信号与系统的课程感想

时间:2019-05-12 23:04:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《信号与系统的课程感想》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《信号与系统的课程感想》。

第一篇:信号与系统的课程感想

信号与系统的课程感想

转眼间一学期已经过去了,我们也学习了一学期的《信号与系统》,虽然老师和同学们一致认为,学校给安排的学时实在是太少了,记得刚开学的时候董老师说的是课本建议学时是64学时。在有限的时间内,对信号与系统里的三大变换进行了系统的学习,收获和感触还是很多的。

之前就听学长学姐说这门课程比较难,是通信工程的重要课程之一,老师也告诉我们是“double e”专业的必修课,还是很有分量和难度的一门课,同时,在运输学院里也只有我们智能运输专业学这门课,感觉非常高大上也非常兴奋。信号与系统的头几节课是董老师给我们上的,记得开学前董老师叮嘱我们参加大创的几个人要好好学《信号与系统》,后来上课的时候樊老师也反复叮嘱我们下课一定要好好推导一遍上课讲过的东西,因为自己比较懒或者说没有养成下课及时巩固的好习惯,总是在做作业的时候才花上大半天研究作业涉及的内容,这样的习惯让我始终还是有点被动,到底还是有点辜负了老师的良苦用心。

《信号与系统》是一门通信和电子信息类专业的核心基础课,其中的概念和分析方法广泛应用于通信、自动控制、信号与信息处理、电路与系统等领域。这门课无论是从教学内容,还是从教学目的看,都是一门理论性与应用性并重的课程。它以高等数学、复变函数、电路分析等课程为基础,同时又是数字信号处理、通信原理等课程的基础,在课程体系中有着承上启下的作用。该课程的基本分析方法和原理广泛应用于通信、数字信号处理、数字语音处理、数字图像处理等领域。它讨论确定性信号经线性时不变系统传输与处理的基本概念和基本方法,从时域到变换域,从连续到离散,从输入输出描述到空间状态描述,以通信和控制工程作为主要应用背景,注重实例分析。这门课程是以《高等数学》为基础,但他又不是一门只拘泥于数学推导与数学运算的学科。他更侧重与数学与专业的有机融合与在创造。因为课时的限制,我们主要学习了第一章·绪论、第二章·连续时间系统的时域分析、第三章·傅里叶变换、第四章·拉普拉斯变换&连续时间系统的s域分析、第五章·傅里叶变换应用于通信系统——滤波、调制与抽样、第八章·z变换。其中,三大变换既是重中之重,又是核心。

所谓系统,是由若干相互联系、相互作用的单元组成的具有一定功能的有机整体。根据系统处理的信号形式的不同,系统可分为三大类:连续时间系统、离散时间系统和混合系统。而系统按其工作性质来说,可分为线性系统&非线性系统、时变系统&时不变系统、因果系统&非因果系统。信号分析的内容十分广泛,分析方法也有多种。目前最常用、最基本的两种方法是时域法与频域法。时域法是研究信号的时域特性,如波形的参数、波形的变化、出现时间的先后、持续时间的长短、重复周期的大小和信号的时域分解与合成等。频域法,是将信号变换为另一种形式研究其频域特性。信号与系统总是相伴存在的,信号经由系统才能传输。

傅里叶变换是第一个引入的重点学习的变换。傅里叶变换是数字信号处理领域一种很重要的算法。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。和傅立叶变换算法对应的是傅立叶逆变换算法。该逆变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。通过相关推导我们可以得到关于函数f(t)的傅里叶变换为

F(jw)limFnTdefTf(t)ejwtdt 函数F(jw)的傅里叶逆变换为

f(t)def12F(jw)ejwtdw

因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。

傅里叶变换的物理意义也非常有意义。傅里叶级数是将信号在正交三角函数集上进行分解(投影),如果将指标系列类比为一个正交集,则指标上值的大小可以类比为性能在这一指标集上的分解,或投影;分解的目的是为了更好地分析事物的特征,正交集中的每一个元素代表一种成分,而分解后对应该元素的系数表征包含该成分的多少。

傅里叶变换有多种性质,分别为线性、奇偶性、对称性、尺度变换、时移特性、频移特性、卷积定理、时域微分与积分、频域微分与积分。

拉普拉斯变换更主要应用系统的分析。书上引入拉普拉斯变换提到,不稳定信号,也就是不可积信号,他们没有傅里叶变换(特殊的有除外),确实是这样的,但到最后很明显的是,拉普拉斯变换侧重与系统分析了。当然也会对信号进行拉斯变换,因为它毕竟也有很多性质的,可以分析输出信号的。

Z变换主要用于离散时间系统的分析。

在这一学期的学习中,老师上课讲的内容还是非常充实的,一句废话都没有,很重基础,每一个公式的来历都详细的推导,再用例题巩固之。很重数学方面的基础,但是我做的不好的地方是把好几节课的公式都堆在一块去理解记忆,导致了一定程度上有点晕以及不扎实,这也是我以后学习需要注意的,像第三章第四章这种每节课都有公式还有一定的相关性的,需要把每一步都踩实了才能熟练的应用。要在以后的学习中多注意不能再有类似的坏毛病。

