《一次函数》教学反思

2024-06-07下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《《一次函数》教学反思》及扩展资料,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《一次函数》教学反思》。

《一次函数》教学反思

《一次函数》教学反思1

一次函数是学生在学习了正比例函数、反比例函数等知识基础上进行学习的,因此学生对一次函数比较熟悉了,所以,本教学设计注意以旧引新,通过复习,让学生讨论、试做,发挥学生的主体性,掌握一次函数的概念、图象性质以及实际应用。巩固练习中,从基本练习、例题精讲一直到巩固练习,设计均有层次,有坡度。

这是一节章节复习课,虽然课程容量大,内容又较抽象,但采用了先进的多媒体辅助教学,使本课教学的知识概念变得具体、生动、可信。

本节课的教学方法主要有讲练结合,自主探究,小组讨论等,教学中让学生积极主动参与知识的形成过程,体验到新知识往往建立在旧知识的基础上,并且与一些旧知识还存在着紧密的联系,放手让学生运用转化的思想方法进行操作,使学生有效地理解和掌握一次函数的概念和应用,同时让他们获得了数学思想方法,并培养了学生探索问题的能力.

本节课的教学设计主要渗透转化的'数学思想方法、数形结合的思想方法以及函数与方程(组)思想方法,让学生体验利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力;体验函数图象信息的识别与应用过程,发展学生的形象思维能力;理解一次函数及其图象的有关性质;初步体会方程与函数的关系,建立良好的知识联系;能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题,在合作与交流活动中发展学生的合作意识和能力.

不过,所教班级中数学基础大多较差且缺乏学习积极性,针对这一特点,我上课时放慢了节奏,多叫学生回答问题,多安排学生间相互讨论,以激发学生学习动力。重点在点拨和解题规范上加以指导,所以教学效果还是比较令人满意的。

《一次函数》教学反思2

我今天讲课的课题是一次函数的图像和性质,我们是集体备课后形成的教案,我把目标定位为:

1、理解正比例函数和一次函数的意义。

2、会画一次函数的图像,并结合图像和表达式理解一次函数的性质。

3、能根据已知条件确定一次函数的表达式。

下面对这节课反思如下:

1、上课仍然改不了以前的好多习惯,不放心学生,总想包办代替,自己讲的多,留给学生的时间和空间少。

2、学生展示的`少,老师没有放手给学生,没有让学生去经历知识的获取过程。

3、起点过高,把学生的基础估计过高,不能面对的多数学生。没有本着低起点,小步伐,慢节奏的方式方法进行教学。

4、数形结合不够,应该从图像入手让学生经历画图像和观察图像的过程,并且根据图像去解决一些问题。

5、用展台展示不太清晰,没有让学生画在黑板上效果好。

6、教师应该把课堂还给学生,让学生多做多讲。不可以有老师太多的讲解。

7、中考备课要讲究实效,不可以走过场,作秀,那只能是事倍功半。

8、要仔细钻研教材和课标,以及考试说明,备好课。这是上好课的前提。

9、没有注重方法的总结。

总之,还有诸多地方需要改进,我会在今后的教学中加以注意。

《一次函数》教学反思3

用函数的观点看方程,是学生应该学会的一种数学思想方法。

本节课从解具体的一元一次方程与当自变量x为何值时一次函数的值为0这两个问题入手,通过观察、探究,发现这两个问题实际上是同一个问题,进而得到解方程kx+b=0与求自变量x为何值时,一次函数y=kx+b的值为0的关系,并通过观察函数图象确认了这个问题在函数图象上的反映。从而,归纳总结得出了用一次函数的观点求解一元一次方程的方法。

虽然前面有了学习一元一次方程和一次函数的基础,但是学生不会想到将一次函数与一元一次方程联系起来,所以从“数”和“形”两方面理解二者之间的关系,进一步将“数”和“形”结合起来,对学生来说仍然是个难点。

为了进一步理解二者之间的关系,通过一次函数来求解一元一次方程,我在得出结论后,设计了一系列的习题进行加深巩固,题目设计由易到难,由“数”到“形”,层层递进,便于学生理解掌握。在完成题目的过程中,注意规范学生的解题格式,以及解题过程的完整性,进一步渗透数形结合的'思想以及函数观点看方程的思想。经历了这些练习后,同学们可以更熟练地掌握通过函数求解一元一次方程的方法。虽然用函数解决方程问题未必简单,但这种数形结合的思想在以后的学习过程中有着很重要的作用。

