第一篇:五年级下册数学小报材料
五年级下册数学小报材料
游戏中的数学
一天,熙熙姐姐交给我们一个游戏:两人轮流从1—10按顺序报数,每次只能报1、2或3个数,谁先报到10,谁就赢了。
大家都想将对方“打倒”,但是,怎样才能让自己百分之百的胜利呢?这个问题总在我的脑海中回荡,使我疑惑不解。
回到家,我在小篮子里挑了十个石子,准备新手操作一下。我把爸爸叫来,让爸爸和我一起做这个游戏。我找来一支笔和一本本子,将我做的每一步记录下来。规则是这样的:我和爸爸轮流拿石子,最多拿3个,最少拿1个,谁拿到最后一个,谁就赢了。
第一场我失败了。原来,爸爸先拿,爸爸让我在最短的时间内输的“很惨”;第二场我先拿,我居然赢了„„
我将记录反复看了几遍,终于发现,我用最大的和最小的数相加:即1+3=4,又用了石子总数除以最大数与最小数的和,也就是10÷4=2„2,如果有余数,就我先拿,余数是几就那几个石子,如果没有余数,让对方先拿。现在余数是2,就拿2个石子,剩下的每次拿的石子和对方拿的和是除数3,我就可以必胜了。
为了保证答案的准确性,我又拿了28个石子和爸爸重新玩,有了上面的规律,我果然战无不胜!
原来,生活中数学无处不在,它们正等着你去发现呢!
第二篇:五年级数学下册
五年级数学下册“通分”说课稿
作者:佚名 资料来源:网络 点击数:1800 五年级数学下册“通分”说课稿
文 章来
源莲山 课
件 w w w.5Y
k J.Com
五年级数学下册“通分”说课稿
一、教材分析
通分是义务教育课程标准实验教科书五年级数学下册第93至94页的内容。这部分教材以分数的大小比较为线索,由特殊到一般在解决问题的同时教学通分。它是在学生已经掌握了分数的基本性质和求几个数的最小公倍数的基础上进行教学的,是分数基本性质的直接应用,在分数加减法中常常用到。因此通分是分数四则运算的重要基础,是比较异分母分数大小和计算异分母分数加减法的重要步骤,所以必须使学生切实掌握好这部分内容。
二、学情分析
学生在三年级上学期已经初步学习了比较分子是1的分数,以及同分母分数的大小,所以在学习这部分内容时难度不大,重点让学生讲解判断大小的理由并及时归纳总结。至于异分母分数比较大小,一部分同学其实已经知道利用分数的基本性质进行比较,那么教师就可以利用学生的这一成果运用旧知识解决新问题来引入通分,再通过自学环节,顺理成章的让学生转入本节的重点学习中。
三、教学目标
1.通过教学,使学生掌握比较分数大小的方法,能准确快速地比较各类分数的大小,理解通分的意义和作用。
2.让学生经历观察、分析、合作、交流、归纳等一系列数学活动,运用多种策略解决问题。
3.渗透转化的数学思想,提高学生的数学素养,培养学生学习数学的兴趣。
教学重点:理解通分的意义,掌握通分的方法。
教学难点:异分母分数的比较。
教具准备:课件一套
四、教法及学法指导
《数学课程标准》指出:数学教学,要让学生亲身经历数学知识的形成过程,也就是经历一个丰富、生动的思维过程,使学生通过数学活动,掌握基本的数学知识与技能,激发学生对数学学习的兴趣。
因此,在教学中我以学生的发展为立足点,以自我探究为主线,以求异创新为宗旨,采用启发诱导、合作探究等教学方法,引导学生观察辩析、合作交流,充分调动学生学习的积极性、主动性,让学生全面、全程、全身心地参与到每一个教学环节中。
在教学中,教师不单要把知识传授给学生,更重要的是教给学生获取知识的方法。所以本节课我主要从以下几方面对学生进行学法指导。①让学生学会运用旧知识解决新问题,并且上台讲解,实现兵教兵。②发现特征后能用语言表达出来。③能自学的尽量让学生自学。④通过观察、分析,引导学生掌握对事物本质进行总结的方法。
五、说教学流程
课前调查:
请你单选或多选温哥华冬奥会上令你感动的画面。
【设计意图:体育最能激发人的爱国热情,这样的课前调查,既为本节的教学提供了素材,又渗透了对学生的情感教育。】
(一)激趣导入、提出问题