原来一直听说《信号与系统》要布置大作业,需要用MATLAB来实现,这学期很不巧,每门课(除了毛概和选修),都是要考试也要做大作业,突然一块堆在期末让人有点喘不过气来,以前三个学期的课里做大作业的课就不考试了,让我们有点措手不及。班主任还是非常体谅我们期末比较辛苦,让我们好好准备考试,其实MATLAB是一个很有力的工具,我们下学期学自控的时候也要用到,虽然在期末没有时间研究,暑假还是要认真学习一下,不是为了考试,为了以后的发展。樊老师在上课期间后期采取了提问的形式,我个人觉得这是一个非常好的形式,我是上午的课全都会犯困的那种,但是自从老师开始提问之后,基本上瞌睡就一扫而光了,能集中注意力的听课,收获也多一些。

随着即将到来的考试,我们这学期的学习也接近尾声了,在网上看到一些对信号与系统的分析,都提到了奥本海姆那本高大上的教材,我感觉到信号与系统是信号这个大的领域的敲门砖,我们现在学习的只是一部分,我们真正掌握了的更是冰山一角而已,想要继续深入这个领域,还是要下很大的功夫去认真钻研的。在老师的带领下,我们已经初步窥探到这个领域之光,以后还要继续努力才能有所进阶。在这门课的学习中,我们同学之前互相沟通交流,互相帮助过得也很愉快,和樊老师相处的也非常融洽,过得非常充实。在以后的学习中,我也会继续探究信号与系统的奇妙,学无止境,争取在数据处理的道路上有更多筹码能够走的更远更踏实!请老师多多指教!

第二篇:信号与系统课程总结

《信号与系统》课程总结

《信号与系统》是电子信息工程专业在复变函数和电路分析基础后所必修的又一门重要的专业基础课。它主要讨论确定信号的特性,线性时不变系统的特性,信号通过线性系统的基本分析方法。其后续课程主要有通信原理、自动控制理论、数字信号处理、信号检测与信息处理等。

通过本课程的学习,要求学生牢固掌握信号与系统的基本概念、理论和基本分析方法。掌握信号与系统的时域、变换域(频域和s域)分析方法,理解傅里叶变换、拉普拉斯变换和z变换的基本内容、性质与应用,特别要建立信号与系统的频域分析的概念以及系统函数的概念。为学生进一步学习后续课程打下坚实的基础。要求学生树立从不同的域(时域、频域)来观察信号的特点,尤其是要了解周期信号的频谱特点;掌握线性时不变系统的不同分析方法。在具体的教学过程中,除讲授基本知识点外,加入这些基本知识在日常生活中的应用,提高学习的积极性;课后布置一定数量的习题练习加深对各种分析方法的理解与掌握;并及时批改讲解作业中存在的问题。

通过本次考试可以看出学生对信号与系统的有关基本知识点掌握的较好,但应在今后的教学过程中加入信号与系统的实验练习,应注重培养学生分析问题的能力,能够理论联系实际,把所学的知识灵活的运用到实践中。

总结人签字:

2011年12月31日

第三篇:信号与系统课程学习体会

.心得体会

本学期我们专业不仅开设了信号与系统的理论课,让我们的课内知识得以丰富,而且还设有相关的实验和实训课,使我们的动手能力得到锻炼。尤其是最近的实训课。首先,我学会了MATLAB的使用,这个软件对我们这次的实训提供了很大的帮助,很多需要大量计算的公式,在MATLAB的帮助下,很快的得以实现。我们的信号与系统的实训基本都是利用MATLAB实现的。利用MATLAB进行仿真模拟计算,为我们更好的了解信号与系统这门课程做了很大的贡献。

经过此次实训,我对信号的很多知识都得以充分了解。例如,熟悉MATLAB软件及基本命令,通过仿真理解信号运算的波形变换结果;对于任务二,通过仿真实验深刻理解冲激响应、阶跃响应和零状态响应,验证理论上得出的有关冲激响应、阶跃响应和零状态响应和有关信号卷积的结果;任务三,离散系统时域仿真分析,通过仿真实验深刻理解单位序列响应、零状态响应和卷积和公式及结果,并且掌握MATLAB提供的单位序列响应IMPZ、求零状态响应函数filter、卷积命令CONV和产生全1的ones()命令及产生全0的zeros()命令;任务四,学会用MATLAB提供的标准函数法和数学近似法来求傅里叶变换;任务五,s域的仿真分析,学会了部分分式展开,拉氏变换及其的反变换,学会如何判断系统的稳定性;对于任务六,z域仿真分析,学会了简单的z变换及逆z变换,求单位序列响应,及零极点的分析。在这次的实训中,并不是都是顺利的,在s域的仿真和离散系统时域仿真分析时,也遇到了困难,但我并没气馁,和自己小组的人一起讨论,一起把问题顺利的解决了。并从中深深体会到了团队的力量,让我知道了以后不管在学习中还是生活中,我们应当相互团结,共同帮助,共同进步,才能取得真正的成功。

这次宝贵的实训即将结束,但我从中受益颇深,不仅把自己所学的知识得以运用,还加强了自己的动手能力,还懂得了团队的重要性。我感谢这次的实训,因为它让我在以后参加工作时又提供了有利的条件,我深信以后我会更加努力学习,并更好地展示在以后的工作中。

第四篇:信号与系统课程教学大纲

信号与系统(II)课程教学大纲

一、课程名称:信号与系统(II)