从课堂效果来看,大部分同学可以用函数的观点来认识一元一次方程,用函数的方法来求解一元一次方程。个别同学在自己通过画图象来求解一元一次方程上还有一定困难,理解上不是很到位,还需要教师进一步的指导落实。本节课在时间安排上还有所欠缺,前面引导探究得出结论的过程用时过多,导致后面巩固练习中的最后一题没有完成,以后在教学中要注意各环节的时间安排,尽可能的合理一些。

除此之外,本节课还有很多不足之处,比如学生上课回答问题的积极性不够高,举手的比较少,使得课堂气氛没有达到最好的效果。但是,所有的不足也在提醒我在以后的工作中还要不断地改进,以便在以后的教学中做得更好!

《一次函数》教学反思4

学生已经学习过一次函数的图像和性质,在本节课开始之前,用一个具体的一次函数表达式带领学生回顾已学知识。

根据函数表达式,我们可以得到函数图像与坐标轴的交点坐标,可以知道函数图像是上升还是下降,可以很快的利用k值确定y随x的变化而怎样变化。这时,抛给学生一个问题:在函数表达式未知的情况下,能不能用已知的函数图像上的点坐标或其他信息确定出这个函数的表达式?

由此引入,给出今天所要学习的一个新方法—待定系数法,让学生阅读课本材料,和学生一起总结利用待定系数法确定一次函数表达式的`步骤,简单概括为:设(一次函数或正比例函数表达式)列(方程组或方程)解(方程组或方程)答(写出函数表达式)。给出一个点坐标,可以确定正比例函数的表达式,让学生思考并分析总结确定一次函数表达式需要两个点,而确定正比例函数表达式只需要一个点。

之后的主要内容是练习,采用让学生上台板演,请其他学生指正错误的方法,教师要强调解题过程的规范性。之后继续练习课本习题,并总结题目类型——有直接给出点坐标的,有根据图像确定点坐标的,有根据实际问题提取有用信息的等不同的给点类型,告诉学生如何从不同的题目中得到有用的条件,然后利用待定系数法求解函数表达式。

《一次函数》教学反思5

本节课是在学生已经探究过一次函数、一元一次方程及一元一次不等式的联系的基础上进行的学习。本节教学内容是《一次函数与一元二次方程(组)》,“一个二元一次方程对应一个一次函数,一般地一个二元一次方程组对应两个一次函数,因而也对应两条直线。如果一个二元一次方程组有唯一的解,那么这个解就是方程组对应的两条直线的交点的坐标”。通过本节课的学习,让学生能从函数的角度动态地分析方程(组),提高认识问题的水平。

本节课的引入。我通过一个一次函数形式问题提问,学生看出既是一次函数,也是二元一次方程,由此创设情境,引出一次函数与方程有必然的关系,使学生主动投入到一次函数与二元一次方程(组)关系的探索活动中;紧接着,用一连串的问题引导学生自主探索、合作交流,从数和形两个角度认识它们的关系,使学生真正掌握本节课的重点知识。

在探究过程中,我把学生分为一个函数组一个方程组,使学生能身临其境感受知识,并及时的进行团结合作教育,把德育教育渗透在教学中。在探究中,我把握自己是组织者、引导者和合作者的身份,及时引导学生进行知识探究。但在实际操作过程中还是把握的不够好,没有很好的起到引导者的作用,缺乏情感性的鼓励,没有使大多数学生能完全积极融入到的知识的探讨与学习中。

本节的图象解法需要迅速画出图象,利用图象解决问题。而我的失误主要发生在画图象上。大部分学生不能迅速画出图象,并找准交点,这就使他们理解本节知识有了困难。

为了培养学生的发散思维和规范解题的习惯,我引导学生将“上网收费”问题延伸为拓展应用题,根据前面的例题教学,设置了两个小问题:

(1)上网时间为多少时,按方式A比较划算?

(2)上网时间为多少时,按方式B比较划算?