2010年第21届温哥华冬奥会中国金牌榜首次进入世界前七!冬奥期间,每一个精彩瞬间都
会激起我们的心灵震颤(出示课件:王濛叩谢恩师李琰、申赵18年圆梦登顶、周洋以一敌
七摘取1500米桂冠、中国短道接力金牌失而复得)。然后屏幕上依次出现统计的结果。紧接
着让学生根据统计的结果提出数学问题。
【设计意图:情境的创设基于学生自己调查统计的结果,不但体现了数学来源于生活,而且
可以激发学生的学习兴趣。】
这时学生提的问题很多,可能有涉及比较分数大小的,也可能有涉及分数加减法的,教师可
根据难易程度一边板书一边适当调整问题的顺序。
(二)解决问题、探究新知
1、独立解决问题
因为有三年级的知识做铺垫,所以首先让学生尝试自己先独立解决问题,并把必要的过程写
出来。在这个环节渗透给学生一种学习方法,那就是有困难向书本请教。教师及时巡视,调
查学情。
【设计意图:学生独立思考是一种良好的思维品质。在教学中,我把学习的主动权还给学生,让他们用自己的思维方式主动、自由地去探究,去发现,亲自体验获得知识的快乐。】
2、合作交流
学生在四人小组内交流自己已解决的问题,或讨论有疑问的地方。教师这时要作为一个参与
者融入到学生的交流中。
【设计意图:这个环节可以实现智慧的交流、思想的碰撞、思维方式的互补,同时培养了学
生的合作意识、合作能力。让学生在参与的过程中体验学习的快乐,获得心智的发展。】
3、汇报展示
⑴ 同分母分数大小的比较
学生因为有知识储备,所以很容易得出结论:分母相同,分子大的分数比较大。这时教师评
价后追问学生想法,然后进行一组练习进行巩固。(○○○)。
⑵ 异分母分数比较大小
这是本节课的难点。分子相同的异分母分数学生很容易得出结论。让学生说比较的方法时,如果有学生用分数的基本性质比较时,教师即可借机转入下一环节的学习中。如果没有,那
么就在下一问题的解决中,把巡视时发现的有代表性的方法,让学生上台展示进行讲解。这
时学生可能从画图、分数的意义、分数与除法的关系、以及利用分数的基本性质等方法来解
决问题。这两个层次之间教学可以机动,关键取决于学生课堂上的做法。
【设计意图:五年级的学生已经有了初步的独立意识,喜欢发表自己的见解,渴望向别人证
明自己的能力。课堂中学生以积极愉悦的状态参与到实践过程中,主动寻求多种解题方法,迸出创新的火花,使学习真正成为人的主体性、能动性不断生成、发展和张扬的过程。同时
这样处理环节也很好的突破了难点。】
4、教学通分
⑴ 观察方法,揭示课题。
教师就地取材,指着利用分数基本性质解题做法问:仔细观察这位同学的做法,你有什么发
现?这时学生回答把异分母分数转化为同分母分数(板书)。教师追问:“转化后分数的大小
变了吗?你的依据是什么?”这时教师揭示:像这位同学的方法,就叫做通分(板书课题)。
⑵ 阅读教材,理解意义。
阅读课本93--94页,把你认为重点的地方或有疑问的地方用红笔标注一下。在这里其实也
渗透给学生一个读书习惯:不动笔墨,不读书。
⑶ 交流收获,掌握方法。
看书后,先解决有疑问的地方,之后让学生用自己的语言说说什么叫通分,通分的方法,学习通分有什么作用等。
【设计意图:这样做学生不仅触到新知的“脉”,还能寻到新知的“源”,不仅知道了学什么,还知道为什么要学,不仅激活了学生的思维,还有利于学生把知识转化为能力。这样就突出
了重点。】
(三)巩固练习,拓展提升。
1、比较下面分数的大小:
和和
2、同学们进行100米赛跑,丁丁用了 分,明明用了 分,谁的成绩好一些?
3、随机练习黑板上的其余问题。
【设计意图:通过从基础练到拓展练,把数学放到了更广阔的生活环境中,让学生在掌握了比
较分数大小方法的基础上,用所学的知识来解决生活当中的实际问题,培养学生的应用意
识。】
课的最后我用这样一段话结束本节的教学:同学们,我们虽不见得有冰雪健儿们那样的天赋
及机会,能够在国际赛场上为国争光,但是我们每个人,却可以被他们的某种精神所激励,然后在我们各自的人生舞台上,去赢得属于我们自己的金牌!