二、英文名称:Signal and System(II)

三、课程负责人:杨浩

四、学时与学分:46学时,2.5学分

五、适用专业:电气工程与自动化

六、课程教材:

姜建国、曹建忠、高玉明,信号与系统分析基础(第2版),清华大学出版社,2006年7月。

七、参考教材:

a)郑君里等,信号与系统,上册,高等教育出版社,2000 b)董绍平等,数字信号处理基础,哈尔滨工业大学出版社,1996 c)V.奧本海姆等,刘树棠译,《信号与系统》,西安交通大学出版社,1998

八、开课单位:电气工程学院电工理论与新技术系

九、课程的目的、性质和任务

信号处理基础课程是电气工程学科的一门重要的技术基础课.本课程的教学旨在使学生掌握连续时间与离散时间信号与系统的表示与分析方法,两类信号与系统间的相似关系,它们间的内在联系或转换关系,建立信号与系统这一极为普遍的概念,以及掌握偏重于信号处理的较完善的一套基本方法和基本理论,从而为学生进一步学习后续有关课程,或将来从事信号处理与系统分析的研究工作和工程实际应用打下良好的基础。

十、课程的主要内容:

1.信号与系统的基本概念

确定性信号与随机信号,连续时间信号与离散时间信号,周期信号与非周期信号,能量信号与功率信号,基本的连续时间信号与奇异信号。连续时间系统与离散时间系统,分布参数系统与集中参数系统,静态系统与动态系统,线性系统与非线性系统,时变与非时变系统,因果系统与非因果系统。连续时间信号的时域分解与正交分解。

2.连续时间系统的时域分析

线性常系数微分方程,经典解法,零输入响应和零状态响应解法,线性非时变系统的冲激响应。卷积积分,用卷积积分计算线性非时变系统的(零状态)响应。卷积代数,卷积的微分与积分。

3.连续时间系统的频域分析

三角傅里叶级数,复指数形式的傅里叶级数,三角函数形式与复指数函数形式级数间的关系,周期信号的频谱,周期性矩形脉冲信号的频谱。基本的非周期信号的傅里叶变换,冲激信号与阶跃信号的傅里叶变换,傅里叶变换的基本性质,时域卷积定理与频域卷积定理,帕斯瓦尔关系,连续时间周期信号的傅里叶变换。

4.离散时间信号与系统

基本序列,序列的基本运算,用延时单位取样序列的加权和表示离散时间信号。离散时间系统的数学定义,离散时间系统的基本性质,包括线性、非移变性、稳定性和因果性;卷积和及其计算方法。线性常系数差分方程,递归与非递归解,经典解法、零输入响应和零状态响应解法。频率响应,离散时间(序列的)傅里叶变换的基本性质。周期抽样,抽样的频域表示,抽样定理,连续时间信号的重建。5.Z变换

Z变换的定义及其收敛域的定义,序列类型与收敛域的对应关系,Z变换与序列的傅里叶变换间的关系。围线积分法,长除法,部分分式展开法。Z变换的基本性质。用Z变换分析与表征线性非时变系统。单边Z变换,用单边Z变换求解差分方程。Z变换、拉普拉斯变换和傅里叶变换间的关系。

6.课程的实践教学环节

信号处理理论内容比较抽象,本课程设置8学时的实验。要求学生运用Matlab语言完成四个实验:无源滤波器幅频特性的测试实验,信号的产生、时域变换及卷积计算,模拟信号的取样与重构,信号的频谱计算及分析。

十一、课程的教学基本要求:

(1)信号与系统的概念:掌握信号与系统的基本概念,熟悉基本信号的性质,熟悉线性时不变系统的概念,了解系统的基本部件及组成。

(2)连续系统的时域分析:了解线性系统数学模型的建立及系统的初始状态,掌握系统的零输入响应与零状态响应,掌握冲激函数的性质及冲激响应,熟悉卷积的主要性质及卷积积分,熟悉连续系统时域分析。

(3)连续时间信号与系统的频域分析:掌握周期信号频谱的概念和常用非周期信号的频谱,掌握信号频带宽度的概念,熟悉傅立叶变换的主要性质,熟悉抽样定理,了解信号的无失真传输和信号通过理想滤波器的概念。

(4)离散时间信号与系统的时域分析:掌握离散信号的概念,熟悉离散系统的模拟框图,掌握简单线性移不变离散系统的差分方程,掌握单位样值响应,掌握卷积计算方法。

(5)离散系统的Z域分析:掌握Z变换与Z反变换的计算方法,熟悉Z变换的主要性质,掌握离散系统的Z域分析,掌握系统函数H(z),了解系统函数的零、极点与系统频率响应的关系,了解离散系统稳定性的概念和频率特性的概念。

(6)实验要求:通过实验加深理解信号与系统的理论知识,对信号的采样、信号频谱有一个感性认识。

十二、说明:

学习本课程的学生除了应先修电路原理与复变函数本科课程外,还应具有线性常系数微分方程、积分变换和线性代数等数学基础知识。

十三、学时分配建议:

1.信号与系统的基本概念(6学时)2.连续时间系统的时域分析(8学时)3.连续时间信号的傅里叶分析(10学时)4.离散时间信号与系统(10学时)5.Z变换(8学时)

6.实验(软件模拟计算)(8学时)

