第一篇:传感器的军事应用
传感器在军事领域的应用
什么是传感器:
传感器就是能感知外界信息并能按一定规律将这些信息转换成可用信号的装置;简单说传感器是将外界信号转换为电信号的装置。所以它由敏感元器件(感知元件)和转换器件两部分组成,有的半导体敏感元器件可以直接输出电信号,本身就构成传感器。敏感元器件品种繁多,就其感知外界信息的原理来讲,可分为:①物理类,基于力、热、光、电、磁和声等物理效应。②化学类,基于化学反应的原理。③生物类,基于酶、抗体、和激素等分子识别功能。通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。传感器的分类:
一 温度传感器
温度传感器主要由热敏元件组成。热敏元件品种教多,市场上销售的有双金属片、铜热电阻、铂热电阻、热电偶及半导体热敏电阻等。以半导体热敏电阻为探测元件的温度传感器应用广泛,这是因为在元件允许工作条件范围内,半导体热敏电阻器具有体积小、灵敏度高、精度高的特点,而且制造工艺简单、价格低廉。
二 光传感器
光传感器主要由光敏元件组成。目前光敏元件发展迅速、品种繁多、应用广泛。市场出售的有光敏电阻器、光电二极管、光电三极管、光电耦合器和光电池等。
光敏电阻器
光敏电阻器由能透光的半导体光电晶体构成,因半导体光电晶体成分不同,又分为可见光光敏电阻(硫化镉晶体)、红外光光敏电阻(砷化镓晶体)、和紫外光光敏电阻(硫化锌晶体)。当敏感波长的光照半导体光电晶体表面,晶体内载流子增加,使其电导率增加(即电阻减小)。
三 气敏传感器
由于气体与人类的日常生活密切相关,对气体的检测已经是保护和改善生态居住环境不可缺少手段,气敏传感器发挥着极其重要的作用。例如生活环境中的一氧化碳浓度达0.8~1.15 ml/L时,就会出现呼吸急促,脉搏加快,甚至晕厥等状态,达1.84ml/L时则有在几分钟内死亡的危险,因此对一氧化碳检测必须快而准。利用SnO2金属氧化物半导体气敏材料,通过颗粒超微细化和掺杂工艺制备SnO2纳米颗粒,并以此为基体掺杂一定催化剂,经适当烧结工艺进行表面修饰,制成旁热式烧结型CO敏感元件,能够探测0.005%~0.5%范围的CO气体。还有许多易爆可燃气体、酒精气体、汽车尾气等有毒气体的进行探测的传感器。常用的主要有接触燃烧式气体传感器、电化学气敏传感器和半导体气敏传感器等。接触燃烧式气体传感器的检测元件一般为铂金属丝(也可表面涂铂、钯等稀有金属催化层),使用时对铂丝通以电流,保持300℃~400℃的高温,此时若与可燃性气体接触,可燃性气体就会在稀有金属催化层上燃烧,因此铂丝的温度会上升,铂丝的电阻值也上升;通过测量铂丝的电阻值变化的大小,就知道可燃性气体的浓度。电化学气敏传感器一般利用液体(或固体、有机凝胶等)电解质,其输出形式可以是气体直接氧化或还原产生的电流,也可以是离子作用于离子电
极产生的电动势。
目前国产的气敏元件有2种。一种是直热式,加热丝和测量电极一同烧结在金属氧化物半导体管芯内;旁热式气敏元件以陶瓷管为基底,管内穿加热丝,管外侧有两个测量极,测量极之间为金属氧化物气敏材料,经高温烧结而成。
四 力敏传感器
力敏传感器的种类甚多,传统的测量方法是利用弹性材料的形变和位移来表示。随着微电子技术的发展,利用半导体材料的压阻效应(即对其某一方向施加压力,其电阻率就发生变化)和良好的弹性,已经研制出体积小、重量轻、灵敏度高的力敏传感器,广泛用于压力、加速度等物理力学量的测量。
五 磁敏传感器
目前磁敏元件有霍尔器件(基于霍尔效应)、磁阻器件(基于磁阻效应:外加磁场使半导体的电阻随磁场的增大而增加。)、磁敏二极管和三极管等。以磁敏元件为基础的磁敏传感器在一些电、磁学量和力学量的测量中广泛应用。
在一定意义上传感器与人的感官有对应的关系,其感知能力已远超过人的感官。例如利用目标自身红外辐射进行观察的红外成像系统(夜像仪),黑夜中可1000米发现人,2000米发现车辆;热像仪的核心部件是红外传感器。1991年海湾战争中,伊拉克的坦克配置的夜视仪探测距离仅800米,还不及美英联军的一半,黑暗中被打得惨败是必然的。目前世界各国都将传感器技术列为优先发展的高新技术的重点。为了大幅度提供传感器的性能,将不断采用新结构、新材料和新工艺,向小型化、集成化和智能的方向发展。
传感器在军事领域的应用:
无线传感器网络在军事中的应用优势:
(1)可快速部署。由于传感器网络节点单个体积较小,通过飞机或炮弹就能直接将传感器节点播撒到敌方阵地内部,或者是敌我双方的公共隔离带,在部署之后节点之间可以快速进行无线网络链接,在获基站所下任务命令后,迅速收集战场信息,并及时将所得作战信息反馈给指挥中心。
(2)可自组织性。传感器网络是由大量的随机分机的节点组成的,即使一部分传感器节点被敌方破坏,剩下的节点依然能够自组织地形成网络。而这一点是独立的卫星和地面雷达侦察系统所不能比拟的。传感器网络还可以借助个别具有移动能力的节点对网络拓朴结构进行调整,达到有效消除探测区域内盲点和阴影的效果。
(3)强隐蔽性。传感器网络节点体积微小,可悄无声息地发送到敌人内部,于无声息处收集战场信息。“智能尘埃”是上世纪90 年代末由美国国防部提供资金、加州大学伯克利分校实施的一项课题,其中所做的传感器节点已达到沙粒级别,但是它却包含了从信息收集、信息处理到信息发送所必需的全部部件。未来的智能微尘甚至可以悬浮在空中几个小时,搜集、处理和发射信息,它能够仅靠电池工作多年。智能微尘的远程传感器芯片能够跟踪敌人的军事行动,可以把大量智能微尘装在宣传品、子弹或炮弹中,在目标地点撒落下去,形成严密的监视网络,敌国的军事力量和人员、物资的流动自然一清二楚。无线传感器网络在军事领域中的应用情况
1)战场侦察与监视。
在敌方阵地附近、道路、桥梁、港口等关键地区部署各种类型的传感器,了解敌方动向,以及武器装备的部署情况。分布式传感器在军事领域的应用已有几
