体盒,细沙一堆)
实验题目:计算出长方体盒的体积.
把长方体盒装满细沙,计算细沙的体积.
2.学生汇报结果.
长方体盒的体积:先从外面量出长方体盒的长.宽.高,再计算其体积.
细沙的体积:细沙的体积就是长方体的体积,但要从长方体里面量长.宽.高,再计算其体积.
教师追问:计算细沙的体积为什么要从长方体里面量长.宽.高?
3.师生共同小结.
师:这个长方体盒所容纳细沙的体积,就是长方体盒的容积.我们看见过汽车上的油箱,油箱里装满汽油.这就是油箱的容积.长方体鱼缸里盛满水,它就是鱼缸的容积.
师生归纳:容器所能容纳的物体的体积,就是它们的容积.(板书)
4.比较物体体积和容积的相同和不同.
相同点:体积和容积都是物体的体积,计算方法一样.
不同点:体积要从容器外量长.宽.高;容积要从里面量长.宽.高.
所有的物体都有体积;但只有里面是空的能够装东西的物体,才能计量它的容积.(出示长方体木块)
(二)认识容积单位.
1.教师指出:计量容积,一般就用体积单位.但是计量液体的体积,如药水,汽油等,常用容积单位升和毫升.(板书:升 毫升)
2.出示量杯:这就是1升的量杯.
出示量筒:这就是刻有毫升刻度的量筒.
3.教师演示升和毫升之间的关系:
①认识量筒上1毫升的刻度,找出100毫升的刻度.
②用量筒量100毫升的红色水倒入1升的量杯,一直到量杯满为止.
板书:1升=1000毫升
4.学生演示容积单位和体积单位间的关系:
①把1升的红色水倒人1立方分米的正方体盒里
小结:1升=1立方分米
②把1毫升的红色水倒入1立方厘米的正方体盒里
小结:1毫升=1立方厘米
5.小结:容积单位有哪些?容积单位和体积单位之间有什么关系?
6.反馈练习.
3升=()毫升 2700毫升=()升
2.57升=()毫升 640毫升=()升
2.4升=()毫升 3.5升=()立方分米
500毫升=()升 760毫升=()立方厘米
(三)计算物体的容积.
1.教学例1.
一种汽车上的油箱,里面长8分米,宽5分米,高4分米.这个油箱可以装汽油多少升?
8×5×4=160(立方分米)
160立方分米=160升
答:这个油箱可以装汽油160升.
2.反馈练习.
一个长方体水箱,从里面量长12分米,宽6分米,深5分米,这个水箱可装水多少毫升?
12×6×5=360(立方分米)
360立方分米=360000毫升
答:这个水箱可以装水360000毫升.
三.全课小结.
这节课我们学习了哪些知识?容积和体积有什么不同点?计算容积应注意什么?
四.随堂练习.
1.填空.
(1)()叫做容积.
(2)容积的计算方法跟()的计算方法相同.但要从()是长、宽、高.(3)6.09立方分米=()升=()毫升
1750立方厘米=()毫升=()升
435毫升=()立方厘米=()立方分米
9.8升=()立方分米=()立方厘米 2.判断.
(1)冰箱的容积就是冰箱的体积.()
(2)一个薄塑料长方体(厚度不计),它的体积就是容积.()
3.选择.
(1)计量墨水瓶的容积用()作单位恰当.
①升 ②毫升
(2)3毫升等于()立方分米.
①0.3 ②0.3 ③0.003
4.一种背负式喷雾器,药液箱发容积是14升.如果每分钟喷出药液700毫升,喷完一箱药液需用多少分钟?
五.布置作业.
1.手扶拖拉机的油箱,从里面量长3分米,宽2.3分米,深1.6分米.这个油箱可以装柴油多少升?每升柴油重按0.82千克计算,装的柴油重多少千克?(得数保留整数)
2.把调查的实际数字填在括号里.
一小瓶红药水是()毫升.
一瓶墨水是()毫升
汽车(或拖拉机)油箱的容积是()升
六.板书设计.
容积和容积单位
容器所容纳物体的体积,就叫做它们的容积.
1升=1000毫升 1升=1立方分米 1毫升=1立方厘米
例6.一种汽车上的油箱,里面长8分米,宽5分米,高4分米.这个油箱可以装汽油多少升?