第五篇:信号与系统感想

很多朋友和我一样,工科电子类专业,学了一堆信号方面的课,什么都没学懂,背了公式考了试,然后毕业了。先说“卷积有什么用”这个问题。(有人抢答,“卷积”是为了学习“信号与系统”这门课的后续章节而存在的。我大吼一声,把他拖出去枪毙!)讲一个故事:

张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过“信号与系统”这门课程。一天,他拿到了一个产品,开发人员告诉他,产品有一个输入端,有一个输出端,有限的输入信号只会产生有限的输出。

然后,经理让张三测试当输入sin(t)(t<1秒)信号的时候(有信号发生器),该产品输出什么样的波形。张三照做了,花了一个波形图。

“很好!”经理说。然后经理给了张三一叠A4纸: “这里有几千种信号,都用公式说明了,输入信号的持续时间也是确定的。你分别测试以下我们产品的输出波形是什么吧!”

这下张三懵了,他在心理想“上帝,帮帮我把,我怎么画出这些波形图呢?” 于是上帝出现了: “张三,你只要做一次测试,就能用数学的方法,画出所有输入波形对应的输出波形”。

上帝接着说:“给产品一个脉冲信号,能量是1焦耳,输出的波形图画出来!” 张三照办了,“然后呢?”

上帝又说,“对于某个输入波形,你想象把它微分成无数个小的脉冲,输入给产品,叠加出来的结果就是你的输出波形。你可以想象这些小脉冲排着队进入你的产品,每个产生一个小的输出,你画出时序图的时候,输入信号的波形好像是反过来进入系统的。”

张三领悟了:“ 哦,输出的结果就积分出来啦!感谢上帝。这个方法叫什么名字呢?”

上帝说:“叫卷积!”

从此,张三的工作轻松多了。每次经理让他测试一些信号的输出结果,张三都只需要在A4纸上做微积分就是提交任务了!

张三愉快地工作着,直到有一天,平静的生活被打破。

经理拿来了一个小的电子设备,接到示波器上面,对张三说: “看,这个小设备产生的波形根本没法用一个简单的函数来说明,而且,它连续不断的发出信号!不过幸好,这个连续信号是每隔一段时间就重复一次的。张三,你 来测试以下,连到我们的设备上,会产生什么输出波形!” 张三摆摆手:“输入信号是无限时长的,难道我要测试无限长的时间才能得到一个稳定的,重复的波形输出吗?” 经理怒了:“反正你给我搞定,否则炒鱿鱼!” 张三心想:“这次输入信号连公式都给出出来,一个很混乱的波形;时间又是无限长的,卷积也不行了,怎么办呢?” 及时地,上帝又出现了:“把混乱的时间域信号映射到另外一个数学域上面,计算完成以后再映射回来” “宇宙的每一个原子都在旋转和震荡,你可以把时间信号看成若干个震荡叠加的效果,也就是若干个可以确定的,有固定频率特性的东西。” “我给你一个数学函数f,时间域无限的输入信号在f域有限的。时间域波形混乱的输入信号在f域是整齐的容易看清楚的。这样你就可以计算了” “同时,时间域的卷积在f域是简单的相乘关系,我可以证明给你看看” “计算完有限的程序以后,取f(-1)反变换回时间域,你就得到了一个输出波形,剩下的就是你的数学计算了!” 张三谢过了上帝,保住了他的工作。后来他知道了,f域的变换有一个名字,叫做傅利叶,什么什么......再后来,公司开发了一种新的电子产品,输出信号是无限时间长度的。这次,张三开始学拉普拉斯了......后记: 不是我们学的不好,是因为教材不好,老师讲的也不好。

很 欣赏Google的面试题: 用3句话像老太太讲清楚什么是数据库。这样的命题非常好,因为没有深入的理解一个命题,没有仔细的思考一个东西的设计哲学,我们就会陷入细节的泥沼: 背公式,数学推导,积分,做题;而没有时间来回答“为什么要这样”。做大学老师的做不到“把厚书读薄”这一点,讲不出哲学层面的道理,一味背书和翻讲ppt,做着枯燥的数学证明,然后责怪“现在的学生一代不如一代”,有什么意义吗? 到底什么是频率 什么是系统? 这 一 篇,我展开的说一下傅立叶变换F。注意,傅立叶变换的名字F可以表示频率的概念(freqence),也可以包括其他任何概念,因为它只是一个概念模 型,为了解决计算的问题而构造出来的(例如时域无限长的输入信号,怎么得到输出信号)。我们把傅立叶变换看一个C语言的函数,信号的输出输出问题看为IO 的问题,然后任何难以求解的x->y的问题都可以用x->f(x)->f-1(x)->y来得到。到底什么是频率? 一个基本的假设: 任何信息都具有频率方面的特性,音频信号的声音高低,光的频谱,电子震荡的周期,等等,我们抽象出一个件谐振动的概念,数学名称就叫做频率。想象在x-y平面上有一个原子围绕原点做半径为1匀速圆周运动,把x轴想象成时间,那么该圆周运动在y轴上的投影就是一个sin(t)的波形。相信中学生都能理解这 个。

那么,不同的频率模型其实就对应了不同的圆周运动速度。圆周运动的速度越快,sin(t)的波形越窄。频率的缩放有两种模式

(a)老式的收音机都是用磁带作为音乐介质的,当我们快放的时候,我们会感觉歌唱的声音变得怪怪的,调子很高,那是因为“圆周运动”的速度增倍了,每一个声音分量的sin(t)输出变成了sin(nt)。

(b)在CD/计算机上面快放或满放感觉歌手快唱或者慢唱,不会出现音调变高的现象:因为快放的时候采用了时域采样的方法,丢弃了一些波形,但是承载了信息的输出波形不会有宽窄的变化;满放时相反,时域信号填充拉长就可以了。

F变换得到的结果有负数/复数部分,有什么物理意义吗? 解释: F变换是个数学工具,不具有直接的物理意义,负数/复数的存在只是为了计算的完整性。

信号与系统这们课的基本主旨是什么?