十年的历史。在20 世纪60 年代的越南战争期间,美军就使用了当时被称为“热带树”的无人值守传感器网络来对付北越的“胡志明小道”。所谓“热带树”实际上是一个震动传感器和声传感器组成的系统,它由飞机投放,落地后插入泥土中,仅露出伪装成树枝的无线电天线。当人员、车辆等目标在其附近行进时,“热带树”便探测到目标产生的震动和声信息,并立即将信息数据通过无线电通信发送给指挥中心。指挥管理中心对信息数据进行处理后,得到行进人员、车辆等目标的地点位置、规模和行进方向等信息,然后进行指挥决策。“热带树”越战中的成功应用,促使许多国家战后纷纷研制和装备各种无从值守的地面传感器系统(Unattended Ground Sensors,UGS)。美军的远程战场监视传感器系统(Remotely Mnitorored BattlefieldSensors System,REMBASS)项目已经为UGS 的成功使用进行了验证。REMBASS 使用了远距离监视传感器,由人工放置在敌人可能经过的道路。这些传感器可以对敌人的活动两句引起的信号做出响应,记录下诸如地面震动、声音、红外和磁场变化等物理量。REMBASS 可以在本地节点处理传感器获取的数据,以直接或通过无线中继设备把探测、分类的信息传输到传感器监视设备。传感器监视设备对收到的信息进行解调、解码、显示和记录,提供敌方活动的完整时间记录。此外用于战场侦察监视的还有美军C4KISR计划中的Smart Sensor Web、灵巧传感器网络通信、战场环境侦察与监视系统等项目;用于对付狙击手的枪声定位系统;用于探测低空飞行器的DSN 系统;用于对电磁信号进行侦察与干扰的“狼群”系统等。
2)战场态势感知。
现代战争被人们喻为“感知者的胜利”,在新的军事竞争背景下,掌控“透明战场”既是军事信息技术发展的必然结果,也是当今各军事强国的建设重点。美国空军已经在战略计划制定部门中组建了态势感知特别工作组,提高部队的传感器分析和数据整合能力,并先后研制了快速攻击识别、探测和报告系统、战场感知广域视界传感器等感知系统。美军的未来战斗系统为士兵提供全天候、全天识别目标的功能。美军开展的其他类似项目还包括陆军“无人值守地面传感器群”、海军“传感器组网系统”等。特别是自从阿富汗和伊拉克战争以来,战争样式具有了更多的网络化作战成分,即大量采用IP 和WEB 技术。美国近年来强调的“网络中心战”、“行动中心战”和“传感器到射手”等作战模式,都特别突出传感器组网来提高态势感知能力,将传感技术探测获得的目标信息通过网络系统传输给武器装备,为武器装备射击提供及时的信息,例如,美军开始研制的“战场感知与数据分发”系统就是用来演示和实践新型作战模式。
3)战场目标跟踪
无线传感器网络具有微型化终端探测的功能以及自组网的特点,因而在目标跟踪应用中的优势越来越明显,其中:跟踪更精细,密集部署的微型化传感器节点可以对移动目标进行精确探测、位置跟踪和控制,从而可以详细显示出移动目标的运动情况;跟踪更可靠,由于无线传感器网络的自治、自组织和高密度部署,当节点失效或新的节点加入,可以在恶劣的环境中自动配置容错,使得无线传感器网络在跟踪目标时具有较高的可靠性、容错性和鲁棒性;跟踪更及时,多种传感器的同步监控,使得移动目标的发现更及时,也更容易实现分布的数据处理、多种异构传感器节点相互之间协同工作,使得目标的跟踪过程更加全面;跟踪更隐蔽,由于传感器节点体积小,无线传输功率小,不易被敌方发现,因而可以对目标实现更隐蔽的跟踪,同时也方便部署应用。
4)核、生、化监测
借助于生物和化学传感器,可以及旱发现已方阵地上的生、化污染,可以较为安全地获取一些核、生、化爆炸现场的详细数据,为已方组织防护提供快速反应时间从而减少损失。2002 年5 月,美国Sandia 国家实验室与美国能源部合作,共同研究能够尽早发现以地铁、车站等场所为目标的生化武器袭击,并及时采取防范对策的系统。它属于美国能源部恐怖对策项目的重要一环。该系统集检测有毒气体和化学传感器和网络技术于一体。安装在车况的传感器一旦检测到某种有害物质,就会自动向管理中心通报,自动进行引导旅客避难的广播,并封锁有关入口等。该系统除了能够在专用管理中心进行监视外,还可以通过Internet 进行远程监视。
自己的想法:
上课提到小型传感器后我就在想,可以用他们建成传感器网络,用来检测一定范围的敌军机械化部队的数量,该系统能够散射网到各个地方, 甚至覆盖整个战场,运用传感器检测金属或者磁场以侦测运动的高金属含量目标, 可用于侦察和定位敌军坦克和车辆。给予远程作战部队精确坐标,可以在较少伤亡的情况下进行精确打击。如果换成热感应传感器的话,可以精确定位狙击手或敌方小股部队的位置,可以有效防止渗透和刺杀的发生,好像在伊拉克战场上美军已经用到了相关的传感器来打击伊拉克的狙击手。至于课上讨论的能源问题,我认为采用老师所说的利用地震波来转化为能源的方式可能成本略高,其实就用生物电池就可以了,生物电池也有较强的续航性,而且成本不高,所以应该比较合适。
课后感:
《传感器》是一门实用性很强的课程,在老师的讲述过程中,让我们很有感想,老师通俗易懂的讲课方式,使我们更容易的接受了这一门新课程和一个新的领域。《传感器》的教学方式也注定了能更好的被我们掌握,理论与实习相结合的方式,我们更全面的认识了传感器。传感器的应用领域很广,尤其是军事方面,对于身为国防生的我们,深深的吸引了我的注意,在学习和实习的过程中更有兴趣更加主动的去接受这方面的知识。我不仅在上课和实习期间努力的去学习传感器方面的知识,在课余时间,通过网络和图书馆,在传感器的理论和应用方面有了更加的深刻的认识。当然,这些都离不开老师的教导,是老师认真负责的教授态度和通俗易懂的讲课方式,让我进入了这一全新的领域。老师不仅在上课期间关心我们,课余也付出心力去帮助我们学习这门课程,耐心的给我们讲解不易理解的方面和难题,老师同样关心我们的生活,课余的交流也让我明白了很多为人处世的道理,我明白大学不仅是学习知识的地方,更是学习做人的地方,而老师们丰富的阅历对我们来说更是不可多得的财富,与老师的每一次交流我都受益匪浅。使我在做人做事方面更加成熟老练。总之,感谢老师耐心的教导和关心,谢谢!