8×5×4=160(立方分米)160立方分米=160升 答:这台油箱可以装汽油160升. 教学反思:
第五篇:容积和容积单位教学设计
《容积和容积单位》教学设计 淖毛湖农场学校宋宏天 目标确定的依据:
1、通过实例了解体积(包括容积)的意义及度量单位(立方米、立方分米、立方厘米、升、毫升),能进行单位之间的换算,感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义。
2、体验某些实物(如土豆等)体积的测量方法。学习内容:
人教版数学小学五年级下册38页例5及练习九1-6题。教材分析:
本教学设计是义务教育课程标准实验教科书数学小学五年级下册第三单元的内容。教材首先直接给出了容积的概念,并说明计量容积,一般就用体积单位。然后通过引导学生观察生活中常见的药水瓶、饮料瓶上的容积单位,发现L和ml这两个容积单位,然后介绍了计量液体的体积常用容积单位升和毫升,以及它们与体积单位之间的关系。接下来教材设计了一个小组活动,让学生在具体实践操作与观察对比中,利用瓶装矿泉水和量杯来感知L和ml这两个容积单位的实际大小。然后再让学生说一说,生活中还有哪些物品上标有毫升和升,目的是使学生将新知与生活体验联系起来,有利于学生更加深刻地感知容积单位的实际意义,培养学生应用数学的意识以及细心观察的良好习惯。
然后教材介绍了长方体和正方体容器容积的计算方法,并特别强调要从容器里面量长、宽、高。利用例5计算小汽车油箱的容积,来巩固长方体容器容积的计算方法以及体积单位与容积单位之间的关系。学情分析:
容积和容积单位的教学是在体积和体积单位之后,学生对体积有了一定的认识,体积单位已掌握,并很明白其大小关系,以及它们之间的进率,能用其解决问题。容积的概念较抽象,理解是重点,教学中应让学生多说。从表象抽象出概念,在教学容积单位以及它们的关系时,让学生多观察感知。因此本节设计以学生自学,教师引导学生观察、动手实践为主,感受升和毫升,让学生在动手操作中学到知识。学习目标:
1、准确理解容积的概念,学生认识常用的容积单位:升、毫升;
2、掌握升与毫升间的进率以及它们和体积单位的关系。
3、通过动手操作,小组合作等探究活动,理解容积和体积的联系与区别,能利用体积公式解决简单的实际问题。评价任务:
1、通过自学理解容积的概念,明白容器的容积就是内部盛放物体的体积。
2、通过观察演示实验感受1升、1毫升的大小,实验验证1L=1000mL,知道容积单位和体积单位的关系,实际演练容积单位换算。
3、进行实物对比,明确不是所有物体都有容积。
4、独立解决例5的问题,掌握正方体、长方体容器容积的计算方法。
学具准备: 多媒体课件、容纳1升液体的量杯和1000毫升液体的量筒各一个、长方体木盒一个、注射器一个、纸杯4个、矿泉水瓶4个等。课时安排:一课时 学习过程:
一、复习提问
3分钟
(1)什么叫做物体的体积?
生齐声回答:物体所占空间的大小叫做物体的体积。
(2)常用的体积单位有哪些,相邻的两个体积单位间的进率是多少?
生齐声回答:立方厘米、立方分米、立方米。每相邻两个体积间的进率是1000。(3)长方体和正方体的体积计算公式?
生齐声回答:长方体的体积=长×宽×高正方体的体积=棱长×棱长×棱长 教师板书:cm3 dm3 m³
1dm3 = 1000 cm3
m³=1000 dm3
V= abh
V = a3 [设计意图:学习新知前,适当复习有关的知识,对理解容积的意义和建立升、毫升的概念有帮助,同时为学习容积和容积单位作好铺垫。]
二、探究新知
15分钟
(一)导入新课 师:(出示正方体纸盒、塑料盒)同学们,这事两个棱长为1分米的正方体,大家知道他们的体积分别是多少呢? 生:都是1立方分米
师:请大家想一想,这两个盒子的体积有什么关系?为什么? 生:因为这两个盒子的棱长都相等,所以他们的体积也相等。
师:请同学们再想一想,如果把这两个盒子都装满细沙,两个盒子里面装的细沙一样多吗? 生:不一样多。
师:他们的体积都一样大,却装的东西却不一样多,为什么呢?我们学习的知识《容积与容积单位》就是来解决这个问题的。
[设计意图:导入新课阶段就给学生设疑,激发学生学习这节课内容的兴趣,并且!暗示了“体积”与“容积”两个概念是有联系的。] 那么什么叫做物体的容积,常用的容积单位有哪些呢?请同学们以小组为单位,自学P38,同时解决以下问题:(板书课题:容积和容积体积)
1、什么叫容积?它和体积有什么不同?