前后呼应,使学生有效地理解本节课的.难点。但在此题的探讨过程中,我做的不够好,没有给学生充分思考的时间及学生探讨解决问题的方法,有点操之过急,而且我当时也没有采取补救措施,这是我的失误,也是这节课的失败之处。

一次失误也反映了一位老师驾驭课题的能力,今后,在我的课堂教学中要注重培养这种能力,关注细节,完善课堂和各个环节,不留遗憾,提高教育教学此文转自质量。

《一次函数》教学反思6

根据教学目标,结合学生心理特点,以及本人的教学经验,这节课主要采用在教师引导下,学生自主发现为主的教学方法。即教师创设问题情景,激发学生思维,引导学生观察、比较、思考并分组展开讨论,使学生作为认知主体参与知识发生的全过程,体验揭示规律,发现真理的乐趣,,提高课堂教学效率,充分发挥教师主导作用和学生的主体作用。在整个探索新知的过程中主要培养学生的合作精神。

本节课教师要向学生说明研究函数的基本方法是由函数表达式画图象,再由图象得出性质,最后反过来由函数性质研究其图象的其他特征。为此,这节课首先从学生已经认知的正比例函数和一次函数的概念出发,得出其定义式,以及两者特殊与一般的关系。然后展示教材中和作业中出现的正比例函数和一次函数的图象,让学生感知一次函数的图象是一条直线,并让学生回忆画一次函数图像的的方法步骤,掌握画图要领后,进而作出猜想。这样可以较好的突破难点。接着,由一次函数(正比例函数)图象的特殊形状,引导学生从图象和列表或表达式中分析:当自变量取值增大时,其函数值的变化情况;图象的`分布主要由什么决定,让学生总结归纳其性质。教师要加以强调反比例函数“每个分支”的变化情况,最后教师用由浅入深的变化训练题组,使学生更完整、灵活地理解与掌握一次函数的图象及性质。

这节课的知识容量较大,而且内容较难,为了能更好地帮助学生消化理解该知识,突破难点,为此我准备了多媒体课件。在教学过程中,我采用通过让学生亲自动手、动脑画图及设计若干组“问题串”的方式,通过教师的引导,学生的分组交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。但还存在着不尽人意的地方,由于课的内容容量较大,对于有些知识点,本应给学生更多的时间练习、讨论,以帮助理解消化该知识,但为了赶时间(在画函数图像环节时间有点过),学生的这一活动开展的不充分,个别学生的主动性、积极性没有充分调动起来。这是今后教学中应该注意的问题。

《一次函数》教学反思7

这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。通过充分的过程探究,学生得出了图象的性质,借助直观图象的性质而得到一次函数的性质。真正的形成往往来源于真实的自主探究。只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。

首先,要设计适合学生探究的素材。教材对一次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。但是能让学生理解和接受的知识才是最好的。

其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的`过程。探究教学是追求教学过程的探究和探究过程的自然和本真。只有这样探究才是有价值的,真知才会有生长性。要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。

最后,教师在学生探究真知之旅上应是一个促进者、协作者、组织者。要做善于点燃学生探究欲望和智慧火把的人,要善于让学生说教师要说的话,做教师想做的事,这就是一个成功的促进者。数学教学的过程是师生共同活动、共同成长与发展的过程。真正的知识不全是由教材和教师讲授的途径获取的,其实学生也是课程资源的开发者,要彻底抛弃“唯书论”“唯师论”,与学生一起去探究协作,寻觅适合学生自己的真知才是最有效的教学。要开展成功的探究,教师要科学设置问题情景或问题素材,使探究的问题具有层次性和探究性,适时、适势、适度地用教学机智调控课堂。在教学设计中,要预设多种意外和可能,这样探究真知的过程就会艰辛并顺利展开。这才是一个成功的组织者。

《一次函数》教学反思8

函数的学习是初中阶段学习的重要内容之一,而一次函数在教材中的位置又是起着承前启后的重要作用。一次函数y=kx+b(k≠0)的图象与性质这一节课主要是指导学生可以通过画一次函数的大致图象很快分析出一次函数图象的性质。所谓大致图象是指能大致表示函数与两坐标轴交点是在原点、正或负半轴,以及函数的分布和增减性。

画函数图象时,我形象地将它比喻成一个人沿着x轴的正方向行走当k>0时他就是上坡,当k<0时便下坡。课件形象地展示一次函数的图象分布和增减性的分析后,学生基本都能按先确定b的位置,根据上下坡的形象比喻画出函数的大致图象,从而说出图象的分布。

练习:直线y=kx+b不经过第二象限,则k,b。

在这之前我已经用课件展示了b和k是确定图象的不同分布规律。这一题让学生分组讨论,然后上黑板画出所有的情况。有一组的结果如下图:

前三种是意料之中的,能考虑到第三种的同学已经很不错了,因为题目中并没有说明是一次函数y=kx+b(k≠0),第三种便是k=0时的常值函数的图像,关键是第四种的确也是一条直线没有过第二象限,这一组的结果赢得了全班同学的掌声,我在及时表扬了学生的聪明以后,告诉学生第四种情况不在这一题的考虑范围内。当即台下一片哗然,学生兴趣高涨,质疑声四起,我马上趁热打铁:“在学习常值函数时提到过,第四种是x=a(a>0,a为常数),这种情况中y是自变量,x是变量,所以这道题只有前三种情况。”“老师,那么答案就是k≥0且b≤0。”“对的`!”我迫不及待地肯定了这位同学。“可是老师当k=0且b=0时又是什么情况,这里他们只画出了三种k>0且b=0,k>0且b<0,k=0且b<0?”又一位学生提出了质疑!全班同学安静了也不过三秒钟,马上有同学说到“那不就是直线y=0,它是和x轴重合的一条直线,坐标轴不属于任何象限,那么这条直线就没有经过第二象限。”这一题学生通过积极参与数学学习和解决问题的活动,培养了学生积极探究的态度、独立思考的习惯、实事求是的作风,发扬了团结协作的精神、体会到了集体的力量是强大的。

当学生完成讨论后,我悬着的心终于放下了,学生真的很了不起,他们用自己思考问题的方法和角度还能弥补老师在备课时没有想到的第四种图形。每一个学生都有成功的潜能,更何况我有53个学生。老师要想驾驭课堂,一定要充分理解学生、信任学生,要做到对学生“收”“放”自如。教师所想并非学生所想,课堂是属于学生的,教师的舞台是学生给的,要有学生的智慧我们课才能更完善。教学的过程的实质是师生共同的拥有学习过程,我们必须给学生充分的发言权、想像的空间、表达自己观点的机会。正所谓教学相长,通过交流也能让师生共同体会其中的乐趣。这节课也真正地尊重了学生,超出我的想象!

《一次函数》教学反思9

本节教学内容是《二元一次方程与一次函数》,这节课以“回顾,提问”为先导,以“操作,思考”为手段,以“数,形结合”为要求,以“引导,探究”为主线,处处呈现出师生互动,生生互动的景象,较好地体现了新的课程理念与要求,充分让学生自主探究,合作交流,时刻注重学生学习过程的体验与评价。 新的课程标准提出:数学教学活动必须建立在学生的认知发展水平和已有的生活经验基础之上,教师应帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能、教学思想和方法,获得广泛的数学活动经验。由此,我设计了本节课的教学设计,基于上完课后的感想,我对本节课有如下的反思:

一、成功之处:

1、从旧识引入,自然过渡

这节课由复习一次函数解析式和二元一次方程的形式引入,再提出x+y=5是一次函数还是二元一次方程这一问题,进而引出本节课的第一个内容,激发了学生的兴趣,使他们更快的融入课堂。

2、在操作中,提出问题,深化认识

对于此阶段学生来说,他们乐于探索,富于幻想,但他们的数学推理能力以及对知识的主动迁移能力较弱,为帮助学生更好地构建新的认知结构,促进学生主动发现问题,本节课我让学生亲自动手操作画出一次函数的图像,并解出二元一次方程的解,在画图过程中发现:“以二元一次方程的解为坐标的点都在相应的函数图像上”,接着引导学生反思:“一次函数图像的点坐标都适合相应的二元一次方程吗?”通过举例、验证,得出结论。同样,在探索二元一次方程组与一次函数关系时,也是在操作中发现问题,这样就给了学生充分体验、自主探索知识的机会,使他们在自主探索、合作交流中找到了快乐,深化了认识。

3、以能力培养为核心,引导探索为主线,数形结合为要求

能力的培养是以自主探究为平台,我通过让学生小组交流合作并讨论来解答几个问题,进而得出结论,培养了他们的`发现、分析、解决问题、归纳总结的能力。再由二元一次方程与一次函数的关系进一步扩展到二元一次方程组与一次函数的关系,层层递进,学生基本掌握了本节课的重点、难点问题。通过总结二元一次方程组的解法:加减、消元、图像法,通过分析他们的优缺点可知图像法得出的解是近似的这一结论,让学生又体会到了数学的严谨性。在教学过程中,我充分渗透了数形结合的思想,让学生体会了数学的美。

二、失败之处

1、学生自己画图时不好确定交点坐标,在做这样的题时,就一定会存在如何确定交点的精确度问题,从而使学生会认为应用图像法来解二元一次方程组的方法无用处,进而不重视本节课的内容。