第二篇:传感器应用总结
传感器应用总结
信息社会高速发展的今天,人们对信息的提取、处理、传输以及综合等要求愈加迫切。作为信息提取的功能器件——传感器同人们的关系越来越密切。小到智能手机,大到地震海啸预警,传感器广泛应用于社会发展及人类生活的各个领域。传感器种类繁多,其原理也各种各样。传感技术是一门知识密集型技术,它与许多学科相关,传感器技术已经成为各个应用领域,特别是电子信息工程、电气工程、自动控制工程、机械工程等领域中不可缺少的技术。传感技术与信息技术、计算机技术并列称为支撑现代信息产业的三大支柱。下面,我将对所学传感器的应用做一个简要的总结。
传感器是在非电量测量中,能够实现非电量转化为电量的装置。传感器一般由敏感元件、转换元件和测量电路三部分组成,有时还需要加辅助电源。(如图1)在自动检测和自动控制环节,传感器是必不可少的,没有传感器对数据的精确测量,必然不会实现对信号的控制及显示。因此,传感器在工业生产以及日常生活中应用广泛。非电量 敏感元件
非电量
传感元件
电量
转换电路
电量 热电偶传感器
图1
1.1 N型热电偶在主蒸汽温度测量中的应用
近年来,N型热电偶在火电厂得到了广泛的应用。N型热电偶在中子辐射环境下具有良好的稳定性, 是因为N型热电偶去除了易蜕变元素Mn、Co等。因此,N型热电偶具有很好的耐核辐射的能力。在一个机组主蒸汽管道上放一个温度保护套管,将N型热电偶放入其内部,测量的温度将其转化为电动势,通过控制电动势来控制温度。
1.2 热电偶对爆炸产物的热响应应用
在炸药的爆炸过程中,温度变化极快,数值极高,且为非稳态传热,冲击波的传播速度远大于热流的传播速度,热电偶技术的迅速发展为研究瞬态热作用提供了简便可靠的测试方法。热电偶温度传感器将温度信号转换为电压信号,经直 流电压放大器放大后通过A/D 转换电路将模拟信号转换为数字信号。采集系统将给出电压值,其变化反映热电偶温度值的变化。数据采集后对信号加以滤波处理,然后根据分度表进行温度转换。
1.3 薄膜热电偶传感器测高温物体表面温度
薄膜热电偶(T F T C)作为固体表面温度传感器具有许多优点,其很小的质量使其对表面热传导的干扰极小,对于大多数实际测量而言,被测点的这一热变化是微乎其微的;由于厚度仅为1um 的薄膜对于多数对流换热应用来说尺寸很小,所以薄膜热电偶与被测表面之间的对流换热变化也极其微小。另一方面,由于自身构造上的特点,薄膜热电偶传感器可以贴在某些需要测量温度但又不方便直接测温的物件上。压电传感器
2.1 车辆行驶称重
压电传感器检测经过轮胎施加到传感器上的压力,产生成正比的模拟电压、信号,输出压力信号的周期与轮胎停留在传感器上的时间相同。每当一个轮胎经过传感器时,传感器就会产生一个新的电子脉冲,压电传感器在行驶中称重(WMI)的检测原理是对受力产生的信号积分。2.2 实现超声振动系统的频率自动跟踪
在振动系统设计中加入压电传感片,压电传感片保持与系统谐振。由于压电效应,谐振时压电传感片两端会产生电荷,形成感应电压。这种电压大小与振动强弱成正比,通过检测电压值就能知道振动幅值的大小。感应电压最大值的频率点即为系统谐振点,通过搜寻感应电压最大值就能实现频率自动跟踪。2.3 环境监测
2.3.1压电石英晶体微天平(QCM)压电传感器
当一层外来物沉积于石英晶体表面时,晶体的表面质量增加,从而引起谐振频率的变化。
2.3.2 表面声波(S∧W)压电传感器
S∧W压电传感器是利用表面声波原理实现质量测定的。当ST切型石英晶体中电极的交叉阵列产生局部形变时,后者以机械波传递至接受器阵列,发出的波与任何表面材料的相互作用均能改变S∧W的速度和振幅,于是能定量测定沉 积物的质量。
2.4 确保刀具工作在安全振幅范围内
通过压电传感片返回的电压值大小,系统可以推算出刀具的工作振幅。预先设定安全振动幅值,限制输出功率的大小,就能起到保护刀具的作用。实际采用这种措施以后,刀具的工作寿命得到明显提高。这主要是因为刀具刀齿造成应力高度集中,如不限制振幅,空载或轻载时刀具振幅过大,刀齿的应力超过了安全许可界限,在超高周疲劳情况下很快就达到疲劳极限,引起刀具断裂。电阻传感器
3.1应变式压力传感器
这种传感器可以测量气体或液体压力。当气体或液体压力作用在薄板承压面上时,薄板变形,粘贴在另一面的电阻应变片随之变形,并改变阻值。这时测量电路中电桥平衡被破坏,产生输出电压。此外,它还可以用来制造测量高度、密度、速度的仪表。应变式压力传感器常见的结构有筒式、膜片式和组合式等。3.2 应变式加速度传感器
这种传感器的基本结构由悬臂梁、应变片、质量块、机座外壳组成。悬臂梁(等强度梁)自由端固定质量块,壳体内充满硅油,产生必要的阻尼。当壳体与被测物体一起作加速度 a 运动时,质量块因为在惯性作用下保持相对静止,从而给悬臂梁一个与运动方向相反的作用力,使梁体发生形变,粘贴在梁上的应变片阻值发生变化,电桥平衡被破坏,电桥输出电压。通过测量阻值的变化求出待测物体的加速度。3.3 热电阻式温度传感器 3.3.1 金属热电阻传感器
对于金属导体而言,在一定的温度下,物质的电阻随电阻率的变化而变化,可以把温度对电阻率的影响反映到电阻上,即温度变化会导致电阻变化,从而测出温度变化。
3.3.2 半导体热电阻传感器
半导体是一种晶态固体,其原子结构较为特殊,外层的电子运动时既不像金属导体那样容易脱离原轨迹,也不像绝缘体那样束缚的很紧,这就决定了它的导电特性介于金属导体和绝缘体之间。其导电机理与材料内价电子以及掺人的杂质 有关。电阻取决于掺杂的种类和浓度,并随温度而变化,通过测量电阻的变化而得到温度的改变。电感式传感器
4.1 自感式传感器
自感式传感器是利用自感量随气隙变化而改变的原理制成的,用来测量位移。自感式传感器主要有闭磁路变隙式和开磁路螺线管式,它们又都可以分为单线圈式与差动式两种结构形式。
线圈的自感量等于线圈中通入单位电流所产生的磁链数,只要被测非电量能够引起空气隙长度或等效截面积发生变化,线圈的电感量就会随之变化。自感式传感器的测量电路用来将电感量的变化转换成相应的电压或电流信号,以便供放大器进行放大,然后用测量仪表显示或记录。自感式传感器用于测量位移,还可以用于测量振动、应变、厚度、压力、流量、液位等非电量。4.2 差动变压器式传感器
差动变压器式传感器是把差动变压器的两个次级输出电压分别整流,然后将整流的电压或电流的差值作为输出,这样二次电压的相位和零点残余电压都不必考虑。
