第一篇:传感器:物联网成引擎,新技术催生新机遇
传感器:物联网成引擎 新技术催生新机遇
作为政府从战略层面进行推进的产业,物联网如何从愿景走向现实应用并得到快速发展已成为业界关注的话题。正所谓“万丈高楼平地起”,作为构成物联网的基础单元,传感器在物联网信息采集层面能否如愿以偿完成它的“使命”,成为物联网成败的关键。并且未来 MEMS、MOEMS(微光机电系统)将成为物联网的技术核心,使无线传感网、光网快速加入物联网的应用系统,为其提供更明确的应用方向和更丰富的市场机会,物联网也将成为传感器市场的新引擎。
传感器成基础
物联网的产业供应链包括传感器和芯片供应商、应用设备提供商、网络运营及服务提供商、软件与应用开发商和系统集成商。作为“金字塔”的塔座,传感器将会是整个链条需求总量最大和最基础的环节。“传感器是物联网技术的支撑、应用的支撑和未来泛在网的支撑,传感器感知了物体的信息,RFID赋予它电子编码,传感网到物联网的演变是信息技术发展的阶段表征。”中国电子科技集团第3研究所副所长范茂军对《中国电子报》记者表示,“物联网主要需要图像、化学、位置、温度、压力等几大类传感器。”
作为物联网最主要的技术基础之一,物联网对传感器提出了一些新的要求。京仪集团长城金点定位测控(北京)有限公司董事长胡旭成介绍,在产品方面,对传感器的要求是体积小、成本低、重量轻、功耗低;在技术方面,要求材料科学、机械设计与加工工艺、检测技术、光学技术、电子电路设计、可靠性工程等技术支撑;在传感器指标方面,对测量范围、精确度、分辨率、灵敏度等有严格的要求。
应用是带动物联网发展的“隐形的翅膀”。“传感器、RFID、GPS、视频识别、红外、激光、扫描等技术都可以成为物联网的信息采集技术。物流业是物联网很早就实实在在落地的行业之一,很多物流系统和网络采用了最新的传感器、RFID等高新技术。”中国物流技术学会副理事长王继祥表示,“目前在物流业应用较多的感知手段主要是RFID和GPS技术,今后随着物联网技术的发展,传感器、蓝牙、RFID等多种技术也将逐步集成应用于现代物流领域。”
据了解,全国已有上千家企业从事传感器的研制、生产和应用,其中从事MEMS研制生产的已有50多家。我国已建立了“传感技术国家重点实验室”、“微
米/纳米国家重点实验室”等研究开发基地,MEMS、MOEMS等研究项目列入了国家高新技术发展重点。胡旭成介绍,目前传感器行业正在执行“十一五”计划,MEMS等5项新型传感器已列入研究开发的重点。
标准期待完善
如今得标准者得天下。而物联网的标准体系非常复杂,涉及很多基础标准,如传感器网络技术标准、RFID标准、云计算标准、信息安全标准等以及一些应用标准。
在国际传感器及无线传感网络标准化方面,已出台了包括IEEE1451.5智能传感器接口标准、IEEE802.11无线局域网标准等在内的标准体系。我国在构建传感器标准体系方面也在加快推进,山东标准化研究所副院长钱恒说,在传感器标准方面我国已成立相关标准化组织全国信息技术标准化技术委员会传感器网络标准工作组,相关标准制定工作正稳步开展。目前已制定的传感器国家标准包括传感器图用图形符号、压力传感器性能试验方法、传感器通用术语、传感器命名法及代码等。钱恒介绍,我国已新立6项国家标准,包括总则、术语、通信和信息交互、接口、安全、标识;新立2项行业标准,包括机场传感器网络防入侵系统技术要求、面向大型建筑节能监控的传感器网络系统技术要求。“标准是从技术到产业应用的必由之路。”钱恒表示,“因为物联网就是建立在信息设备和信息数据标准技术之上的高度标准化网络,因而我们应强调基础标准和应用标准的双重标准化。”
新技术将成新动力
由信息采集层和网络层构成的信息感知体系是物联网应用推进的主要领域,而在其中起到关键推动作用的是无线传感器网络(WSN)。作为物联网现阶段发展核心的无线传感器网络,具有成本低、范围大、灵活等特点,市场蓬勃发展。市场调研机构HarborResearch预测,无线传感设备的出货量在2010年将达到2亿个。但同时,无线传感器网络也面临着延长节点工作时间、增加通信距离、小型化、标准化等技术挑战和寻找应用场景等市场挑战。
“无线传感网需要大量的新型传感器,不仅要求具有传统传感器的基本功能外,还必须具有低功耗和无线高传输等特点。”范茂军对《中国电子报》记者表示。
而MOEMS可使传感技术有着更快的转换和传输速率,使得光网可快速加入以光传输为主导的物联网,光网会在未来10年内普遍地加入到物联网中。范茂军强调,在加入的过程中还需要克服几个主要问题:一是光信息的处理技术,二是光信息的快速转换技术,三是微型光信息的快速和反复擦除技术及芯片技术。目前国内外在MOEMS研发方面取得了一些新的进展,表现在光通信中的各种开关实现了光信号的通路转换以及在多种传感器中实现了光作为检测和转换的多种应用。
“微纳米技术是未来微传感器的核心技术之一,而微传感器是物联网中应用最多的一种传感器。如果微纳米等新技术快速融合到传感器技术之中,这不仅将为传感器产品发展带来新材料、新工艺、新技术,还可给传感器在设计方面带来新的突破。”范茂军指出,”这也将成为物联网发展的新动力。”
目前,全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势,新技术的发展将重新定义未来的传感器市场。我国传感器厂商在传统传感器市场已“城门失守”,在MEMS、MOEMS等新技术领域,还需加强修炼,以在新一轮的竞争中能够成功上位。
专家观点
中国电子科技集团第3研究所副所长范茂军
国内传感器厂商占据中低端市场
从发展态势看,国内传感器厂商有三种情况:一是国有企业发展处于平稳增长状态,总体上跟不上国外最新技术发展的步伐,除少数厂家外,总体差距有扩大的趋势。这是因为传感器技术发展快,工艺和制造设备更新快,许多新设备国内厂商无法制造等原因造成的。并且设备的单台价格少则几十万美元,多则数百万美元,绝大多数厂家靠自身积累很难购买新型设备,致使在许多新技术、新工艺方面无法跟上国外企业飞速发展的步伐。二是民营或合资企业的产品占据了中低端市场,传统技术和装备手段可以满足绝大多数产品的制造要求,市场发展状态良好。除个别厂家在个别品种方面将国外生产的芯片拿到国内封装出相关产品、占据市场较大份额外,其他高端产品均是国外厂商在垄断。三是外资企业的产品占据国内高端市场绝大多数的市场份额,并将会在今后很长一段时间内持续把持高端市场,这种势头在短期内不会得到根本转变。
我国传感器业取得的新进展主要表现在:一是在数量方面,通过多年的积累,随着装备的改进,产能在近几年得到了突飞猛进的发展,几乎以每年近一倍的速度在增长;二是在品种方面,除少数品种外,目前国内能够生产多数品种的产品;三是在质量方面,国内厂商开发的多数产品性能能够满足工程需要,产品质量开始接近国外产品水平;四是在新产品方面,由于创新能力不足以及工艺技术和加工手段的差距,我国企业自主开发的新产品少。
面临的问题在于:原创技术少、新型加工手段缺少、工艺装备落后、持续发展的体系没有建立。
京仪集团长城金点定位测控(北京)有限公司董事长胡旭成传感器业面临四大挑战