板书设计:
通分
大 小 不 变
异分母分数同分母分数
转 化(公分母)
公倍数
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
当然,这只是我的教学预设,在实际的教学中,也许学生的学习会有更多、更精彩的生成!
我期盼这一刻的到来!感谢各位专家、老师的聆听!谢谢!
第三篇:五年级数学下册
五年级数学下册《最大公因数》教学设计
【教学内容】
《义务教育课程标准实验教科书 数学》(人教版)五(下)第79—81页。【设计理念】小学数学课堂教学,应立志于让学生“研究学习”、“自主探索”,学生不应是被动接受知识的容器,而应是在学习过程中主动积极的参与者,是认知过程的探索者,是学习活动的主体,通过学生自身的活动,所“发现”和“创造”的知识较之教师硬塞给学生的知识理解得深刻,掌握得牢固,应用得灵活,同时也培养了学生发现问题、解决问题的能力。【教学目标】
1、通过自学和反馈交流,理解公因数和最大公因数的意义,沟通因数、公因数和最大公因数的区别和联系。
2、掌握求两个数最大公因数的方法,会选择合适的方法正确的求两个数的最大公因数。能初步应用求最大公因数的方法解决生活中的简单实际问题。
3、经历探究求两个数最大公因数方法的过程,培养学生分析、归纳等思维能力。激发学生自主学习、积极探索和合作交流的良好习惯。【教学重点】理解公因数和最大公因数的意义,会正确的求两个数的最大公因数。【教学难点】初步应用求两个数最大公因数的方法解决生活中的简单实际问题。【教学准备】多媒体课件 【自学内容】见预习作业 【教学过程】
一、自学反馈
1、通过自学你已经知道了什么?
(1)书上介绍了()和()两个数学概念。(2)问:你认为公因数和最大公因数与什么知识有关? 生:公因数和最大公因数都与因数有关?
(3)追问:那你认为可以怎样求两个数的公因数和最大公因数?
生:先分别列举出两个数的因数,然后找出它们的公因数和最大公因数。(4)你会求18和24的公因数和最大公因数吗?请大家试一试。
二、关键点拨
1、列举法求两个数的最大公因数及公因数和最大公因数的意义。(1)你是怎样求18和24的最大公因数的,谁来说说?(2)学生反馈:
18的因数有1,2,3,6,9,18。
24的因数有1,2,3,4,6,8,12,24。18和24的公因数有1,2,3,6。18和24的最大公因数是6。
师:18和24公有的因数,叫做它们的公因数。公因数中最大的一个因数,叫做它们的最大公因数。【设计意图:在教学中,不仅要求学生掌握抽象的数学结论,更应注意学生的“发现“意识,引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。】
2、求两个数最大公因数的其他方法
师:你还有不同方法求两个数的最大公因数吗? 生1:筛选法
先写出较大数的因数,24的因数有1,2,3,4,6,8,12,24。
从大到小找24的因数中谁是18的因数就是它们的最大公因数,24、12、8都不是18的因数,6是18的因数。
所以,18和24的最大公因数是6。生2:分解质因数法 18=2×3×3 24=2×2×2×3,把18和24的相同质因数相乘的积就是它们的最大公因数,18和24的最大公因数=2×3=6。
师问:你在哪里见到过这样的方法?
生介绍书上81页小知识:分解质因数法求两个数的最大公因数。师:还有不同方法吗?(学生沉默)你们看看我的方法可以吗?
师介绍缩倍法:把24缩小到它的2倍是12,12不是18的因数;把24缩小到它的3倍是8,8也不是18的因数;把24缩小到它的4倍是6,6是18的因数。所以,18和24的最大公因数是6。
3、沟通因数、公因数和最大公因数的区别和联系
仔细观察,静静思考,因数、公因数和最大公因数到底有什么关系?
生1:公因数和最大公因数都是因数中的一部分。
生2:公因数都是最大公因数的因数,最大公因数是公因数的倍数。
4、优化方法
仔细观察,静静思考,你更喜欢上面的哪种方法,为什么?