差动整流电路同样具有相敏检波作用,两组(或两个)整流二极管分别将二次线圈中的交流电压转换为直流电,然后相加。由于这种测量电路结构简单,不需要考虑相位调整和零点残余电压的影响,且具有分布电容小和便于远距离传输等优点,因而获得广泛的应用。但是,二极管的非线性影响比较严重,而且二极管的正向饱和压降和反向漏电流对性能也会产生不利影响,只能在要求不高的场合下使用。
一般经相敏检波和差动整流后的输出信号还必须经过低通滤波器,把调制的高频信号衰减掉,只允许衔铁运动产生的有用信号通过。
差动变压器不仅可以直接用于位移测量,而且还可以测量与位移有关的任何机械量,如振动、加速度、应变、压力、张力、比重和厚度等。4.3 涡流式传感器
根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,这种现 象称为电涡流效应。
根据电涡流效应制成的传感器称为电涡流式传感器。按照电涡流在导体内的贯穿情况,此传感器可分为高频反射式和低频透射式两类,但从基本工作原理上来说仍是相似的。电涡流式传感器最大的特点是能对位移、厚度、表面温度、速度、应力、材料损伤等进行非接触式连续测量,另外还具有体积小、灵敏度高、频率响应宽等特点,应用极其广泛。
线圈阻抗的变化完全取决于被测金属导体的电涡流效应。
而电涡流效应既与被测体的电阻率ρ、磁导率μ以及几何形状有关,又与线圈几何参数、线圈中激磁电流频率有关,还与线圈与导体间的距离x有关。因此,传感器线圈受电涡流影响时的等效阻抗Z的函数关系式为Z=F(ρ,μ,R,x)。
涡流式传感器的特点是结构简单,易于进行非接触的连续测量,灵敏度较高,适用性强。利用位移x作为变换量,可以做成测量位移、厚度、振幅、振摆、转速等传感器,也可做成接近开关、计数器等。利用材料电阻率作为变换量,可以做成测量温度,材质判别等传感器。利用导磁率作为变换量,可以做成测量应力,硬度等传感器;利用变换量x、、等的综台影响,可以做成探伤装置。电容传感器
5.1电容式位移传感器
电容式位移传感器可以实现非接触测量,用来测量各种导电材料的间隙、长度、尺寸或位置、振动位移等。CapaNCD(非接触电容位移传感器)测量原理的基础在于理想平板电容的构成,两个平板电极由传感器和相对应的被测体组成,当恒定的交流电加在传感器电容上时,传感器产生的交流电压与电容电极之间的距离成正比,交流电压经检波器,与一个可设置的补偿电压叠加,经放大,作为模拟信号输出。capaNCDT610是一个精密的单通道系统,它由电容位移传感器,传感器电缆和处理信号的前置器组成,用户可以在现场用二点线性化方法校准。这种传感器的特点是工作时无磨损,免维修、对被测体没有作用力、具有高的零点稳定性和精度、与被测体导电性能以及导电性能变化无关而且几乎不受温度影响。capaNCDT610可输出0~10V的电压,在牺牲精度的情况下,测量范围还可 以扩大2~3倍。5.2电容式物位传感器
电容式物位传感器有两个导电极板(通常把容器壁作为一个电极),由于电极间是气体、液体或固体而导致静电容发生变化,因而可以敏感物位。它的敏感元件有三种形式,即棒状、板状和线状,其工作温度、压力主要受绝缘材料的限制。电容式物位传感器可以采取微机控制,实现自动调整灵敏度,并具有自诊断功能,同时能够检测敏感元件的破损、绝缘性的降低、电缆和电路的故障等,并可以自动报警,实现高可靠性的信息传递。由于电容式传感器无机械可动部分,且敏感元件简单,操作方便,是目前应用最广的一种物位传感器。5.3固态电容式指纹传感器
传感器技术的发展,人们利用电容式传感器对指纹进行识别,从而识别人的身份,可靠性大大提高,广泛应用于养老金领取、人事工资管理、银行柜员身份确认等很多场合。目前市场上有两种固态指纹传感器,第一种是单次触摸型传感器,要求手指在采集区进行可靠的触摸;第二种则需要用手指在传感器表面擦过,传感器会采集一套特定的数据进行快速分析和认证。这两种指纹传感器都是利用指纹中凸起的部分置于传感器电容像素电极时电容量会有所增加,从而通过检测增加的电容来进行数据采集的。目前这两种指纹传感器都得到了广泛的应用。
6光电传感器
6.1 烟尘浊度监测仪
为了消除工业烟尘污染,首先要知道烟尘排放量,因此必须对烟尘源进行监测、自动显示和超标报警。烟道里的烟尘浊度是用通过光在烟道里传输过程中的变化大小来检测的。如果烟道浊度增加,光源发出的光被烟尘颗粒的吸收和折射增加,到达光检测器的光减少,因而光检测器输出信号的强弱便可反映烟道浊度的变化。
6.2感烟传感器(火灾报警器的一部分)由红外发光二极管及光电三极管组成,但二者不在同一平面上(有一定角度)。在无烟状态时,光电三极管接收不到红外线;当发生火灾时,产生大量烟雾,烟雾粒子进入感烟传感器时,由于红外线受烟雾粒于折射作用,光电三极管接收到红外线,给出烟雾报警信号。6.3 光控大门
光控大门需要要用到一种电子元件——干簧继电器,它由干簧管和绕在干簧管外的线圈组成。当线圈内有电流时,线圈产生的磁场使密封在干簧管内的两个铁质簧片磁化,两个簧片在磁力作用下由原来的分离状态变成连接状态,线圈内没有电流时,磁场消失,瓷片在弹力的作用下,回复到分离状态。把光敏电阻装在大门上汽车灯光能照到的地方,把带动大门的电动机接在干簧管的电路中,那么夜间汽车开到大门前,灯光照射光敏电阻时,干簧继电器接通电动机电路,电动机带动,大门打开。6.4 液位检测
在液体未升到发光二极管及光电三极管平面时,红外发光二极管发出的红外线不会被光电三极管接收;当液位上升到发光二极管及光电三极管平面时,出于液体的折射,光电三极管接收到红外信号由此获得液位信号。6.5电影放音
拍摄电影时的配音,是把声音信号转换为光信号,用明暗不同的条纹记录在胶片边缘的声带上。在放映电影时,光源发出的光通过移动的声带后发生了强弱的变化,并被光电管所接收,光电管把强弱变化的光相应地转变为强弱变化的电流,经放大器放大后,由扬声器放出声音。6.6 转速测量
在工业生产中,对转速的检测应用的非常多,尤其是在电机控制领域,将光电传感器应用到转速测量里是运用将转速变换成光通量的变化,再经过光电元件转换成电量的变化即可得到转速的原理。
首先在被测的转动轴上装上光电编码器,它是由光栅盘和光电检测装置组成,编码器随轴转动,当光线通过编码器的夹缝时,光电检测装置就会产生一个电脉冲,转轴连续转动,光电元件就输出一列与转速成正比的电脉冲数。在孔X或齿Y数一定时,脉冲数就和转速成正比。如果调制盘上的孔数为x,测量的时间为t 秒,脉冲数为N,此时被测转速为n(r/min)为:n=60N/xt。
7霍尔传感器
7.1 霍尔式汽车点火器