传感器是构成物联网的基础单元,是物联网的耳目,是物联网获取相关信息的来源。传感器早已渗透到诸如工业生产、环境保护、医学诊断、生物工程等极其之泛的领域。我国传感器市场也呈现出逆势增长的态势。最近几年,中国的传感器年度销售平均增长达到了39%。中国电子信息产业发展研究院有关部门预测,2010年我国传感器市场销售额将达到632亿元。
在技术方面,我国传感核心技术缺乏,成为行业发展、甚至物联网产业进步的阻碍力量。在企业方面,我国传感器企业规模普遍较小,很难和世界级大型公司竞争。在政策方面,我国行业专业激励政策不明确,企业不易得到辅助。在市场方面,我国传感器业面临中高端依赖进口、低端价格战和同质化竞争的局面。
回顾我国传感器行业50年发展历程
开发新一代的高、精、尖传感器
我国传感器行业已经历了50个春秋,20世纪80年代,改革开放的春风给传感器行业带来了生气与活力;90年代,在党和国家关于“大力加强传感器的开发和在国民经济中普遍应用”的决策指引下,传感器行业进入了新的发展时期。
中国传感器主要发展历程阶段
“八五”以来,在国家的支持下,我国的传感器技术及其产业取得了长足进步。在学术交
流方面,1989年10月由敏感元器件与传感器分会发起主办的“STC〞89首届全国敏感元件与传感器学术会议”已延续至今,每逢活动不但国内学者、企业家云集且有不少其它国家的人士参加。目前,其论值组织机构为:“全国敏感元件与传感器学术团体联合组织委员会”。在原电子工业部的努力及敏感元器件与传感器分会的积极组织下,实施的“双加工程”即:加快力度加快发展,的方针指导下,建立了我国敏感元器件与传感器生产基地。
“安徽基地”,主要是建立力、光敏规模经济。
“陕西基地”,主要是建立电压敏、热敏、汽车电子规模经济。
“黑龙江基地”主要建立气、湿敏规模经济。
多年来,三大基地在发展过程中虽然兴衰不一,它对我国敏感元件与传感器行业的建设起到了一定的推动作用。
“九五”其间,通过科技攻关,传感器技术领域水平得到较大的提高。主要以工业自动控制、机电一体化、科学测试仪器为服务领域,以市场需求为导向,以提高敏感元件及传感器的技术水平、可靠性水平和产业孵化为目标,安排工程化研究、新产品、共性要害技术攻关三个层次内容。传感器技术研究国家重点科技攻关项目取得了51个品种86个规格的新产品。初步建立了敏感元件与传感器产业。产品已进入到亿万人民的家庭生活中,并已在国民经济各部门和国防建设中得到一定应用。
在研发主力军的建设方面,主要表现在:建立了“传感技术国家重点实验室”、“微米/纳米国家重点实验室”、“国家传感技术工程中心”等研究开发基地。全国已有1688家企事业从事传感器的研制、生产和应用,其中从事MEMS研制生产的已有50多家。
“十五”其间,为了发展先进制造与振兴机械工业的要求和国内外发展趋势的分析,传感技术攻关的目标是:提高传统传感技术等级、可靠性和可应用性水平,增强竞争力;积极创新系统,开发新产品,缩小差距,支持和促进我国先进制造技术的发展,振兴制造业。传感
器技术国家指定的科技攻关范围较小,仅选择了少数项目,集中在几个单位内进行,MEMS等5项新型传感器已列入研究开发的重点;国家计委决定从2002年开始组织实施的新型电子元器件产业化专项中有5项新型敏感元件与传感器已经启动;一些省、市新建立的“传感器产业基地”、“MEMS科技股份有限公司”,呈现出良好的发展态势。我国开发新一代的高、精、尖传感器已具备条件,如光纤、红外、超声波、生物、智能及模糊控制传感器,采用MEMS技术制作微传感器等,这些新产品逐步实现了CAD设计、全部实现可靠性设计,质量分析及质量信息治理均采用计算机化。
“十一五”——2006年十届全国人大四次会议表决通过了关于国民经济和社会发展第十一个五年计划纲要。
自此拉开了“十一五”的大幕。“十一五”规划纲要中着重强调了推进工业结构优化升级,其中提升电子信息制造业,培育生物产业,推进航空航天产业,发展新材料产业等计划的提出,以及对传统制造业和新能源开发等项目的实施无疑为中国传感器的技术发展和市场空间的开拓提供了有力的支持。
前阶段工信部下发了《信息产业科技发展“十一五”规划和2020年中长期规划纲要》中明确的指出新型元器件技术开发将重点围绕敏感元件和传感器等。并且对于传感器产业化发展提供了规划和政策支持。从“十一五”规划纲要至今从中国传感器市场虽然经历了金融危机的冲击,但是总体保持着强势快速度发展格局,最新传感器技术大多首先在国外发展起来,但是真正的应用却往往首先在中国实现,这正是源于中国庞大而多样的传感器市场特点。相信通过“十一五”重要的发展期中国传感器技术将有进一步跃升,逐步缩短与世界先进传感器技术国家间的差距。
第二篇:物联网新技术
物联网新技术
近物联网已被列入“十二五”发展规划,成为我国战略性新兴产业之一。在“十二五”期间,物联网产业将初步形成从传感器、芯片、软件、终端、整机、网络到业务应用的完整产业链,并培育一批具有国际竞争力的产业领军企业。据悉,到2020年之前,全球接入物联网的终端将达到500亿个。在最近聆听的专业讲座《物联网与新技术》使我对物联网有了更多的理解。现将心得报告如下:
几十年来互联网获得了极大的发展,已经成为人类社会和人类生活不可或缺的信息网络系统,互联网下一个发展方向,除了扩大覆盖、提高速度、加大容量、增加无线接入等,向物联网发展也是一个重要的动向,我们可以通过互联网了解世界,在物联网普及以后,我们就可以感知世界上发生的事情。国际电信联盟于 2005 年的一份报告曾描绘“物 联 网”时 代 的 图 景 :当 司 机出现操作失误时汽车会自动报警 ;公文包会提醒主人忘带了什么东西 ;衣服会“告 诉”洗衣机对颜色和水温的要求等等,这就是物联网时代,继计算机、互联网与移动通信网之后的又一次信息产业浪潮。
一、物联网的定义
物联网,英文名称为“The Internet of Things”,简称 IOT。由“物联网”名称可见,物联网就是“物物相连的互 联网”。这里面有两层意思:第一,物联网的核心和基础 仍然是互联网,是在互联网基础之上的延伸和扩展的 一种网络;第二,其用户端延伸和扩展到了任何物品与 物品之间,进行信息交换和通信。因此,物联网的定义 是通过射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网通过传感器、射频识别技术、全球定位系统等技术,实时采集任何需要监控、连接互动的物体或过程,采集器声、光、热、电、力学、化学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在链接,实现对物品和过程的智能化感知、识别和管理。物联网通用的定义是将无处不在(Ubiquitous)的末端设备(Devices)和设施(Facilities),包括具备“内在智能”的传感器、移动终端、工业系统、楼控系统、家庭智能设施、视频监控系统等、和 “外在使能 ”(Enabled)的,如贴RFID的各种资产(Assets)、携带无线终端的个人与车辆等等“智能化物件或动物”或“智