对 于通信和电子类的学生来说,很多情况下我们的工作是设计或者OSI七层模型当中的物理层技术,这种技术的复杂性首先在于你必须确立传输介质的电气特 性,通常不同传输介质对于不同频率段的信号有不同的处理能力。以太网线处理基带信号,广域网光线传出高频调制信号,移动通信,2G和3G分别需要有不同的 载频特性。那么这些介质(空气,电线,光纤等)对于某种频率的输入是否能够在传输了一定的距离之后得到基本不变的输入呢? 那么我们就要建立介质的频率相应数学模型。同时,知道了介质的频率特性,如何设计在它上面传输的信号才能大到理论上的最大传输速率?----这就是信号与 系统这们课带领我们进入的一个世界。

当 然,信号与系统的应用不止这些,和香农的信息理论挂钩,它还可以用于信息处理(声音,图像),模式识别,智能控制等领域。如果说,计算机专业的课程是 数据表达的逻辑模型,那么信号与系统建立的就是更底层的,代表了某种物理意义的数学模型。数据结构的知识能解决逻辑信息的编码和纠错,而信号的知识能帮我 们设计出码流的物理载体(如果接受到的信号波形是混乱的,那我依据什么来判断这个是1还是0? 逻辑上的纠错就失去了意义)。在工业控制领域,计算机的应用前提是各种数模转换,那么各种物理现象产生的连续模拟信号(温度,电阻,大小,压力,速度等)如何被一个特定设备转换为有意义的数字信号,首先我们就要设计一个可用的数学转换模型。

如何设计系统? 设 计物理上的系统函数(连续的或离散的状态),有输入,有输出,而中间的处理过程和具体的物理实现相关,不是这们课关心的重点(电子电路设计?)。信号 与系统归根到底就是为了特定的需求来设计一个系统函数。设计出系统函数的前提是把输入和输出都用函数来表示(例如sin(t))。分析的方法就是把一个复 杂的信号分解为若干个简单的信号累加,具体的过程就是一大堆微积分的东西,具体的数学运算不是这门课的中心思想。那么系统有那些种类呢?(a)按功能分类: 调制解调(信号抽样和重构),叠加,滤波,功放,相位调整,信号时钟同步,负反馈锁相环,以及若干子系统组成的一个更为复杂的系统----你可以画出系统 流程图,是不是很接近编写程序的逻辑流程图? 确实在符号的空间里它们没有区别。还有就是离散状态的数字信号处理(后续课程)。(b)按系统类别划分,无状态系统,有限状态机,线性系统等。而物理层的连续系统函数,是一种复杂的线性系统。

最好的教材? 符 号系统的核心是集合论,不是微积分,没有集合论构造出来的系统,实现用到的微积分便毫无意义----你甚至不知道运算了半天到底是要作什么。以计算机的观 点来学习信号与系统,最好的教材之一就是<>,作者是UC Berkeley的Edward A.Lee and PravinVaraiya----先定义再实现,符合人类的思维习惯。国内的教材通篇都是数学推导,就是不肯说这些推导是为了什么目的来做的,用来得到什么,建设什 么,防止什么;不去从认识论和需求上讨论,通篇都是看不出目的的方法论,本末倒置了。抽样定理是干什么的

1.举个例子,打电话的时候,电话机发出的信号是PAM脉冲调幅,在电话线路上传的不是话音,而是话音通过信道编码转换后的脉冲序列,在收端恢复语音波形。那 么对于连续的说话人语音信号,如何转化成为一些列脉冲才能保证基本不失真,可以传输呢? 很明显,我们想到的就是取样,每隔M毫秒对话音采样一次看看电信号振幅,把振幅转换为脉冲编码,传输出去,在收端按某种规则重新生成语言。

那么,问题来了,每M毫秒采样一次,M多小是足够的? 在收端怎么才能恢复语言波形呢? 对 于第一个问题,我们考虑,语音信号是个时间频率信号(所以对应的F变换就表示时间频率)把语音信号分解为若干个不同频率的单音混合体(周期函数的复利叶 级数展开,非周期的区间函数,可以看成补齐以后的周期信号展开,效果一样),对于最高频率的信号分量,如果抽样方式能否保证恢复这个分量,那么其他的低频 率分量也就能通过抽样的方式使得信息得以保存。如果人的声音高频限制在3000Hz,那么高频分量我们看成sin(3000t),这个sin函数要通过抽 样保存信息,可以看为: 对于一个周期,波峰采样一次,波谷采样一次,也就是采样频率是最高频率分量的2倍(奈奎斯特抽样定理),我们就可以通过采样信号无损的表示原始的模拟连续 信号。这两个信号一一对应,互相等价。