这种点火器与传统点火器不同,具有点火能量高、高速点火可靠、故障率低、耗油省等优点。霍尔式电子点火系统主要由点火信号发生器、电子点火组件、点火线圈、点火开关和蓄电池等组成。点火信号是由分电器中的霍尔传感器提供的。将开关型霍尔传感器固定在分电器外壳内侧,当分电器的转轴转动时,就带动叶片一起转动,叶片里面有磁铁,且叶片上开有窗口,因此霍尔器件所处磁场的磁场强度大小是突变的,其输出电压也突变,输出为脉冲信号。当汽车气缸中的活塞运行到达上止点时,霍尔电路输出低电平,从而改变了电流方向而流入霍尔电路,故晶体管截止。储存在电感中的磁能就在电路中振荡起来,形成200V以上的交流电压。此电压经点火线圈升压后产生高压电送至相应气缸的火花塞产生电火花,点燃气缸中的燃油。随着汽车发动机旋转,上述过程周而复始。7.2磁场的测量
由霍尔效应可知,当控制电流I0保持不变时,霍尔电势UH与所感受到的磁感应强度B成比例关系,所以,霍尔传感器所处位置的磁感应强度不同,输出的电压值就不同。根据输出电压的大小可测出磁感应强度的值。将霍尔传感器放置在不同的位置,由于磁感应强度不同,将输出不同的电压信号。7.3位移的测量
霍尔电势与位移量x成线性关系,并且霍尔电势的极性反映了元器件位移方向。同时还表明,当x=0时,U=0。利用这一特点可把作微量移动的物体与霍尔传感器固定在一起,当物体在均匀变化的磁场中相对B=0的位置(磁场的中心)发生x的位移量时霍尔传感器输出一定的电压信号,根据信号的大小和方向可测出物体移动的大小和方向。7.4不等位电势测量
测量不等位电势时,按照不等位电势的概念进行,使得霍尔元件位于同极性相对放置两块永久磁钢的正中间,不使用电气零位(RW1为零),直接测量霍尔元件的输出电压,约40mV。
第三篇:传感器的应用论文
文献检索与科技论文写作
结 课 作 业
姓名:安 班级: 学号: 滨
2013级本科三班
201315110101
光纤温度传感器的设计
光纤温度传感器的设计
论文分析:
意义:光纤传感技术是一门新兴的应用物理技术,它在石油、通信、化工检测以及各种参量测量方面具有许多独特的优点,有广阔的应用前景。近年来,光纤技术已逐渐渗透到各研究领域,其应用范围日渐广泛。随着光纤传感系统在国防军事、航空航天、工矿企业、土木建筑、能源环保、生物医学、计算测量、自动控制等各领域的应用,对光纤传感系统的性能也不断提出新的要求。光纤温度传感器特别适用于易燃易爆的工作环境,从而弥补了传统的点温度传感器的不足。主要内容及研究思路:本文从光纤的基础入手,首先介绍了光纤的基础知识,然后结合传感器引入了光纤温度传感器的定义,分类及工作原理。本课题研究的是一种非功能性光纤温度传感器,它是利用高度敏感的双金属片作为感温元件,金属片的变化改变了光纤的通光强度。
目标:光纤温度传感器可以达到不但测温对象广,从监测相对低温的生物过程到监测高温的发动机零件,而且测量准确度、灵敏度高,抗电磁能力强,传输距离远,使用寿命长,价格相对低廉,使用更加经济。今后光纤温度传感器研究方向将会进一步提高传感器的精度、可靠性;提高抗干扰能力、稳定性,并简化器件结构,降低成本。
光纤温度传感器的设计
目 录
第1章 前 言
1.1选题背景及研究意义 1.2光纤传感器国内外研究现状 1.3光纤传感器及其组成与分类 1.4本论文的主要内容 第2章 光纤温度传感器理论 2.1光纤基础知识介绍 2.2热敏元件双金属片工作原理 2.3光纤探头的原理
2.4纤端光场的光强分布函数选取
2.5光纤温度传感器的特点及应用 第3章 光纤温度传感器系统组成与实验步骤 3.1 实验原理
3.2实验主要设备和材料 3.3实验搭建与调试 第4章 实验结果分析
4.1 位移光强曲线的测定及其与理论曲线的对比 4.2 温度光强曲线的测定及出现的问题和解决办法 4.3 测温曲线的选取及传感器测温范围的确定 第5章 结论与展望
5.1 实验结论
5.2光纤温度传感器存在的不足和展望 参考文献 致谢
光纤温度传感器的设计
第1章 前言
1.1 选题背景及研究意义
1.2光纤传感器国内外研究现状
1.2.1 国外研究现状
1.2.2 国内研究现状
1.3 光纤传感器及其组成与分类
1.4 本论文的主要内容
本文所采用的温度变换器为U型双金属片,依据双金属片的位置随温度的变化而变化的原理,利用双金属片的纵向位置改变来调制光纤探头接收到的光强,从而实现温度对光强的间接调制。与传统的指针式双金属片温度计相比,本传感器具有快速、灵敏、便于实现与计算机接口连接等优点。研究从基本的概念入手。
光纤温度传感器的设计
第2章 光纤温度传感器理论
2.1光纤基础知识介绍
2.1.1 光纤的结构和分类
2.1.2 光纤的传输原理
2.2热敏元件双金属片工作原理
2.2.1 双金属片弯曲机理及其选取
2.2.2 双金属片得到选取及其补偿和调制机理
光纤温度传感器的设计
2.2.3双金属片温度变换对位移的补偿机理及其位移的计算
2.3光纤探头的原理
2.3.1 光纤反射式调制原理及与光强分布的关系
2.3.2 光纤传输信号准共路理论
2.4纤端光场的光强分布函数选取
2.5光纤温度传感器的特点及应用
光纤温度传感器的设计
第3章 光纤温度传感器系统组成与实验步骤
3.1 实验原理
3.2实验主要设备和材料
3.3实验搭建与调试
3.3.1 LED光源I-P特性曲线测试
3.3.2 反射式光纤位移传感实验
3.3.3 光纤温度传感器实验
光纤温度传感器的设计
第4章 实验结果分析
4.1 位移光强曲线的测定及其与理论曲线的对比
4.2 温度光强曲线的测定及出现的问题和解决办法
4.3 测温曲线的选取及传感器测温范围的确定
光纤温度传感器的设计
第5章 结论与展望
5.1 实验结论
5.2光纤温度传感器存在的不足和展望
光纤温度传感器的设计
参考文献