能尘埃 ”通讯网络实现互联互通(M2M)、应用大集成(Grand In-tegration/MAI)、以及基于云计算的SaaS 营运 等 模式,在内网(Intranet)、专网(Extranet)、和/或互联网(Inter-net)环境下,采用适当的信息安全保障机制,提供安全可控乃至个性化的实时在线监测、定位追溯、报警联 动、调度指挥、预案管理、远程控制、安全防范、远程维保、在线升级、统计报表、决策支持、领导桌面(集中展示的 Cockpit Dashboard)等管理和服务功能,实现对“万 物”(everyThing)的“ 高效、节能、安全、环保 ”的“ 管、控、营”一体化 TaaS 服务。
二、物联网的发展历史
1999 年,在美国召开的移动计算和网络国际会议提出了,“传感网是下一个世纪人类面临的又一个发展机遇”。
2003 年,美国《技 术 评 论 》提出传感网络技术将是 未来改变人们生活的十大技术之首。
2005年11月17日,在突尼斯举行的信息社会世界峰会(WSIS)上,国际电信联盟发布了《ITU 互联网报 告 2005:物联网》,引用了“物联网”的概念。报告指出,无所不在的“物联网”通信时代即将来临,世界上所有的物体从轮胎到牙刷、从房屋到纸巾都可以通过因特 网主动进行交换。射频识别技术(RFID)、传感器技术、纳米技术、智能嵌入技术将到更加广泛的应用。根据 IT的描述,在物联网时代,通过在各种各样的日常用品上嵌入一种短距离的移动收发器,人类在 信息与通信世界里将获得一个新的沟通维度,从任何时间任何地点的人与人之间的沟通连接扩展到人与物 和物与物之间的沟通连接。物联网概念的兴起,很大程 度上得益于国际电信联盟(ITU)2005 年以物联 网为标题的互联网报告。然而,ITU的报告对物联网缺乏一个清晰的定义。
2009年1月28日,奥巴马就任美国总统后,与美国工商业领袖举行了一次“ 圆桌会议”,作为仅有的两 名代表之一,IBM 首席执行官彭明盛首次提出“智 慧 地 球”这一概念,建议新政府投资新一代的智慧型基础设施。
三、物联网四大关键技术领域
1.RFID: 电子标签属于智能卡的一类,物联网概念是1998 年 MIT Auto-ID中心主任 Ashton教授提出来的,RFID 技术在物联网中重要起“ 使能”(Enable)作用;
2.传感网 :借助于各种传感器,探测和集成包括温度、湿度、压力、速度等物质现象的网络,也是温总理“ 感知中国”提法的主要依据之一;
3.M2M:这个词国外用得较多,侧重于末端设备的互联和集控管理,X-Internet,中国
三大通讯营运商在推 M2M 这个理念;
4.两化融合:工业信息化也是物联网产业主要推动力之一,自动化和控制行业是主力,但目前来自这个行业的声音相对较少
四、各个国家物联网战略或计划:
1.美国的“智慧地球”:IBM提出的“智慧地球”概念(建议政府投资新一代的智慧型基础设施)已上升至美国的国家战略。该战略认为 IT 产业下一阶段的任务是把新一代IT技术充分运用在各行各业之中,具体地说,就是把感应器嵌入和装备到电网、铁 路、桥梁、隧道、公路、建筑、供水系统、大坝、油气管道等各种物体中,并且被普遍连接,形成“物联网”。
2.欧盟的“物联网行动”:具体而务实,强调 RFID的广泛应用,注重信息安全。2009 年6月,欧盟委员会向欧盟议会、理事会、欧洲经济和社会委员会及地区委员会递交了《欧盟物联网行动计划》(Internet of Things-An action plan for Europe),以确保欧洲在建构物联网的过程中起主导作用。行动计划共包括 14 项内容,主要有管理、隐私及数据保护、“ 芯片沉默” 的权利、潜在危险、关键资源、标准化、研究、公私合作、创新、管理机制、国际对话、环境问题、统计数据和进展监督等一系列工作。
3.日本的“i-Japan 战 略”: 在 u-Japan的基础上,强调电子政务和社会信息服务应用。2004年,日本信息通信产业的主管机关总务省(MIC)提出2006~2010年间IT发展任务--u-Japan 战略。该战略的理念是以人为本,实现所有人与人、物与物、人与物之间的连接,即所谓 4U =ForYou(Ubiquitous,Universal,User-oriented, Unique),希望在2010年将日本建设成一个“ 实现随时、随地、任何物体、任何人(anytime,anywhere,any-thing, anyone)均可连接的泛在网络社会”。
4.韩国的“u-Korea 战略 ”: 继日本提出u-Japan 战略后,韩国也在2006年确立了 u-Korea 战略。u-Korea 旨在建立无所不在的社会(ubiquitous society),也就是在民众的生活环境里,布建智能型网络(如 IPv6、BcN、USN)、最新的技术应用(如 DMB、Telematics、RFID)等先进的信息基础建设,让民众可以随时随地享有科技智慧服务。其最终目的,除运用IT科技为民众创造食衣住行育乐各方面无所不在的便利生活服务,亦希望扶植IT产业发展新兴应用技术,强化产业优势与国家竞争力。
5.中国的“ 感知中国”:2009 年8月上旬温家宝总 理在无锡视察时指出,“要在激烈的国际竞争中,迅 速建立中国的传感信息中心或 ' 感知中国 ' 中心”。
五、物联网的应用
物联网用途广泛,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、环境监测、老人护理、个人健康、花卉栽培、水系监测、食品溯源、敌情侦查和情报搜集等多个领域。
应用案例
一、防入侵系统:
上海浦东国际机场的防入侵系统铺设了3万多个传感节点,覆盖了地面、栅栏和低空探测,可以防止人 员的翻越、偷渡、恐怖袭击等攻击性入侵。就在不久之前,上海世博会也与无锡传感网中心签下订单,购买防入侵微纳传感网1500 万元产品。
应用案例
二、智能交通系统(ITS):
以现代信息技术为核心,利用先进的通讯、计算机、自动控制、传感器技术,实现对交通的实时控制与指挥管理。交通信息采集被认为是 ITS 的关键子系统,是发展 ITS 的基础,成为交通智能化的前提。无论是交通控制还是交通违章管理系统,都涉及交通动态信息的采集,交通动态信息采集也就成为交通智能化的首要任务。
应用案例三:
电力管理江西省电网对分布在全省范围内的2万台配电变压器安装传感装置,对运行状态进行实时监测,实现用电检查、电能质量监测、负荷管理、线损管理、需求管理等高效一体化管理,一年来降低电损 1.2 亿千瓦时。
六、物联网面临的问题
第 一 :资金和成本问题,实现物联网,首先必须在所有物品种嵌入电子标签等存储体,并需安装众多读取设备和庞大的信息处理系统,而这必然导致大量的资金投入。而物品附属存储体也将导致物品成本的上升,在成本尚未降至能普及的前提下,物联网的发展将受到限制。
第 二,技术标准问题,物联网的发展必然涉及通信的技术标准,而各类层次通信协议标准如何统一则是 一个十分漫长的过程,中国RFID标准已提及多年,但至今仍未有统一说法,这正是限制中国RFID发展的关键因素之一。我们认为物联网的各类技术标准有待中国、日本、美国及欧洲发达国家共同协商,其 发展之路仍很漫长。