2、教学过程中,在探索二元一次方程与一次函数关系时,提出的问题与ppt课件中展示的问题部分重复了,浪费了一些时间,板书设计不够简洁。

三、针对以上不足之处我做了如下改进:

1、对于交点坐标问题,应该跟同学们讲解清楚,我们要求的是掌握这个解二元一次方程组的图像解法,我们借助科学技术很容易画出一次函数的图像,也就容易找到交点的精确坐标。此外,一般来说如果考试当中是会给出交点的坐标。

2、重新整理资料,将一些重复问题删去,提取结论中一些重点语句,关键词,板书做到精炼。

《一次函数》教学反思10

本节课是在学生已经探究过一次函数、一元一次方程及一元一次不等式的联系的基础上进行的学习。本节教学内容是《一次函数与一元二次方程》,“一个二元一次方程对应一个一次函数,一般地一个二元一次方程组对应两个一次函数,因而也对应两条直线。如果一个二元一次方程组有唯一的解,那么这个解就是方程组对应的两条直线的交点的坐标”。通过本节课的学习,让学生能从函数的角度动态地分析方程,提高认识问题的水平。

本节课的引入。我通过一个一次函数形式问题提问,学生看出既是一次函数,也是二元一次方程,由此创设情境,引出一次函数与方程有必然的关系,使学生主动投入到一次函数与二元一次方程关系的探索活动中;紧接着,用一连串的问题引导学生自主探索、合作交流,从数和形两个角度认识它们的关系,使学生真正掌握本节课的重点知识。

在探究过程中,我把学生分为一个函数组一个方程组,使学生能身临其境感受知识,并及时的进行团结合作教育,把德育教育渗透在教学中。在探究中,我把握自己是组织者、引导者和合作者的身份,及时引导学生进行知识探究。但在实际操作过程中还是把握的不够好,没有很好的起到引导者的作用,缺乏情感性的鼓励,没有使大多数学生能完全积极融入到的知识的`探讨与学习中。

本节的图象解法需要迅速画出图象,利用图象解决问题。而我的失误主要发生在画图象上。大部分学生不能迅速画出图象,并找准交点,这就使他们理解本节知识有了困难。

为了培养学生的发散思维和规范解题的习惯,我引导学生将“上网收费”问题延伸为拓展应用题,根据前面的例题教学,设置了两个小问题:

上网时间为多少时,按方式A比较划算?

上网时间为多少时,按方式B比较划算?

前后呼应,使学生有效地理解本节课的难点。但在此题的探讨过程中,我做的不够好,没有给学生充分思考的时间及学生探讨解决问题的方法,有点操之过急,而且我当时也没有采取补救措施,这是我的失误,也是这节课的失败之处。

一次失误也反映了一位老师驾驭课题的能力,今后,在我的课堂教学中要注重培养这种能力,关注细节,完善课堂和各个环节,不留遗憾,提高教育教学质量。

《一次函数》教学反思11

一、教材分析

1、地位和作用

这一节内容在学生学习了前面一节一次函数后通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。

2、活动目标

①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。 ②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。

③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。

④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。

3、教学重点:(1).理解一元一次不等式与一次函数的转化关系及本质联系

(2).掌握用图象求解不等式的方法.

教学难点:图象法求解不等式中自变量取值范围的确定.

二、学情分析

八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。

三、学法分析

1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。

2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。

四、教法分析

由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的.左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:

⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。

⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。

1、“动”―――学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。

2、“探”―――引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。

3、“乐”―――本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。

4、“渗”―――在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。

《一次函数》教学反思12

一、教学目标:

1、知道一次函数与正比例函数的定义.

2、理解掌握一次函数的图象的特征和相关的性质;

3、弄清一次函数与正比例函数的区别与联系.

4、掌握直线的平移法则简单应用.

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:

重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:

1、一次函数与正比例函数的定义:

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数

正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2. 一次函数与正比例函数的区别与联系:

(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

平行的一条直线。

基础训练:

1. 写出一个图象经过点(1,- 3)的函数解析式为: 。

2.直线y = - 2X - 2 不经过第 象限,y随x的增大而。

3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。

4.已知正比例函数 y =(3k-1)x,,若y随

x的增大而增大,则k是: 。

5、过点(0,2)且与直线y=3x平行的直线是: 。

6、若正比例函数y =(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是: 。

7、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。

8、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为 。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。(1)求线段AB的长。(2)求直线AC的解析式。

四、教学反思:

教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。

课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问

题的'答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。

从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。

《一次函数》教学反思13

用函数的观点看方程(组)和不等式,是学生应该学会的一种数学思想方法。教学过程中要让学生理解一次函数与一元一次方程、一元一次不等式、二元一次方程组的内在联系,明白方程(组)、不等式与函数三者之间可以相互转化、相互渗透,让学生成为学习的主导者,主动去观察、分析、归纳与总结,得到更深刻、透彻的知识点,并且让学生在交流中体会成功。

教学优点:

1、能积极学习并采用多媒体课件进行授课。应用多媒体课件直观、明了的展示了一次函数与一元一次方程、一元一次不等式及二元一次方程的联系,且课堂容量大、课堂效率高。运用幻灯片让枯燥的理论知识直观、形象、生动起来,激发了学生学习的积极性。

2、“数形结合”思想的完美体现。我能够利用一次函数图象从“形”方面直观地表示方程(组)和不等式的.解或解集的含义,反过来,又从“数”的方面来解释方程(组)的解及不等式的解集实质就是图象上对应点的自变量的取值或取值范围。这节课让学生充分感受到“数形结合”思想的重要性。

教学不足:

1、课堂容量有些大,学生组内讨论时间较少,学生单独回答问题的机会也有点少。

2、缺乏对学困生的关注、指导和帮助。

3、对学生语言表达能力估计过高,用函数观点解释方程、不等式,学生只可意会,不会言语。

《一次函数》教学反思14

整个新课讲解分为实例引入—讨论分析—归纳概括—巩固概念等四个小环节来进行。其中的实例引入部分,分别用了弹簧拉力器、吃大锅饭以及我的手机话费等贴近学生生活的实例入手,让学生明白、理解数学来源于生活应用于生活。特别是弹簧拉力器的引入,即活跃了课堂气氛也增加了学生学习的趣味性,得到了听课老师的一致好评。整节课的量适当,表达流利,跟学生的互动性好,学生的参与更加生动地体现了问题的情景,促使每一位学生都积极的参与解决问题,从而培养了学生“乐学”、“爱学”的学习态度。

然而,作为新老师的第一次公开课,难免存在着不足之处。比如在实例引入之后,过快的建立了数学模型,没有留给学生足够的思考时间。对于概念的阐述,也没有用其他的'文字等形式去补充过渡,让学生有突兀的感觉,略显单调,沉闷。板书的书写也不是很完善,字体稍微潦草。虽然学生的基础不错,但整节课的课堂节奏过快,没有足够的时间留给学生去思考,联系。一部分学生还是没能跟的上我的思维,这方面以后一定要加强改进。

对于这节课所暴露的问题,我一定会认真去对待,多花时间在备课上,多听听其他老师的课,吸取他们的课堂经验,为自己以后成为一名优秀的教师而努力。

《一次函数》教学反思15

高质高效课堂教学模式推广以来,我认真进行研究和参与讨论,从中感触很深,并在实际工作中不断摸索,越来越深刻地体会到这项活动的开展是切实可行且十分必要的。这节一次函数的复习课,针对初三复习阶段的特点,采用直接导课的方式,让学生简单明了本节课的复习内容。

本节课将一次函数的知识分为概念、图象及其性质和应用三大部分,授课过程中体现在板书设计、知识回顾、例题讲解及练习巩固等环节,让学生对一次函数有一个系统、直观的复习思路。

在复习知识点时,让学生自己联想回顾,变被动为主动学习。例如,在“图象及其性质”环节中,老师不急于提问,而是让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充。这样,使无味的复习课变得活跃一些,增强了学习气氛。

在处理典型例题A练习中,发现绝大多数学生对于简单题型能自己解答,而一部分学生对综合性、开放性题目有些无从下手,透露出了思维不灵活,应变能力弱等不足。所以要想达到高效高质,必须要分层次教学,让不同水平的学生在同一节课中得到应有的发展,课前必须对每一个环节,每一个题型,每一个学生作充分地细致地研究。

在教学过程中,我发现理论与实践在学生身上很难统一。学生习惯于做纯理论性的'问题,而对于实践中蕴含的数学问题即便昌很简单,也发现、挖掘不出。这与枯求的“人人学有价值的数学”相差甚远,而且需要很长的时间来解决。

此项教学模式的构建和推广,需要我们不断地探索、研究并总结,需要我们做大量的工作。相信“高质高效课”将使教师的素质与专业水平有一个更大的提高,使有志的学子有更长足的发展。

下载《一次函数》教学反思word格式文档
下载《一次函数》教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