[1]王剑锋,刘红林,张淑琴,余向东,孙忠周,金尚忠,张在宣.基于拉曼光谱散射的新型分布式光纤温度传感器及应用[J].光谱学与光谱析,2013,04:865-871.[2]廖国珍,张军,蔡祥,谭绍早,唐洁媛,肖毅,陈哲,余健辉,庞其昌.基于石墨烯的全光纤温度传感器的研究[J].光学学报,2013,07:26-32.[3]宋海峰,龚华平,倪凯,董新永.基于波长与强度双解调的光纤温度传感器[J].光电子.激光,2013,09:1694-1697.[4]李涛,戴玉堂,赵前程.一种新型微结构高灵敏度光纤温度传感器[J].光电子.激光,2014,04:625-630.[5]李强,王艳松,刘学民.光纤温度传感器在电力系统中的应用现状综述[J].电力系统保护与控制,2010,01:135-140.[6]伍铁生,王丽,王哲,刘玉敏,胡署阳,尹丽丹.一种Sagnac干涉仪结构的光子晶体光纤温度传感器[J].中国激光,2012,11:217-221.[7]程继兴,刘霞.一种基于AT89C51的光纤温度传感器的软硬件实现[J].电子测量技术,2012,12:102-107.[8]周广丽,鄂书林,邓文渊.光纤温度传感器的研究和应用[J].光通信技术,2007,06:54-57.[9]张颖,张娟,郭玉静,王庆华.分布式光纤温度传感器的研究现状及趋势[J].仪表技术与传感器,2007,08:1-3+9.[10]方曼.分布式拉曼光纤温度传感器系统及温度分辨率提高的研究[D].电子科技大学,2004.[11]吕宗岩.分布式光纤温度传感器的系统设计[D].燕山大学,2006.[12]匡绍龙,朱学斌.分布式光纤温度传感器原理及其在变电站温度监测中的应用[J].电力自动化设备,2004,09:79-81.[13]徐申翔,刘南生,张华.光纤温度传感器原理及应用[J].南昌大学学报(工科版),2004,04:9-14.[14]刘凡凡.SMS结构光纤温度传感器[D].浙江大学,2013.[15]陈艳,王海燕,张朋,王宁.简述光纤温度传感器的原理及应用[J].传感器世界,2008,12:23-27.[16]邵嫄琴.分布式光纤温度传感器校准中参考温度的研究[D].中国计量学院,2013.[17]沈永行.从室温到1800℃全程测温的蓝宝石单晶光纤温度传感器[J].光学学报,2000,01:83-87.[18]虞倩.高精度医用光纤温度传感器的研制及其特性研究[D].中国计量学院,2012.[19]孟庆民.光纤温度传感器用于电力高压开关在线监测的研究[D].东南大学,2005.[20]王喜光.分布式光纤温度传感器信号处理的研究[D].燕山大学,2006.光纤温度传感器的设计
致 谢
第四篇:传感器的应用教案
传感器的应用教案
【教学目标】 1.知识与技能:(1)、了解传感器应用的一般模式;(2)、理解应变式力传感器的应用――电子秤的工作原理。(3)、理解声传感器的应用――话筒的工作原理。
4、理解温度传感器的应用――电熨斗的工作原理(5)、会设计简单的有关传感器应用的控制电路。2.过程与方法: 通过实验结合物理学的知识,探究电子秤、话筒、电熨斗等的工作原理,从而了解力传感器、声传感器和温度传感器的一般应用,进一步总结出传感器应用的一般模式。
3.情感、态度与价值观 激发学生的学习兴趣,培养动手能力,提高创新意识,提高物理理论知识与实际相结合的综合实践能力。
【教学重点】:各种传感器的应用原理及结构。【教学难点】:各种传感器的应用原理及结构。【教学方法】:PPT课件,演示实验,讲授
【教学用具】:小型电子秤,话筒,电熨斗、示波器。【教学过程】
一、引入新课
师:上节课我们学习了传感器及其工作原理。传感器是能够感知诸如力、温度、光、声、化学成分等非电学量,并把它们按照一定的规律转化成电压、电流等电学量,或转化为电路通断的一类元件。请大家回忆一下光敏电阻、热敏电阻、霍尔元件各是把什么物理量转化为电学量的元件? 学生思考后回答:光敏电阻将光学量转化为电阻这个电学量。热敏电阻将温度这个热学量转化为电阻这个电学量。霍尔元件把磁感应强度这个磁学量转化为电压这个电学量。这节课我们来学习传感器的应用
二、进行新课
1、传感器应用的一般模式
师:阅读教材开头几段,然后合上书,在练习本上画出传感器应用的一般模式示意图。提示:一般情况下,传感器产生的信号非常微弱,要想触发控制电路,此信号必须进一步放大才可以,所以需要放大电路,即放大器。
生:阅读教材并在练习本上画出传感器应用的一般模式示意图。
师:下面学习几个传感器应用的实例。2.力传感器的应用----电子秤
师:阅读教材61页最后一段,思考并回答问题。
(1)电子秤使用的测力装置是什么?它是由什么元件组成的?(2)简述力传感器的工作原理。
(3)应变片能够把什么力学量转化为什么电学量? 生:阅读教材,思考并回答问题。
生1:电子秤的测力装置是力传感器,它是由一个金属梁和两个应变片一起组成了测力部分。
生2:在金属梁没有力的情况下,金属梁处于水平状态,梁的上下应变片的长度没变且相等,两应变片的电阻大小也相等,当给金属梁施加竖直向下的力时,金属梁会向下弯曲,使得金属梁上面的应变片被拉长,电阻变大,两端电压也变大,而下边的应变片被挤压收缩,电阻变小,两端的电压也减小,使得两应变片两端电压值不相等,存在差值,控制电路就通过这个差值,经过放大电路将差值信号放大,再在显示器上显示出数字,即力F的大小。生3:应变片能够将形变这个力学量转化为电阻这个电学量。
师:总结点评,结合板画强调讲解应变片测力原理。3.声传感器的应用-----话筒
师:阅读教材62页有关内容,思考并回答问题。(1)话筒的作用是什么?(2)说明动圈式话筒的工作原理和工作过程。
(3)说明电容式话筒的工作原理和工作过程。这种话筒的优点是什么?(4)驻极体话筒的工作原理是什么?有何优点? 生:阅读教材,思考并回答问题。
生1:话筒的作用是把声音信号转化为电信号。
生2:动圈式话筒的工作原理是电磁感应现象。膜片接收到声波后引起振动,连接在膜片上的线圈随着一起振动,线圈在永磁体的磁场里振动从而产生感应电流(电信号),感应电流的大小和方向都变化,振幅和频率的变化都由声波决定,这个信号电流经扩音器放大后传给扬声器,从扬声器中就发出放大的声音。
生3:电容式话筒的工作原理:利用电容器充放电形成的充放电电流。薄金属膜M和固定电极N形成一个电容器,被直流电源充电.当声波使膜片振动时,电容发生变化,电路中形成变化的电流,于是电阻R两端就输出了与声音变化规律相同的电压.优点:保真度好。
生4:驻极体话筒的原理同电容式话筒,只是其内部感受声波的是驻极体塑料薄膜.优点:体积小,重量轻,价格便宜,灵敏度高,工作电压低。
师:指出:驻极体话筒利用了电介质的极化现象:将电介质放入电场中,在前后两个表面上会分别出现正电荷与负电荷的现象.某些电介质在电场中被极化后,去掉外加电场,仍然会长期保持被极化的状态,这种材料称为驻极体.师:演示实验: 按照如图所示的连接驻极体话筒的工作电路,话筒的输出端经过隔直电容接到示波器。对着话筒喊话,观察示波器的荧光屏上的波形,再用另外一人同样对话筒喊话,比较两次声音产生的波形有什么不一样。上述过程,就是话筒将声音信号转换为电信号的过程。生:观察实验现象。现象:不同的声波信号,荧光屏上显示的波形不同。说明话筒产生的电信号是由接收到的声波控制的。4.温度传感器的应用---电熨斗