第三,产业化问题,物联网的产业化必然需芯片商、传感设备商、系统解决方案厂商、移动运营商等上下游厂商的通力配合,而在各方利益机制及商业模式尚未成型的背景下,物联网普及仍相当漫长。保存多个时间索引。每个时间索引都对应着本文件内一个历史数据页。同一时间索引页中存放的均为相同 位号数据页的索引, 同位号诸多索引页之间通过某种 机制前后链接在一起形成索引链。并且这个索引链是 跨文件的。如此通过对索引
链的前后查找,就可以定位 到某待查询时间的历史数据所在的页, 然后再通过二 分查找或者顺序查找的方式, 定位到该数据页中那个要查找的历史数据。管理信息文件管理信息文件主要记录正在被实时数据库使用的历史数据文件。其主要目的是快速定位到某时间段对应的历史数据文件。一个实时数据库项目中一般有一个管理信息文件,另外还有很多个历史数据文件。管理信息文件与历史数据文件是一对多的关系, 但并非每一个历史数据文件都在管理信息文件中有记录。
七、物联网在中国
物联网的开展具有规模性、广泛参与性、技术性等特征,需要各行业的参与,并且需要国家政府的主导以及相关法规政策上的扶植,其中政策扶植是催化剂,技术问题则是关键。一方面从中国各级政府的态度和政策来看,物联网可谓集万千宠爱于一身,仍然存在一定政策风险。在2010年两会期间,工信部和商务部等相关部门都表示要加强协调与互动,共同推动物联网的发展,而各地政府也积极规划,加大投资,全面抢滩物联网 业。商务部部长陈德铭表示要物联网和互联网相结合建设现代 流通网络;北京政协委员说物联网可助北京建世界城市;山东提出要借助物联网打造“智慧山东”;上海为领跑物联网业计划 投资8亿元对核心技术进行攻坚;江苏省无锡市正在和工信部 组建国家级物联网研发中心。在全国上下都热情高涨的关注和 投资物联网的同时,如何保证国家的产业政策和立法走在前 面,对蜂拥而至的热情和资金给予适当的引导;如何促使相关 部门和行业尽快协调统一技术标准,形成整合的商业模式和规 模经济,这些都需要各级政府和部门重视。
物联网涉及到诸多行业,具有很大的交叉性,这些行业分属于不同的政府职能部门,在产业化过程中必须加强各主管部 门的协调与互动,制定合理的政策法规,才能有效的保障物联 网产业的顺利发展。曾经中国的汽车业就由于产业政策上的误 差导致外国汽车企业在中国赚了钱,而中国自己的汽车业却没有发展起来。如今政策调整后中国汽车业高速发展,新车型不 断推出,价格也大大降低,2009年中国已成为了世界第一大汽 车生产和消费国。可见制定出适合行业发展的政策对于保证行 业正常发展的重要性,政策先行也将是中国物联网产业规模化 发展的重要保障。在物联网的热潮中,其各个应用层面都会有 大量的新技术出现,可能会采用不同的技术方案。一个行业内如果不同标准各行其是,那将是灾难性的,大蹙产品无法实现 大范围的兼容,从而不能形成规模经济,难于降低研发成本提 升竞争力。例如数字电视地面国家标准由于各方争执不下,虽然最终裁定为融合标准,但目前各标准方都不愿再投入资金技术推进融合技术,造成未来地面数字电视市场将长期延续多种标准相互竞争的格局,不利于该行业的长远发展。由政府的专 门部门来管理和协调从而尽快形成统一的技术标准是发展物 联网产业的首要先决条件。另一方面从物联网相关技术积累和产业来看,中国工业和 技术基础相对薄弱,仍然拥有相当的话语权。物联网产业链可 以细分为标识、感知、处理和信息传送四个环节,每个环节的关 键技术分别为RFID、传感器、智能芯片和电信运营商的无线传 输网络。这些技术涉及的行业比较广泛,其中一些领域由于我 国工业和技术基础相对薄弱仍然存在发展瓶颈。例如RFID高 端芯片等核心领域无法产业化,国内RFID仍以低端产品为主; 传感器高端产品被国外厂商垄断。建立国家级和区域物联网研究中心,掌握具有自主知识产权的核心技术将成为物联网产业 发展的重中之重。清楚地认识到这些差距,我国在2006年《国 家中长期科学与技术发展规划(2006~2020年)》中已经将物联 网的核心——传感网列入重点研究领域,中科院早在1999年 就启动了传感网的技术研究,研发水平处于世界前列。目前,中 国与美国、德国、英国、韩国等国一起成为物联网国际标准制定 的主要国家,作为主导国之一,中国专利拥有量高,在物联网领 域享有国际话语权。这种话语权不仅仅体现在技术领先,更在 于我国是世界上少数能实现产业化的国家之一。我国有较为雄 厚的经济实力支持物联网发展,同时极高的无线通信网络和宽 带覆盖率也为物联网的发展提供了坚实的基础设施,这些优势 使我国在信息技术领域迎头赶上甚至占领产业价值链的高端成为可能。
综合以上两方面,物联网在中国才刚刚起步,政策和技术 因素共同决定了它未来的发展方向。在积极促进物联网发展的 同时,我们需要清楚自身的优势和劣势才能事半功倍。总结
物联网技术是一次新的技术革命,它将使整个社会更加高效、便利和安全。目前国内外都不断把它提升到战略高度给与 极高的重视。关注物联网在中国的发展,希望政府能够合理的 利用政策的导向作用因势利导,在行业标准的制定和政策扶植 上能够发挥积极作用,同时也希望政府、学校和企业等能够加 大在物联网重大专项研究上的投入,争取掌握核心技术,形成 产业核心竞争力。当今全球经济形势低迷的同时,也孕育着未 来的发展机遇,希望中国不仅能够借网联网这个机遇开创新的 产业和新的市场,并能以更加智慧的方式加速发展,摆脱经济 危机的影响。物联网已经逐渐进入到我们的生活,并且对我们的生活产生了一些影响,我们可以感觉到“物联网时代”的脚步离我们越来越近了。
第三篇:物联网带来的挑战与新机遇
物联网带来的挑战与新机遇
伴随人们身边越来越多的连网设备,物联网(Internet of Things,IoT)似乎离我们也越来越近了。事实上,它已在很多产业里经历了多年的演变和发展。因此我们经常会在不同行业的现有应用中看到“智能”二字,这其实就是物联网的一些应用实例,比如“智能房屋”,“智能城市”等。
物联网带来的新机遇
现在,物联网被很多人看成是继移动网络之后的又一大机遇,从理论层面来看,物联网是机器和设备间的互联网络。物联网是一个针对特定需求,将人、物、数据和流程整合在一起的网络,其中每一部分都可以智能地连接到互联网全网或部分网络上。物联网的目标则是实现人与人互动、人机互动、机器之间的互动,来提升人们的交流效率,让生活变得更加丰富多彩。
因此,在物联网中,与互联网相连接的“物”可以是健身手环,可以是冰箱,也可以是汽车,所以有厂商更推出 “万联网”(Internet of Everything)的概念,即连接所有的设备、器件。作为物联网概念的巧妙扩展,万联网可以通过数据和指令的形式实现人与机器的智能链接。
但总的来说,物联网和万联网都旨在达成设备(包括人在内)间的相互连通,实现以往无法实现的功能。例如,当一个人在休息时却心率过高,便会有设备进行报警提示;或根据个人对于室温的喜好,设备能够在使用者进入房间前可以进行自动调整等等。
不仅如此,基于物联网的许多智能化应用也在推进中。以“智能货运物流”为例,通过对相互连通的车辆进行统一管理,来改善调配时间、油料消耗等等。目前,联邦快递和UPS都已采取了这种做法。而沃尔玛和塔基特百货也在利用同样的技术来对不同位置的存货进行管理。
那么这场变革现今是处于启蒙阶段,亦或已在进行,还是更应被视为一种未来的发展趋势?对于企业而言,这又将带来怎样的挑战呢?