对于第二个问题,在收端,怎么从脉冲序列(梳装波形)恢复模拟的连续信号呢? 首先,我们已经肯定了在频率域上面的脉冲序列已经包含了全部信息,但是原始信息只在某一个频率以下存在,怎么做? 我们让输入脉冲信号I通过一个设备X,输出信号为原始的语音O,那么I(*)X=O,这里(*)表示卷积。时域的特性不好分析,那么在频率域 F(I)*F(X)=F(O)相乘关系,这下就很明显了,只要F(X)是一个理想的,低通滤波器就可以了(在F域画出来就是一个方框),它在时间域是一个 钟型函数(由于包含时间轴的负数部分,所以实际中不存在),做出这样的一个信号处理设备,我们就可以通过输入的脉冲序列得到几乎理想的原始的语音。在实际 应用中,我们的抽样频率通常是奈奎斯特频率再多一点,3k赫兹的语音信号,抽样标准是8k赫兹。2.再举一个例子,对于数字图像,抽样定理对应于图片的分辨率----抽样密度越大,图片的分辨率越高,也就越清晰。如果我们的抽样频率不够,信息就会发生混 叠----网上有一幅图片,近视眼戴眼镜看到的是爱因斯坦,摘掉眼睛看到的是梦露----因为不带眼睛,分辨率不够(抽样频率太低),高频分量失真被混入 了低频分量,才造成了一个视觉陷阱。在这里,图像的F变化,对应的是空间频率。

话说回来了,直接在信道上传原始语音信号不好吗? 模拟信号没有抗干扰能力,没有纠错能力,抽样得到的信号,有了数字特性,传输性能更佳。什么信号不能理想抽样? 时域有跳变,频域无穷宽,例如方波信号。如果用有限带宽的抽样信号表示它,相当于复利叶级数取了部分和,而这个部分和在恢复原始信号的时候,在不可导的点上面会有毛刺,也叫吉布斯现象。3.为什么傅立叶想出了这么一个级数来? 这个源于西方哲学和科学的基本思想: 正交分析方法。例如研究一个立体形状,我们使用x,y,z三个互相正交的轴: 任何一个轴在其他轴上面的投影都是0。这样的话,一个物体的3视图就可以完全表达它的形状。同理,信号怎么分解和分析呢? 用互相正交的三角函数分量的无限和:这就是傅立叶的贡献。傅立叶变换的复数 小波

说的广义一点,“复数”是一个“概念”,不是一种客观存在。

什 么是“概念”? 一张纸有几个面? 两个,这里“面”是一个概念,一个主观对客观存在的认知,就像“大”和“小”的概念一样,只对人的意识有意义,对客观存在本身没有意义(康德: 纯粹理性的批判)。把纸条的两边转一下相连接,变成“莫比乌斯圈”,这个纸条就只剩下一个“面”了。概念是对客观世界的加工,反映到意识中的东西。

数 的概念是这样被推广的: 什么数x使得x^2=-1? 实数轴显然不行,(-1)*(-1)=1。那么如果存在一个抽象空间,它既包括真实世界的实数,也能包括想象出来的x^2=-1,那么我们称这个想象空间 为“复数域”。那么实数的运算法则就是复数域的一个特例。为什么1*(-1)=-1? +-符号在复数域里面代表方向,-1就是“向后,转!”这样的命令,一个1在圆周运动180度以后变成了-1,这里,直线的数轴和圆周旋转,在复数的空间 里面被统一了。

因 此,(-1)*(-1)=1可以解释为“向后转”+“向后转”=回到原地。那么复数域如何表示x^2=-1呢? 很简单,“向左转”,“向左转”两次相当于“向后转”。由于单轴的实数域(直线)不包含这样的元素,所以复数域必须由两个正交的数轴表示--平面。很明 显,我们可以得到复数域乘法的一个特性,就是结果的绝对值为两个复数绝对值相乘,旋转的角度=两个复数的旋转角度相加。高中时代我们就学习了迪莫弗定理。为什么有这样的乘法性质? 不是因为复数域恰好具有这样的乘法性质(性质决定认识),而是发明复数域的人就是根据这样的需求去弄出了这么一个复数域(认识决定性质),是一种主观唯心 主义的研究方法。为了构造x^2=-1,我们必须考虑把乘法看为两个元素构成的集合: 乘积和角度旋转。因 为三角函数可以看为圆周运动的一种投影,所以,在复数域,三角函数和乘法运算(指数)被统一了。我们从实数域的傅立叶级数展开入手,立刻可以得到形式更 简单的,复数域的,和实数域一一对应的傅立叶复数级数。因为复数域形式简单,所以研究起来方便----虽然自然界不存在复数,但是由于和实数域的级数一一 对应,我们做个反映射就能得到有物理意义的结果。