师:温度传感器是应用最广泛的传感器之一,它能把温度的高低转变成电信号,通常是利用物体的某一物理性质随温度的变化而改变的特性制成的.电熨斗就是靠温度传感器来控制温度的。实验:取一个报废的日光灯启辉器,去掉外壳,敲碎氖泡的玻璃,可以看到一个U型的双金属片,双金属片的旁边有一根直立的金属丝,两者构成一对触点,常温下触点是分离的,用火焰靠近金属片,可以看到双金属片的形状变化,与金属丝接触,熄灭火焰,双金属片逐渐恢复原状,两个触点分离。把这个启动器用到温控开关,可以控制小灯泡的亮和灭。生:做实验,观察实验现象。
师:电熨斗就装有双金属片温度传感器。这种传感器的作用是控制电路的通断。
投影:电熨斗结构图(如图所示)思考与讨论:(1)常温下,上、下触点应是接触的还是分离的?当温度过高时,双金属片将怎样起作用?(2)熨烫棉麻衣物和熨烫丝绸衣物需要设定不同的温度,这是如何使用调温旋钮来实现的? 参考答案:(1)常温下,上、下触点应是接触的,但温度过高时,由于双金属片受热膨胀系数不同,上部金属膨胀大,下部金属膨胀小,则双金属片向下弯曲,使触点分离,从而切断电源,停止加热.温度降低后,双金属片恢复原状,重新接通电路加热,这样循环进行,起到自动控制温度的作用.(2)熨烫棉麻衣物和熨烫丝绸衣物需要设定不同的温度,此时可通过调温旋钮调节升降螺丝,升降螺丝带动弹性钢片升降,从而改变触点接触的难易,达到控制在不同温度的目的.拓展:温度传感器的另一应用----电冰箱的温控装置
如图所示是某种电冰箱内温度控制器的结构,铜质的测温泡1,细管2和弹性金属膜盒3连成密封的系统,里面充有氯甲烷盒它的蒸汽,构成一个温度传感器,膜盒3为扁圆形,右表面固定,左表面通过小柱体与弹簧片4连接,盒中气体的压强增大时,盒体就会膨胀,测温泡1安装在冰箱的冷藏室中。
5、6分别是电路的动触点盒静触点,控制制冷压缩机的工作,拉簧7的两端分别连接到弹簧片4盒连杆9上。连杆9的下端是装在机箱上的轴。凸轮8是由设定温度的旋钮控制的,逆时针旋转时凸轮连杆上端右移,从而加大对弹簧7的拉力。自动控温原理:如图所示是某种电冰箱内温度控制器的结构,铜制的测温泡
1、细管2和弹性金属膜盒3连通成密封的系统,里面充有氯甲烷和它的蒸汽,构成了一个温度传感器,膜盒为扁圆形,右表面固定,左表面通过小柱体与弹簧片4连接,盒中气体的压强增大时,盒体就会膨胀,测温泡1安装在冰箱的冷藏室中。
5、6分别是电路的动触点和静触点,控制制冷压缩机的工作,拉簧7的两端分别连接到弹簧片和连杆9上,连杆9的下端装在机箱上的轴,凸轮8是由设定温度的旋钮控制的,逆时针旋转时凸轮连杆上端右移,从而加大对弹簧7的拉力。当冷藏室里的温度升高时,1、2、3中的氯甲烷受热膨胀,弹性金属膜盒3的左端膨胀,推动弹簧片4向左转动,使5、6接触,控制的压缩机电路开始工作制冷,当温度下降到一定程度,氯甲烷受冷收缩,5、6又分开,制冷结束,直到下次温度升高再重复上述过程。温度设定原理:将凸轮8逆时针旋转,凸轮将连杆9向右顶,使得弹簧7弹力增大,此时要将5、6触点接通,所需要的力就要大些,温度要高一些,即温控挡应低一些(例如1级),顺时针旋转凸轮8,控制的温度低一些,控温挡要高一些。
(三)典型例题 例1.用如图所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度.该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器.用两根相同的轻弹簧夹着一个质量为2.0 kg的滑块可无摩擦滑动,两弹簧的另一端分别压在传感器a、b上,其压力大小可直接从传感器的液晶显示屏上读出.现将装置沿运动方向固定在汽车上,传感器b在前,传感器a在后.汽车静止时,传感器a、b在的示数均为 10 N(取g10 m/s2).(1)若传感器a的示数为 14 N、b的示数为6.0 N,求此时汽车的加速度大小和方向.(2)当汽车以怎样的加速度运动时,传感器a的示数为零.分析:传感器上所显示出的力的大小,即弹簧对传感器的压力,据牛顿第三定律知,此即为弹簧上的弹力大小,亦即该弹簧对滑块的弹力大小.解:(1)如图所示,依题意:左侧弹簧对滑块向右的推力 F114N,右侧弹簧对滑块的向左的推力 F26.0 N.滑块所受合力产生加速度a1,根据牛顿第二定律有 得4 m/s2 a1与F1同方向,即向前(向右).(2)a传感器的读数恰为零,即左侧弹簧的弹力,因两弹簧相同,左弹簧伸长多少,右弹簧就缩短多少,所以右弹簧的弹力变为N。滑块所受合力产生加速度,由牛顿第二定律得,a210m/s2,方向向左.例
2、如图5是电容式话筒的示意图,它是利用电容制作的传感器,话筒的振动膜前面镀有薄薄的金属层,膜后距膜几十微米处有一金属板,振动膜上的金属层和这个金属板构成电容器的两极,在两极间加一电压U,人对着话筒说话时,振动膜前后振动,使电容发生变化,导致话筒所在电路中的其它量发生变化,使声音信号被话筒转化为电信号,其中导致电容变化的原因可能是容器两板间的(A)(A)距离变化(B)正对面积变化(C)介质变化(D)电压变化
【课堂总结】 本节课主要学习了以下几个问题: 力传感器的应用---电子秤
声传感器的应用---话筒
温度传感器的应用---电熨斗 力传感器是把力信号转换成电信号;声传感器是把声音信号转换为电信号,而温度传感器往往是用来进行自动控制.【布置作业】课本P58-59 1、2、3 【板书设计】 第二节:传感器的应用
一、传感器应用的一般模式示意图
二、力传感器的应用---电子秤
三、声传感器的应用----话筒
四、温度传感器的应用---电熨斗
【教学反思】
思维方法是解决问题的灵魂,是物理教学的根本;亲自实践参与知识的发现过程是培养学生能力的关键,离开了思维方法和实践活动,物理教学就成了无源之水、无本之木。学生素质的培养就成了镜中花,水中月。
第五篇:传感器原理与应用
传感器原理与应用(专业限选课)
Principle and Application of Sensor
【课程编号】XZ260111
【学分数】2
【学时数】24+6+9(实验课时)【课程类别】专业限选 【编写日期】2010.3.30 【先修课程】电路分析、模电、数电
【适用专业】电子信息工程类
一、教学目的、任务
《传感器原理和应用》是电子及自动化专业的一门专业课。它有较强的实际应用价值。通过学习本课程使学生掌握各类传感器的基本原理、主要性能及其结构特点;能合理地选择和使用传感器; 掌握常用传感器的工程设计方法和实验研究方法;了解传感器的发展动向。