生1:我更喜欢列举法,因为列举法简单易懂,不仅可以求出两个数的最大公因数,还可以求出它们的所有公因数。
生2:我更喜欢筛选法,因为筛选法能更简洁、更快的求出两个数的最大公因数,也可以很快求出它们的公因数,只要再写出最大公因数的因数就是它们的公因数了。
生3:我更喜欢分解质因数法,……
5、集合表示法介绍
师:还可以用下面的图来表示:
【设计意图:德国教育家第斯多惠指出:“一个坏的教师奉送真理,一个好的教师则教人发现真理。”教学中,在引导学生探索问题的过程中,利用观察、发现、设问步步深入地引导学生逼近结论、求索方法。通过说思考过程、师生讨论,让学生的推理才能得以充分发挥,真正驾驭学习,成为学习的主人,为学生的自主探索发现、创新增添活力。】
三、巩固练习
1、请选择你喜欢的方法求出下面每组数的最大公因数。
4和8 18和54 1和7 8和9(1)学生独立求最大公因数,教师巡视指导。
第四篇:数学小报4(模版)
数学小故事
1.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在说:“不要弄坏我的圆”。)后,人们为纪念他便在其墓
碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。
2.阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称“智慧之都”的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
3.祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以“径一周三”作为圆周率,这就是“古率”.后来发现古率误差太大,圆周率应是“圆径一而周三有余”,不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--“割圆术”,用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在7.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做“祖率”.
兴庆区二小 四(3)班
王玥
数学知识树
第五篇:数学小报资料
数学小报资料
一、数学家的故事
高斯
在上小学的时候,有一次数学老师出了个题目,1+2+„+ 100=?由于看出1+100=101,2+99=101,„50+51=101共50个101,因而高斯立刻答出了5050的结果,此举令老师称赞不已。
对数学的痴迷,加上勤奋的学习,18岁时高斯发明了用圆规和直尺作正17边形的方法,从而解决了2000年来悬而未解的难题。他21岁大学毕业,22岁获博士学位。他在博士论文中证明了代数基本定理,即一元n次议程在复数范围内一定有根。在几何方面,高斯是非欧几何的发明人之一。高斯最重要的贡献还是在数论上,他的伟大著作《算术研究》标志着数论成为独立的数学分支学科的开始,而且这本书所讨论的内容成为直到20世纪数论研究的方向。高斯首先使用了同余记号,并系统而深入地阐述了同余式的理论;他证明了数论中的重要结果二次互反律等。高斯去世后,人们建立了以正17边形棱柱为基座的高斯像,以纪念这位伟大的数学家。陈景润
不爱玩公园,不爱逛马路,就爱学习。学习起来,常常忘记了吃饭睡觉。有一天,陈景润吃中饭的时候,摸摸脑袋,哎呀,头发太长了,应该快去理一理,要不,人家看见了,还当他是个姑娘呢。于是,他放下饭碗,就跑到理发店去了。理发店里人很多,大家挨着次序理发。陈景润拿的牌子是三十八号的小牌子。他想:轮到我还早着哩。时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把它弄懂,这是陈景润的脾气。他看了看手表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员叔叔大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员叔叔喊三十八号吗? 过了好些时间,陈景润在图书馆里,把不懂的东西弄懂了,这才高高兴兴地往理发店走去。可是他路过外文阅览室,有各式各样的新书,可好看啦。又跑进去看起书来了,一直看到太阳下山了,他才想起理发的事儿来。他一摸口袋,那张三十八号的小牌子还好好地躺着哩。但是他来到理发店还有啥用呢,这个号码早已过时了。
华罗庚
1936年,经熊庆来教授推荐,华罗庚前往英国,留学剑桥。20世纪声名显赫的数学家哈代,早就听说华罗庚很有才气,他说:“你可以在两年之内获得博士学位。”可是华罗庚却说:“我不想获得博士学位,我只要求做一个访问者。”“我来剑桥是求学问的,不是为了学位。”两年中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文,得出了著名的“华氏定理”,向全世界显示了中国数学家出众的智慧与能力。
二、数学名言
数学是科学的皇后,而数论是数学的皇后-------高斯。音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。——克莱因
数学的本质在於它的自由。---康扥尔
在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。------康扥尔 没有任何问题可以向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其他的概念能向无穷那样需要加以阐明。——希尔伯特
数学是无穷的科学。--赫尔曼外尔
数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。---高斯
哲学家也要学数学,因为他必须跳出浩如烟海的万变现象而抓住真正的实质。„„又因为这是使灵魂过渡到真理和永存的捷径。---柏拉图
数学是科学之王-------高斯(数学王子)
三、数学小故事
动物中的数学“天才”
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料,蜂房的巢壁厚0.073毫米,误差极少。
丹顶鹤总是成群结队迁飞,而且排成“人”字开。“人”字形的角度是110度,更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契?”
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺和圆规也很难画出像蜘蛛那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学业家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。