学生举手汇报:箱子、油桶、仓库所能容纳物体的体积,通常叫做他们的容积。
师:以装满砂子的盒子和装满水的瓶子为例,盒子的容积就是盒子里装满沙子的体积。师:同学们你们认为还有什么物体有容积吗?
生:水桶里装满水,这些水的体积就是水桶的容积。
生:饮料瓶里装满了饮料,饮料的体积就是饮料瓶的容积。……
2、计量容积一般用什么单位?计量液体的体积,常用什么单位?容积单位与体积单位之间的关系是什么? 学生举手汇报:
①、计量容积,一般用体积单位。计量液体的体积,如水、油等,常用容积单位升和毫升,也可以写成 L 和 ml。
1L = 1000ml 师:将烧杯(500ml)的水倒在1L的容器中,几杯可以倒满?
2杯教师一边提问一边演示验证结论
将烧杯(200ml)的水倒在1L的容器中,几杯可以到满?
5杯教师一边提问一边演示验证结论
②、容积单位和体积单位有这样的关系。
1L = 1dm3
1ml = 1cm3 师:将装满1L的容器里的水倒入1dm3正方体中验证结论 用注射器吸入1 ml的水注入在1cm3正方体中验证结论
3、思考:所有的物体都有容积吗?
师:不是的,因为物体是实心的只有体积没有容积,比如老师现在手中拿的长方体和正方体的模型就只有体积没有容积。
学习要求:认真看书、仔细思考,把认为重要的圈圈点点,看完后小组成员围绕思考题展开讨论
[设计意图:根据高年级学生的学习能力和水平,要求学生带着问题去阅读课本,充分体现了发挥学生的主体作用,让学生自学是为了让学生学会学习和掌握思考问题的方法,达到会学的目的。]
(二)、小组合作、动手操作
5分钟
1、用注射器抽出1毫升水,看看1毫升的水大约有多少。
2、将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?
3、估计一下,一纸杯水大约有多少毫升,几杯水大约是1升,4、说说在那些物品上标有毫升、升。
5、完成检测题二,以小组为单位进行汇报。
教师:巡视每组的活动情况,对操作有困难的小组进行指导。
[设计意图:通过实验让学生自己认识毫升和升,并且从实验中学生能切实感受1升和1毫升的实际意义。]
(三)、实际应用
10分钟
1、课件出示问题?
(1)如何计算长方体和正方体的容积?公式是什么?(2)计算物体的容积与体积有什么不同之处?
2、出示例5,学生先独立解决问题,再集体汇报。
注意在解决问题时,首先要认真读题,找出已知条件和未知条件,再看单位是否统一。
3、得出结论(1)、长方体或正方体容器容积的计算方法,跟体积计算方法相同。(2)、计算容积要从容器里面量长、宽、高。
[设计意图:使学生明白学数学知识,就是为了要解决生活中出现的问题,数学源于生活,又为生活而服务。进一步让学生明确学好本课知识的重要性。]
(四)、巩固练习
完成练习九第3、4、5、6题
[设计意图:变换练习的形式,激发学生的学习兴趣。]
(五)、课堂小结:
这节课,你有什么收获或感想? [设计意图:指导学生把本课学习的知识进行整理、归纳,并且进行检查对本课学习内容理解、掌握的情况,以利于在巩固练习阶段进行补漏。同时进一步巩固对本课知识的理解和掌握。]
(六)板书设计: 容积和容积单位
立方米、立方分米、立方厘米
1升=1000毫升
1L=1000 mL 升毫升
1升=1立方分米
1L=1dm3 L
mL
1毫升=1立方厘米
1mL=1cm3
课后反思