二、课程教学的基本要求
现代信息产业的三大支柱是传感器技术﹑通信技术和计算机技术,它们分别构成了信息系统的“感官”、“神经”和“大脑”。在机械工程中,传感器对于机械电子、测量、控制、计量等领域都是必不可少的获取信息的关键部件。
鉴于上述认识并考虑学科特色,在本课程有限学时内,要求学生重点掌握下列几方面的知识:⑴传感器的基本概念﹑术语和特性;⑵常用传感器的原理、结构和应用;⑶传感器测量电路;⑷传感器的典型应用。
三、教学内容和学时分配
第1章 传感与检测技术的理论基础自学
主要内容:
1.1测量概论
1.2测量数据的估计和处理
教学要求:
了解测量的基本概念,测量系统的特性,测量误差及数据处理的各种方法。
第2章 传感器概述2学时
2.1传感器的组成与分类
2.2传感器的基本特性
教学要求:
熟悉传感器的输出--输入特性与内部结构参数有关的外部特性,掌握其静态特性,动态特性的分析方法。
第3章 应变式传感器4学时
主要内容:
3.1 工作原理
3.2 应变片的种类、材料及粘贴
3.3 电阻应变片的特性
3.4 电阻应变片的测量电路
3.5 应变式传感器的应用
教学要求:
熟悉应变片传感器的工作原理及外部特性,了解其应用范围,掌握测量电路的分析方法。其它教学环节:实验一应变片性能测试实验3学时
实验性质:验证性实验
实验内容:金属箔式应变片性能——单臂电桥、半桥和全桥。
实验目的与要求:掌握使用金属箔式应变片组成单臂电桥、半桥和全桥的方法,了解在不同电路
形式时电路的输出特性。
注意要点:确保接线正确,电源电压不能用错。
第4章 电感式传感器3 学时
主要内容:
4.1自感式电感传感器
4.2差动变压器式传感器
4.3电涡流式传感器
教学要求:
了解电感式传感器的应用范围,工作特点,掌握其组成的各种测量电路的分析方法及组成特点。其它教学环节:实验二电涡流式传感器的静态位移性能3学时
实验性质:设计性实验
实验内容:电涡流式传感器的工作原理和工作情况,动手自制一个涡流探头,利用实验室放大器
及振荡器对不同被测材料(即混料)进行分选。
实验目的与要求:研究电涡流传感器特性,被测材料(物质)对传感器的特性的影响以及电涡流
传感器的应用。
注意要点:确保接线正确,激励、响应线圈不能用错。
第5章电容式传感器3 学时
主要内容:
5.1电容式传感器的工作原理和结构
5.2电容式传感器的灵敏度及非线性
5.3电容式传感器的等效电路
5.4电容式传感器的测量电路
5.5电容式传感器的应用
教学要求:
熟悉电容式传感器的工作原理及结构,掌握其在非电量测量与自动检测中的应用。
其它教学环节:实验三 变面积式电容传感器的性能1学时
实验性质:验证性实验
实验内容:变面积式电容传感器的工作原理和工作情况。
实验目的与要求:熟悉变面积式电容传感器的工作原理和工作情况;研究差动式电容传感器特性。注意要点:确保接线正确,电源电压不能用错。
第6章 压电式传感器3 学时
主要内容:
6.1压电效应及压电材料
6.2 压电式传感器测量电路
6.3 压电式传感器的应用
教学要求:
了解压电式传感器具有的特点及其应用范围,掌握其组成的测量电路分析及应用。
第7章 磁电式传感器4学时
主要内容:
7.1磁电感应式传感器
7.2 霍尔式传感器
教学要求:
掌握磁电式传感器的各种不同类型及应用范围。
其它教学环节:实验四 霍尔传感器特性研究及应用2学时
实验性质:验证性实验
实验内容:霍尔传感器在交、直流信号激励下的特性。
实验目的与要求:了解霍尔传感器的结构和工作原理;实验研究霍尔传感器在交、直流信号激励
下的特性;掌握霍尔传感器测量振幅和称重应用的实验方法。
注意要点:确保接线正确,电源电压不能超出规定值。
第8章 光电式传感器3 学时
主要内容:
8.1光电器件
8.2光纤传感器
教学要求:
熟悉典型的光电器件的特性和应用,了解光纤传感器及其技术发展方向,掌握红外传感器的应用。
第9章 半导体传感器2学时
主要内容:
9.1半导体气敏传感器
9.2湿敏传感器
9.3色敏传感器
9.4半导体式传感器的应用
教学要求:
了解以半导体材料组成的各种传感器及其它们的工作原理,掌握气敏、湿敏、色敏传感器在测量电路中的应用及其电路分析。
第10章 超声波传感器2学时
主要内容:
10.1超声波及其物理性质
10.2超声波传感器
10.3超声波传感器应用用
教学要求:
熟悉超声波传感器的工作原理及其物理性质,掌握超声波传感器的应用。
第11章 微波传感器1学时
主要内容:
11.1微波概述
11.2微波传感器的原理和组成11.3微波传感器的应用
教学要求:
了解压电式传感器具有的特点及其应用范围,掌握其组成的测量电路分析及应用。
第12章 辐射式传感器1 学时
主要内容:
12.1红外传感器
12.2核辐射传感器
教学要求:
了解辐射式传感器的特性及应用。
第13章 数字式传感器自学
主要内容:
13.1光栅传感器
13.2编码器
13.3感应同步器
教学要求:
了解数字式传感器的特点及应用。
第14章 智能式传感器自学
主要内容:
14.1概述
14.2传感器的智能化
14.3集成智能传感器
教学要求:
了解集成智能感器的特性及应用。
第15章 传感器在工程检测中的应用4学时
主要内容:
15.1温度测量
15.2压力测量
15.3流量测量
15.4物位测量
教学要求:
了解热电偶的结构和原理、热电效应的构成成份。掌握热电偶的基本定律、冷端补偿方法、测量计算方法。了解热电阻的工作原理、结构,掌握应用方法。了解传感器在工程检测中的作用及其应用。
四、教学重点、难点及教学方法
重点:各种常见的、应用广泛的传感器的基本原理、基本特性、转换电路以及工程应用,及分析、设计方法。以课堂讲授为主,通过实验加深对所学各类传感器的性能及工作原理理解。
难点:各种传感器的特性分析。
五、考核方式及成绩评定方式:
考核方式:考查,六、教材及参考书目
推荐教材:
《传感器原理及工程应用》(第三版),郁有文等编著,西安科技大学出版社,2008年参考书:
1.王化祥,《传感器原理与应用》,天津大学出版社,第七版,2003
3.刘君华,《智能传感器系统》,西安电子科技大学出版社,第一版,1999
4.单成祥,《传感器的理论与设计基础及其应用》,国防工业出版社,1999
4.赵负图,《现代传感器集成电路》,人民邮电出版社,2000
修(制)订人:审核人:
2010年 3 月30日