那么傅立叶变换,那个令人难以理解的转换公式是什么含义呢? 我们可以看一下它和复数域傅立叶级数的关系。什么是微积分,就是先微分,再积分,傅立叶级数已经作了无限微分了,对应无数个离散的频率分量冲击信号的和。傅立叶变换要解决非周期信号的分析问题,想象这个非周期信号也是一个周期信号: 只是周期为无穷大,各频率分量无穷小而已(否则积分的结果就是无穷)。那么我们看到傅立叶级数,每个分量常数的求解过程,积分的区间就是从T变成了正负无 穷大。而由于每个频率分量的常数无穷小,那么让每个分量都去除以f,就得到有值的数----所以周期函数的傅立叶变换对应一堆脉冲函数。同理,各个频率分 量之间无限的接近,因为f很小,级数中的f,2f,3f之间几乎是挨着的,最后挨到了一起,和卷积一样,这个复数频率空间的级数求和最终可以变成一个积分 式:傅立叶级数变成了傅立叶变换。注意有个概念的变化:离散的频率,每个频率都有一个“权”值,而连续的F域,每个频率的加权值都是无穷小(面积=0),只有一个频率范围内的“频谱”才对应一定的能量积分。频率点变成了频谱的线。

因此傅立叶变换求出来的是一个通常是一个连续函数,是复数频率域上面的可以画出图像的东西? 那个根号2Pai又是什么? 它只是为了保证正变换反变换回来以后,信号不变。我们可以让正变换除以2,让反变换除以Pi,怎么都行。慢点,怎么有“负数”的部分,还是那句话,是数轴 的方向对应复数轴的旋转,或者对应三角函数的相位分量,这样说就很好理解了。有什么好处? 我们忽略相位,只研究“振幅”因素,就能看到实数频率域内的频率特性了。

我 们从实数(三角函数分解)->复数(e和Pi)->复数变换(F)->复数反变换(F-1)->复数(取幅度分量)-> 实数,看起来很复杂,但是这个工具使得,单从实数域无法解决的频率分析问题,变得可以解决了。两者之间的关系是: 傅立叶级数中的频率幅度分量是a1-an,b1-bn,这些离散的数表示频率特性,每个数都是积分的结果。而傅立叶变换的结果是一个连续函数: 对于f域每个取值点a1-aN(N=无穷),它的值都是原始的时域函数和一个三角函数(表示成了复数)积分的结果----这个求解和级数的表示形式是一样 的。不过是把N个离散的积分式子统一为了一个通用的,连续的积分式子。

复频域,大家都说画不出来,但是我来画一下!因为不是一个图能够表示清楚的。我用纯中文来说:

1.画一个x,y轴组成的平面,以原点为中心画一个圆(r=1)。再画一条竖直线:(直线方程x=2),把它看成是一块挡板。

2.想象,有一个原子,从(1,0)点出发,沿着这个圆作逆时针匀速圆周运动。想象太阳光从x轴的复数方向射向x轴的正数方向,那么这个原子运动在挡板(x=2)上面的投影,就是一个简协震动。

3.再修改一下,x=2对应的不是一个挡板,而是一个打印机的出纸口,那么,原子运动的过程就在白纸上画下了一条连续的sin(t)曲线!

上面3条说明了什么呢? 三角函数和圆周运动是一一对应的。如果我想要sin(t+x),或者cos(t)这种形式,我只需要让原子的起始位置改变一下就可以了:也就是级坐标的向量,半径不变,相位改变。傅 立叶级数的实数展开形式,每一个频率分量都表示为AnCos(nt)+BnSin(nt),我们可以证明,这个式子可以变成 sqr(An^2+Bn^2)sin(nt+x)这样的单个三角函数形式,那么:实数值对(An,Bn),就对应了二维平面上面的一个点,相位x对应这个 点的相位。实数和复数之间的一一对应关系便建立起来了,因此实数频率唯一对应某个复数频率,我们就可以用复数来方便的研究实数的运算:把三角运算变成指数 和乘法加法运算。

但 是,F变换仍然是有限制的(输入函数的表示必须满足狄义赫立条件等),为了更广泛的使用“域”变换的思想来表示一种“广义”的频率信息,我们就发明出了 拉普拉斯变换,它的连续形式对应F变换,离散形式就成了Z变换。离散信号呢? 离散周期函数的F级数,项数有限,离散非周期函数(看为周期延拓以后仍然是离散周期函数),离散F级数,仍然项数有限。离散的F变换,很容易理解----连续信号通过一个周期采样滤波器,也就是频率域和一堆脉冲相乘。时域取样对应频域周期延拓。为什么? 反过来容易理解了,时域的周期延拓对应频率域的一堆脉冲。

两者的区别:FT=从负无穷到正无穷对积分 LT=从零到正无穷对积分(由于实际应用,通常只做单边Laplace变换,即积分从零开始)具体地,在Fourier积分变换中,所乘因子为exp(-jwt),此处,-jwt显然是为一纯虚数;而在laplace变换中,所乘因子为 exp(-st),其中s为一复数:s=D+jw,jw是为虚部,相当于Fourier变换中的jwt,而D则是实部,作为衰减因子,这样就能将许多无法 作Fourier变换的函数(比如exp(at),a>0)做域变换。

而 Z变换,简单地说,就是离散信号(也可以叫做序列)的Laplace变换,可由抽样信号的Laplace变换导出。ZT=从n为负无穷到正无穷对求和。Z域的物理意义: 由于值被离散了,所以输入输出的过程和花费的物理时间已经没有了必然的关系(t只对连续信号有意义),所以频域的考察变得及其简单起来,我们把(1,-1,1,-1,1,-1)这样的基本序列看成是数字频率最高的序列,他的数字频率是1Hz(数字角频率2Pi),其他的数字序列频率都是N分之 1Hz,频率分解的结果就是0-2Pi角频率当中的若干个值的集合,也是一堆离散的数。由于时频都是离散的,所以在做变换的时候,不需要写出冲击函数的因 子