物联网带来的挑战
需要看到的是,物联网的前进之路也并非一马平川。
首先,设备间的协同性和统一连接层的缺失就是无法忽视的重要问题。目前许多设备使用着不同的通讯协议,而有些设备可能根本没有完整的TCP/IP堆栈(这并不能算作坏事,技术专家只是不想让智能灯泡这样的东西也存在漏洞)。以AllSeen Alliance、Open InterConnect Consortium及Thread Group为代表的一些组织都试图在协同性这个问题上建立统一的标准。但即便某个行业设定了一定的标准,复杂多变的实施过程也不能保证不同设备之间的兼容性 和正常通讯。当前,企业仍需建立自己的转译层来保证设备间的协同性。
第二个挑战在于数据的流入规模,这涉及到数据收集、采集和分析等多方面问题。许多用例要求通过接入设备采集包括实时监控和历史记录在内的相当数量的数据。当今多数基础设施都能够扩大从数据中心到设备的流出数据规模,但从设备进入数据中心就会变得非常困难。除此之外,当企业收集到的数据达到PB级别时,存储就成为了下一个难题。综上所述,企业必须找到最佳方案来管理从设备上收集到的数据,而且还要拥有相应的工具,保证这些数据在有效时间内发挥其应有的作用。
缺乏能够避开数据中心,在设备间直接实现信息和指令实时传递的中介是第三个挑战。当然,根据不同情况,数据中心同样不失为一种可靠选择。但随着设备的不断增多,数据中心进出口的瓶颈会造成延迟和其他问题。
让大家普遍最为头痛的第四个挑战便是安全问题。针对互联网和不同的接入设备,我们已看到一些覆盖范围广、效果惊人的攻击。试想一下,无论家用或企业级的互联设备,如接入互联网的交通指示灯,恒温器,或医用监控设备遭到攻击,后果都将非常可怕。
尽管物联网的最终实现仍面临着各种问题,但通过智能化接入设备的使用和普及,企业和个人不断完善的能力正快速推进着物联网的发展。
第四篇:传感器在物联网中的应用
提到智能时代,不得不提的就是物联网和传感器,物联网就是整个的智能网络,传感器则是一个重要的组成部分。如果将物联网比作一个人,那传感器就是神经末梢,是全面感知外界的最核心元件。传感器就是将外界的各种信息转换为可测量可计算的电信号,经过设置的程序输出结果,发送指令使各种事物可以不由人控制而只是由外界条件的变化自觉地调整行为。
物联网,传感器早已渗透日常生活中的每一个领域,上至宇宙海洋,下至医学日用,几乎每一个现代化项目,都离不开各种各样的传感器。现在只是智能技术的最初阶段,例如:图像传感器,指纹传感器,压力传感器等,人类需求的不断提升,必然导致其技术的不断进步创新。
一、物联网概念与定义
物联网(TheInternetofthings)的概念是在1999年提出的,它的定义很简单:把所有物品通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备与互联网连接起来,进行信息交换和通讯,实现智能化识别、定位、跟踪、监控和管理。
现在对物联网的定义至少有几十种,都是不同领域专家从不同领域定义的,我们取几种有代表性的供大家参考: 1.英语中“物联网”一词:InternetofThings,可译成物的互联网。
2.2005年ITU关于物联网的定义:是一个具有可识别,可定位的传感网络。3.经过与无线网络(也含固定网络)连接,使物体与物体之间实现沟通和对话,人与物体之间实现沟通与对话。能实现上述功能的网称为物联网。
4.作者比较赞成一种基于泛网及其多制式、多系统、多终端等综合的物联网的定义——或称为广义物联网。
二、国内外物联网发展现状
从国际上看,欧盟、美国、日本等国都十分重视物联网的工作,并且已作了大量研究开发和应用工作。如美国把它当成重振经济的法宝,所以非常重视物联网 和互联网的发展,它的核心是利用信息通信技术(ICT)来改变美国未来产业发展模式和结构(金融、制造、消费和服务等),改变政府、企业和人们的交互方式 以提高效率、灵活性和响应速度。按欧盟专家讲,欧盟发展物联网先于美国,确实欧盟围绕物联网技术和应用作了不少创新性工作。在北京全球物联网会议上,他们 介绍了《欧盟物联网行动计划》(Internetofthings-AnactionplanforEurope)其目的也是企图在“物联网”的发展上引 领世界。
我国在“物联网”的启动和发展上与国际相比并不落后,我国中长期规划《新一代宽带移动无线通信网》中有重点专项研究开发“传感器及其网络”,国内不少城市和省份已大量采用传感网解决电力、交通、公安、农渔业中的“M2M”等信息通信技术的服务。
在温总理关于“感知中国”的讲话后我国“物联网”的研究、开发和应用工作进入了高潮,江苏省无锡市一马当先率先提出建立“感知中国”研究中心,中国科学院、运营商、知名大学云集无锡共同协力发展我国的物联网。
三、传感器在物联网中的应用
一说到传感器,可能大家就会往小的方面想,在物联网的大概念下,一个泛在的物联网系统,随着参照物的不同,传感器可以是一个“大”的“智能物件”, 它可以是一个机器人、一台机床、一列火车,甚至是一个卫星或太空探测器。物联网关注传感器的实际应用,下面是按应用方式进行的分类。
1.液位传感器:利用流体静力学原理测量液位,是压力传感器的一项重要应用,适用于石油化工、冶金、电力、制药、供排水、环保等系统和行业的各种介质的液位测量。
2.速度传感器:是一种将非电量(如速度、压力)的变化转变为电量变化的传感器,适应于速度监测。
3.加速度传感器:是一种能够测量加速力的电子设备,可应用在控制、手柄振动和摇晃、仪器仪表、汽车制动启动检测、地震检测、报警系统、玩具、结构 物、环境监视、工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析,以及鼠标,高层建筑结构动态特性和安全保卫振动侦察上。
4.湿度传感器:分为电阻式和电容式两种,产品的基本形式都为在基片涂覆感湿材料形成感湿膜。空气中的水蒸汽吸附于感湿材料后,元件的阻抗、介质常数发生很大的变化,从而制成湿敏元件,适用于湿度监测。
5.气敏传感器:是一种检测特定气体的传感器,适用于一氧化碳气体、瓦斯气体、煤气、氟利昂(R11、R12)、呼气中乙醇、人体口腔口臭的检测等。
6.压力传感器:是工业实践中最为常用的一种传感器,广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。
7.激光传感器:利用激光技术进行测量的传感器,广泛应用于国防、生产、医学和非电测量等。
8.MEMS传感器:包含硅压阻式压力传感器和硅电容式压力传感器,两者都是在硅片上生成的微机械电子传感器,广泛应用于国防、生产、医学和非电测量等。
9.红外线传感器:利用红外线的物理性质来进行测量的传感器,常用于无接触温度测量、气体成分分析和无损探伤,应用在医学、军事、空间技术和环境工程等。
10.超声波传感器:是利用超声波的特性研制而成的传感器,广泛应用在工业、国防、生物医学等。
11.遥感传感器:是测量和记录被探测物体的电磁波特性的工具,用在地表物质探测、遥感飞机上或是人造卫星上。
12.视觉传感器:能从一整幅图像捕获光线数以千计的像素,工业应用包括检验、计量、测量、定向、瑕疵检测和分捡。
虽然,物联网的产业供应链包括传感器和芯片供应商、应用设备提供商、网络运营及服务提供商、软件与应用开发商和系统集成商。但是,作为“金字塔”的 塔座,传感器将会是整个链条需求总量最大和最基础的环节。“传感器是物联网技术的支撑、应用的支撑和未来泛在网的支撑,传感器感知了物体的信息,RFID 赋予它电子编码,传感网到物联网的演变是信息技术发展的阶段表征。”
0905094128 刘继源
第五篇:物联网简介及基于ZigBee的无线传感器网络
物联网简介及基于ZigBee的无线传感器网络
摘 要
物联网,是继计算机、互联网与移动通信网之后的又一次信息产业浪潮,是一个全新的技术领域,给IT和通信带来了广阔的新市场。积极发展物联网技术,尽快扩展其应用领域,尽快使其投入到生产、生活中去,将具有重要意义。
ZigBee无线通信技术是一种新兴的短距离无线通信技术,具有低功耗、低速率、低时延等特性,具有强大的组网能力与超大的网络容量,可以广泛应用在消费电子品、家居与楼宇自动化、工业控制、医疗设备等领域。由于其独有的特性,ZigBee无线技术也是无线传感器网络的首选技术,具有广阔的发展前景。ZigBee协议标准采用开放系统接口(051)分层结构,其中物理层和媒体接入层由IEEE802.15.4工作小组制定,而网络层,安全层和应用框架层由ZigBee联盟制定。
本文首先从概念、技术架构、关键技术和应用领域介绍了物联网的相关知识,然后着重介绍了基于ZigBee的无线传感器网络,其中包括无线传感网简介、ZigBee技术概述和基于ZigBee的无线组网技术。
关键词:物联网;ZigBee;无线传感器网络
物联网简介
物联网概念
“物联网概念”是在“互联网概念”的基础上,将其用户端延伸和扩展到任何物品与物品之间,进行信息交换和通信的一种网络概念。其定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络概念。
最简洁明了的定义:物联网(Internet of Things)是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。它具有普通对象设备化、自治终端互联化和普适服务智能化3个重要特征。
技术架构
从技术架构上来看,物联网一般可分为三层:感知层、网络层和应用层。感知层是物联网的皮肤和五官-用于识别物体,采集信息。感知层包括二维码标签和识读器、RFID标签和读写器、摄像头、GPS、传感器、M2M终端、传感器网关等,主要功能是识别物体、采集信息,与人体结构中皮肤和五官的作用类似。感知层解决的是人类世界和物理世界的数据获取问题。它首先通过传感器、数码相机等设备,采集外部物理世界的数据,然后通过RFID、条码、工业现场总线、蓝牙、红外等短距离传输技术传递数据。感知层所需要的关键技术包括检测技术、短距离无线通信技术等。
网络层是物联网的神经中枢和大脑-用于传递信息和处理信息。网络层包括通信网与互联网的融合网络、网络管理中心、信息中心和智能处理中心等。网络层将感知层获取的信息进行传递和处理,类似于人体结构中的神经中枢和大脑。网络层解决的是传输和预处理感知层所获得数据的问题。这些数据可以通过移动通信网、互联网、企业内部网、各类专网、小型局域网等进行传输。特别是在三网融合后,有线电视网也能承担物联网网络层的功能,有利于物联网的加快推进。网络层所需要的关键技术包括长距离有线和无线通信技术、网络技术等。应用层是物联网的“社会分工”-结合行业需求,实现广泛智能化。应用层是物联网与行业专业技术的深度融合,结合行业需求实现行业智能化,这类似于人的社会分工。
应用层解决的是信息处理和人机交互的问题。网络层传输而来的数据在这一层进入各类信息系统进行处理,并通过各种设备与人进行交互。这一层也可按形态直观地划分为两个子层。一个是应用程序层,进行数据处理,它涵盖了国民经济和社会的每一领域,包括电力、医疗、银行、交通、环保、物流、工业、农业、城市管理、家居生活等,其功能可包括支付、监控、安保、定位、盘点、预测等,可用于政府、企业、社会组织、家庭、个人等。这正是物联网作为深度信息化的重要体现。另一个是终端设备层,提供人机接口。物联网虽然是“物物相连的网”,但最终是要以人为本的,还是需要人的操作与控制,不过这里的人机界面已远远超出现时人与计算机交互的概念,而是泛指与应用程序相连的各种设备与人的交互。图1为物联网网络构架。
图1 物联网网络构架
关键技术
一、感知层
传感器技术:感知物资信息 RFID技术:智能识别
微机电系统(MEMS):采集信息 GPS/GIS技术:全球定位/地理信息系统
二、网络层
无线传感器网络(WSN)技术
Wi-Fi(Wireless Fidelity,无线保真技术)
通信网、互联网、3G网络、IPV6(让世界的第一粒都拥有一个IP地址)
GPRS网络(基于GSM系统的无线分组交换技术,提供端到端的、广域的无线IP连接)
三、应用层
企业资源计划(ERP:Enterprise Resource Planning)专家系统(Expert System)
云计算(Cloud Computing)系统集成(System Integrate)行业应用(Industry Application)资源打包(Resource Package)
广电网络、NGB(下一代广播电视网)
应用领域
1.城市市政管理应用 2.农业园林 3.医疗保健 4.智能楼宇 5.交通运输
图2为物联网网络架构及物联网应用领域。
图2 物联网网络架构及物联网应用领域
基于ZigBee的无线传感器网络
物联网组网采用分层的通信系统架构,包括感知延伸系统、传输系统、业务运营管理系统和各种应用,在不同的层次上支持不同的通信协议。
无线传传感器网络简介
电系统(MEMS)、片上系统(SOC)、无线通信和低功耗嵌入式技术的飞速发展,孕育出无线传感器网络(Wireless Sensor Networks, WSN),并以其低功耗、低成本、分布式和自组织的特点带来了信息感知的一场变革。无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳自组织网络。
无线传感器网络是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,其目的是协作地感知、采集、处理和传输网络覆盖地理区域内感知对象的监测信息,并报告给用户。它的英文是Wireless Sensor Network, 简称WSN。大量的传感器节点将探测数据,通过汇聚节点经其它网络发送给了用户。在这个定义中,传感器网络实现了数据采集、处理和传输的三种功能,而这正对应着现代信息技术的三大基础技术,即传感器技术、计算机技术和通信技术。