离散傅立叶变换到快速傅立叶变换----由于离散傅立叶变换的次数是O(N^2),于是我们考虑把离散序列分解成两两一组进行离散傅立叶变换,变换的计算复杂度就下降到了O(NlogN),再把计算的结果累加O(N),这就大大降低了计算复杂度。

再说一个高级话题: 小波。在实际的工程应用中,前面所说的这些变换大部分都已经被小波变换代替了。

什么是小波?先说什么是波:傅立叶级数里面的分量,sin/cos函数就是波,sin(t)/cos(t)经过幅度的放缩和频率的收紧,变成了一系列的波的求和,一致收敛于原始函数。注意傅立叶级数求和的收敛性是对于整个数轴而言的,严格的。不过前面我们说了,实际应用FFT的时候,我们只需要关注部分信号的傅立叶变换然后求出一个整体和就可以了,那么对于函数的部分分量,我们只需要保证这个用来充当砖块的“波函数”,在某个区间(用窗函数来滤波)内符合那几个可积分和收敛的定义就可以了,因此傅立叶变换的“波”因子,就可以不使用三角函数,而是使用一系列从某些基本函数构造出来的函数族,只要这个基本函数符合那些收敛和正交的条件就可以了。怎么构造这样的基本函数呢?sin(t)被加了方形窗以后,映射到频域是一堆无穷的散列脉冲,所以不能再用三角函数了。我们要得到频率域收敛性好的函数族,能覆盖频率域的低端部分。说的远一点,如果是取数字信号的小波变换,那么基础小波要保证数字角频率是最大的 2Pi。利用小波进行离频谱分析的方法,不是像傅立叶级数那样求出所有的频率分量,也不是向傅立叶变换那样看频谱特性,而是做某种滤波,看看在某种数字角频率的波峰值大概是多少。可以根据实际需要得到如干个数字序列。

我 们采用(0,f),(f,2f),(2f,4f)这样的倍频关系来考察函数族的频率特性,那么对应的时间波形就是倍数扩展(且包含调制---所以才有频 谱搬移)的一系列函数族。频域是窗函数的基本函数,时域就是钟形函数。当然其他类型的小波,虽然频率域不是窗函数,但是仍然可用:因为小波积分求出来的变 换,是一个值,例如(0,f)里包含的总能量值,(f,2f)里面包含的总能量值。所以即使频域的分割不是用长方形而是其他的图形,对于结果来说影响不 大。同时,这个频率域的值,它的分辨率密度和时域小波基函数的时间分辨率是冲突的(时域紧频域宽,时域宽频域紧),所以设计的时候受到海森堡测不准原理的 制约。Jpeg2000压缩就是小波:因为时频都是局部的,变换结果是数值点而不是向量,所以,计算复杂度从FFT的O(NlgN)下降到了O(N),性 能非常好

下载信号与系统的课程感想word格式文档
下载信号与系统的课程感想.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    信号与系统实验感想

    信号与系统实验感想 时光飞逝,转眼间,我们的信号与系统实验结束了。回首这一段时光,收获了不少,也为这段实验学习画上了一个圆满的句号。在这段时间里,我们遇到了不少的困难,不过......

    信号与系统课程总结(大全5篇)

    信号与系统总结 一信号与系统的基本概念 1信号的概念 信号是物质运动的表现形式;在通信系统中,信号是传送各种消息的工具。 2信号的分类 ①确定信号与随机信号 取决于该信号是......

    信号与系统课程期末总结(范文)

    信号与系统课程期末总结本学期历时一学期的《信号与系统》课程快要结束了,感触良多,在此特作如下总结: 首先说说刚接触这门课程时的感受吧!《信号与系统》,顾名思义,就是研究信号......

    信号与系统

    问题4:单侧可导与单侧连续、单侧极限的关系?单侧极限存在 并且极限值=函数值 可以推出单侧连续可导必连续,连续未必可导那么 单侧可导是否可以推出单侧连续?请证明;反之,单侧极限......

    信号与系统实验报告,(范文大全)

    实验三常见信号得MATLAB 表示及运算 一、实验目得 1。熟悉常见信号得意义、特性及波形 2.学会使用 MATLAB 表示信号得方法并绘制信号波形 3、掌握使用MATLAB 进行信号基本运算得......

    信号与系统实验报告[本站推荐]

    中南大学信号与系统试验报告姓名: 学号:专业班级:自动化 实验一基本信号得生成1.实验目得 学会使用 MATLAB 产生各种常见得连续时间信号与离散时间信号;  通过MATLAB 中得绘......

    信号与系统学习心得

    信号与系统学习心得 经过几个星期对《信号与系统》的学习与认知,让我逐步的走进这充满神秘色彩的学科。现在我对于这么学科已经有了一点浅浅的认识。下面我就谈谈我对这门学......

    信号与系统总结

    信号与系统题型: 一,选择题(20分) 总共10道,每道2分 二,填空题(18分) 总共6道,每道3分 三,判断题(10分) 总共10道,每道1分 四,计算题(30分) 总共3道,每道10分 五,综合题(22分) 总共1道,5或6小问(一......