无线传感器网络(wireless sensor networks,WSN)是当前在国际上备受关注的、涉及多学科高度交叉、知识高度集成的前沿热点研究领域。它综合了传感器、嵌入式计算、现代网络及无线通信和分布式信息处理等技术,能够通过各类集成化的微型传感器协同完成对各种环境或监测对象的信息的实时监测、感知和采集,这些信息通过无线方式被发送,并以自组多跳的网络方式传送到用户终端,从而实现物理世界、计算世界以及人类社会这三元世界的连通。
所谓无线传感器网络由大量部署在目标区域内的,具备感知、无线通信与计算能力的微小传感器节点所构成的分布式网络系统。传感器网络节点的组成和功能包括如下四个基本单元:传感单元(由传感器和模数转换功能模块组成)、处理单元(由嵌入式系统构成,包括CPU、存储器、嵌入式操作系统以及节点应用程序等组成)、通信单元(由无线通信模块组成)、以及供电单元(电池、太阳能或其他方式)。传感器网络可以根据当时的情况通过自组织方式构成动态的网络拓扑结构。传感器网络节点间一般采用多跳的无线通信方式进行通信。传感器网络可以在独立的环境下运行,也可以通过网关连接到互联网,使用户可以远程访问。
无线网络技术按照传输范围来划分,可以分为无线广域网(WWAN),无线城域网(WMAN),无线局域网(WLAN)和无线个人域网(WPAN)。其中的无线个人域网就是所谓的短距离无线网络,各种短距离无线传输技术层出不穷:蓝牙(Bluetooth)、ZigBee、Wi-Fi、无线USB,无载波通信技术(UWB)等, 其中蓝牙(Bluetooth)、UWB和ZigBee是最受产业界关注的三种标准。Bluetooth虽然成本低,成熟度高,具有多种规范,但是其传输距离有限,仅为10米,只能组成最多8个节点的星状网,电池也仅能维持数周。UWB虽然可以实现高达几百Mbps的传输速率,但是其覆盖距离仅为10米,这决定了它主要被用作消费产品中的视频和高速数据解决方案,目前UWB没有网状网络能力。Wi-Fi虽然传输速度可以达到11Mbps,传输距离达到100米,但是其价格相对教昂贵,且功耗大,组网能力差。ZigBee技术专注于低成本,低功耗和低速率的无线通信市场,因此非常适合应用于物联网无线传感器网络中来。
ZigBee技术概述
ZigBee技术是一种短距离、低复杂度、低功耗、低数据速率、低成本的双向无线通信技术或无线网络技术,是一组基于IEEE 802.15.4无线标准研制开发的有关组网、安全和应用软件方面的通信技术。ZigBee协议规范使用了IEEE 802.15.4定义的物理层(PHY)和媒体介质访问层(MAC),并在此基础上定义了网络层(NWK)和应用层(APL)架构。
基于ZigBee技术的无线传感器网络应用在ZigBee联盟和IEEE 802.15.4组织的推动下,结合其他无线技术可以实现无所不在的网络。它不仅在工业、农业、军事、环境、医疗等传统领域具有极高的应用价值,而且在未来其应用更将扩展到涉及人类日常生活和社会生产活动的所有领域。IEEE 802.15.4标准 1.物理层(PHY)规范
物理层定义了物理无线信道和与 MAC 层之间的接口,提供物理层数据服务和物理层管理服务。物理层数据服务是从无线物理信道上收发数据,物理层管理服务维护一个由物理层相关数据组成的数据库。物理层功能相对简单,主要是在硬件驱动程序的基础上,实现数据传输和物理信道的管理。数据传输包括数据的发送和接收;管理服务包括信道能量监测(energy detect,ED),链接质量指示(Link quality indication,LQI)和空闲信道评估(clear channel assessment,CCA)等。2.媒体介质访问层(MAC)规范
MAC 层提供两种服务:MAC层数据服务和 MAC 层管理服务。前者保证 MAC 协议数据单元在物理层数据服务中的正确收发,而后者从事 MAC层的管理活动,并维护一个信息数据库。
MAC 层的主要功能包括如下7个方面:
1.网络协调者产生并发送信标帧(beacon);
2.设备与信标同步;
3.支持RAN 网络的关联(association)和取消关联(disassociation)操作 4.为设备的安全性提供支持;
5.信道接入方式采用免冲突载波检测多路访问(CSMA-CA)机制;
6.处理和维护保护时隙(GTS)机制;
7.在两个对等的 MAC 实体之间提供一个可靠的通信链路。ZigBee技术简介
ZigBee 协议标准采用分层结构,每一层为上层提供一系列特殊的服务:数据实体提供数据传输服务;管理实体则提供所有其他的服务。所有的服务实体都通过服务接人点 SAP 为上层提供接口,每个 SAP 都支持一定数量的服务原语来实现所需的功能。ZigBee 标准的分层架构是在OSI 七层模型的基础上根据市场和应用的实际需要定义的。其中 IEEE 802.15.4—2003 标准定义了底层协议:物理层(physical layer,PHY)和媒体访问控制层(medium access control sub—layer,MAC)。ZigBee 联盟在此基础上定义了网络层(network layer,NWK),应用层(application layer,APL)架构。在应用层内提供了应用支持子层(application support sub—layer,APS)和 ZigBee 设备对象(ZigBee device object,ZDO)。应用框架中则加入了用户自定义的应用对象。ZigBee 协议的体系结构如图3所示。
图3 ZigBee 协议体系结构
ZigBee 的网络层采用基于 Ad Hoc 的路由协议,除了具有通用的网络层功能外,还应该与底层的 IEEE 802.15.4标准一样功耗小,同时要实现网络的自组织和自维护,以最大限度方便消费者使用,降低网络的维护成本。应用支持子层把不同的应用映射到 ZigBee网络上,主要包括安全属性设置、业务发现、设备发现和多个业务数据流的汇聚等功能。1.网络层(NWK)规范
网络层负责拓扑结构的建立和维护网络连接,主要功能包括设备连接和断开网络时所采用的机制,以及在帧信息传输过程中所采用的安全性机制。此外,还包括设备的路由发现和路由维护和转交。并且,网络层完成对一跳(one—hop)邻居设备的发现和相关结点信息的存储。一个ZigBee协调器创建一个新网络,为新加入的设备分配短地址等。并且,网络层还提供一些必要的函数,确保ZigBee的 MAC 层正常工作,并且为应用层提供合适的服务接口。2.应用层(APL)规范
在ZigBee协议中应用层是由应用支持子层、ZigBee 设备配置层和用户应用程序来组成的。应用层提供高级协议栈管理功能,用户应用程序由各制造商自己来规定,它使用应用层来管理协议栈。3.应用支持子层(APS)APS 子层通过 ZigBee 设备对象(ZD0)和制造商定义的应用对象所用到的一系列服务来为网络层和应用层提供接口。APS 子层所提供的服务由数据服务实体(APSDE)和管理服务实体(APSME)来实现。APSDE通过数据服务实体访问点(APSDE—SAP)来提供数据传输服务。APSME 通过管理服务实体访问点(APSME—SAP)来提供管理服务,它还负责对 APS 信息数据库(AIB)的维护工作。
基于ZigBee的无线组网技术
ZigBee网络体系
ZigBee网络中存在两种功能类型的设备,三种节点类型,三种拓扑结构及两种工作模式。
● 功能类型
ZigBee网络含全功能设备FFD(Full Function Device)和精简功能设备RFD(Reduced Function Device)两种功能类型的设备。全功能器件拥有完整的协议功能,在网络中可以作为协调器(Coordinator)、路由器(Router)和普通节点(Device)而存在。而精简功能器件旨在实现最简单的协议功能而设计,只能作为普通节点存在于网络中。全功能器件可以与精简功能器件或其他的全功能器件通信,而精简功能器件只能与全功能器件通信,精简功能器件之间不能直接通信。ZigBee网络要求至少有一个全功能设备作为网络协调器。
● 节点类型
ZigBee网络包含三种类型的节点,即协调器ZC(ZigBee Coordinator)、路由器ZR(ZigBee Router)和终端设备ZE(ZigBee EndDevice),其中协调器和路由器均为全功能设备(FFD),而终端设备选用精简功能设备(RFD)。
协调器:一个ZigBee网络PAN(Personal Area Network)有且仅有一个协调器,该设备负责启动网络,配置网络成员地址,维护网络,维护节点的绑定关系表等,需要最多的存储空间和计算能力。
路由器:主要实现扩展网络及路由消息的功能。扩展网络,即作为网络中的潜在父节点,允许更多的设备接入网络。路由节点只有在树状网络和网状网络中存在。
终端设备:不具备成为父节点或路由器的能力,一般作为网络的边缘设备,负责与实际的监控对象相连,这种设备只与自己的父节点主动通讯,具体的信息路由则全部交由其父节点及网络中具有路由功能的协调器和路由器完成。
● 拓扑结构
ZigBee网络支持星状网(Star Network),树状网(Cluster tree Network)和网状网(Mesh Network)三种网络拓扑结构如图2-1所示,依次是星状网络,树状网络和网状网络,在图4中的C表示PAN协调器,F表示全功能设备,R表示精简功能设备。
图4 星状网、树状网和网状网三种拓扑结构
星形网(Star)是由一个ZigBee协调器和一个或多个ZigBee终端节点组成的。ZigBee协调器必须是FFD,它位于网络的中心,负责发起建立和维护整个网络,其它的节点(终端节点)一般为RFD,也可以为FFD,它们分布在ZigBee协调器的覆盖范围内,直接与ZigBee协调器进行通信。星形网的控制和同步都比较简单,通常用于节点数量较少的场合。星型网络拓扑的最大优点是结构简单,无需其他路由信息,一切数据包均通过ZigBee协调器。其缺点是限制了无线网络的覆盖范围,很难实现高密度地扩展,最多支持两跳网络,适用于小型网络。目前为止,星形拓扑是最常见的网络配置结构,被大量应用在远程监测和控制终端设备的通信。
网络协调器要为网络选择一个唯一的标识符,所有该星型网络中的设备都是用这个标识符来规定自己的属主关系。不同星型网络之间的设备通过设置专门的网关完成相互通信。选择一个标识符后,网络协调器就允许其他设备加入自己的网络,并为这些设备转发数据分组。星型网络中的两个设备如果需要互相通信,都是先把各自的数据包发送给网络协调器,然后由网络协调器转发给对方。
树状网络(Cluster tree Network)由一个协调器和一个或多个星状结构连接而成,枝干末端的叶子节点一般为RFD,设备除了能与自己的父节点或子节点进行点对点直接通讯外,其他只能通过树状路由完成数据和控制信息的传输。ZigBee 协调器比网络中的其它路由器具有更强人的处理能力和存储空间。树状网络的一个显著优点就是它的网络覆盖范围较大,但随着覆盖范围的增加,信息的传输时延也会增大。
在建立树状网络时,ZigBee协调器建立网络后,先选择网络标识符,将自己的短地址设置为0,然后向它邻近的设备发送信标,接受其他设备的连接,形成树的第一级,此时ZigBee协调器与这些设备之间形成父子关系。与ZigBee协调器建立连接的设备都分配了一个16位的网络短地址。如果以终端设备的身份与网络连接,则ZigBee协调器分配一个唯一的16位网络地址;如果以路由器的身份与网络连接,则协调器会为它分配一个地址块(包含有若干16位短地址)。路由器根据它接收到的协调器信标的信息,配置并发送它自己的信标,允许其他的设备与自己建立连接,成为其子设备。由此可见,路由器转发消息时通过计算与目标设备的关系,从而决定向自己的父节点转发还是某个子节点转发。
网状网络(Mesh Network)一般是由若干个FFD连接在一起组成骨干网,它们之间是完全的对等通信,每个节点都可以与它的无线通信范围内的其它节点通信,即允许网络中所有具有路由功能的节点直接互连。但它们中也有一个会被推荐为ZigBee协调器。网状网络是树状网络基础上实现的,与树状网络不同的是,它是由路由器中的路由表配合来实现数据的网状路由的。Mesh网是一种高可靠性网络,具有“自恢复”能力,它可为传输的数据包提供多条路径,一旦一条路径出现故障,则存在另一条或多条路径可供选择,但正是由于两个节点之间存在多条路径,它也是一种“高冗余”的网络。该拓扑的优点是减少了消息延时、增强了可靠性,缺点是需要更多的存储空间开销。
● 工作模式
ZigBee网络的工作模式可以分为信标模式和非信标模式两种。信标模式可以实现网络中所有设备的同步工作和同步休眠,以达到最大限度地节省功耗,而非信标模式只允许ZE进行周期性休眠,ZC和所有ZR设备长期处于工作状态。
在信标模式下,ZC负责以一定的间隔时间(一般在15ms-4mins之间)向网络广播信标帧,两个信标帧发送间隔之间有16个相同的时槽,这些时槽分为网络休眠区和网络活动区两个部分,消息只能在网络活动区的各个时槽内发送。
非信标模式下,ZigBee标准采用父节点为ZE子节点缓存数据,ZE主动向其父节点提取数据的机制,实现ZE的周期性(周期可设置)休眠。网络中所有的父节点需要为自己的ZE子节点缓存数据帧,所有ZE子节点的大多数时间都处于休眠状态,周期性的醒来与父节点握手以确认自己仍处于网络中,并向父节点提取数据,其从休眠模式转入数据传输模式一般只需要15ms。
简单的概括为:两种设备,三种节点类型,三种拓扑结构及两种工作模式。1.全功能设备FFD,精简功能设备RFD 2.协调器,路由器,终端设备
3.星状网,树状网,网状网
4.信标模式 ,非信标模式(信标模式可以实现网络中所有设备的同步工作和同步休眠,以达到最大限度地节省功耗;而非信标模式只允许ZE进行周期性休眠,ZC和所有ZR设备长期处于工作状态)。
图5为基于ZigBee的无线传感器网络在物联网中的应用。
图5 基于ZigBee的无线传感器网络在物联网中的应用