第一篇:光纤通信发展现状
摘要:波分复用(WDM,WTBX Wavelength Division Multiplexing)、光纤接入网和全光网技术是当前发展较快的几项光纤通信技术,其中波分复用技术是在一根光纤上同时利用多个波长进行传输,发展前景很好。光纤用户接入网的发展将加速光纤到户的实现。全光网目前存在一些需要解决的技术问题,美国、日本和欧洲一些国家已建立全光网试验网。目前使用最多的G652单模光纤的缺陷限制了其进一步发展,G653色散位移光纤由于四波混频效应不适于在波分复用系统上的应用。G655非零色散位移单模光纤有较好的发展前景。用户光缆具有芯数多,采用带状结构和塑料光纤等特点。
关键词:光纤通信 波分复用 光纤接入网 全光网
一、发展较快的几项光纤通信技术
1.波分复用技术
光纤通信的多路复用技术,一开始是采用原来铜缆沿用的PCM脉冲编码调制方式,把模拟信号变换为数字信号,再应用时分多路(TDM,WTBX Time Division Multiplexing)技术组成一次群即基群2Mbit/s)、二次群(8Mbit/s)、三次群(34Mbit/s)和四次群(140Mbit/s)等,这种系列被称为准同步数字系列(PDH,WTBX Plesiochronous Digital Hierarchy)。各国现有的PDH有三种系列,互不兼容,而且没有统一的标准接口规范,各个厂家生产的设备不能互通,另外还存在上下电路困难等问题。后来改用新的同步数字系列(SDH,WTBX Sychronous Digital Hierarchy),即STM--1(155Mbit/s),STM--4(622Mbit/s)和STM--16(2.5Gbit/s)等。SDH所采用的复用技术,仍然属于TDM技术。
目前,SDH系列在国内外已大量使用,我国干线上主要使用STM--16,相当于可复用3万多个话路。高于2.5Gbit/s以至更高速率的研究工作已在我国和其他许多国家展开,其间碰到的最大问题是光纤色散的限制,而要克服这些限制在技术上、成本上都十分困难。因此,当前实际应用的大都只限于2.5Gbit/s,不超过10Gbit/s的传输速率。
近年来,WDM技术的进展,为光纤通信的发展开辟了另一个十分广阔的前景。WDM是在一根光纤上同时利用多个波长进行传输的技术。比如,目前我国开发的在一根光纤上同时传送8个波长系统,每个波长的速率可达2.5Gbit/s,即所谓8×2.5Gbit/s系统。这样,一根光纤的总速率可达20Gbit/s。若每个波长的速率为10Gbit/s,则一根光纤的总速率就可达80Gbit/s。这将大量节省光纤的数量。最近我国正在全国长途骨干光缆网上进行升级改造,也就是利用WDM 8×2.5Gbit/s光传输系统使一对光纤可同时传送24万路电话或2400套电视节目。据报道,国外已出现206个波长的WDM系统试验样机。可见WDM技术的发展前景很好。
WDM技术的发展,不但大量节省光纤数目和以后扩容的工程费用,而且在长途干线上还可以大量节省掺铒光纤放大器(EDFA,Er--Doped Fiber Amplifier)的数目。因为目前掺铒光纤放大的带宽达30nm,足以使多个波长一起得到放大增益,不必每个波长配置单独的掺铒光纤放大器。当波长更多时,掺铒光纤放大器必须有更宽的平坦带宽增益。有资料介绍,把掺铒光纤放大器的平坦增益特性的波长宽度从原来的30nm加大到80nm的研究,其意义将更大。
2.光纤接入网(OAN,WTHX Optical Access Network)技术
十多年来,由于各种通信业务的迅猛发展,对通信容量的需求急剧增加,光纤干线的建设应运而起,各国先后建成全国的光缆骨干网。随后出现的问题是用户接入网仍保留着旧的铜缆网,不能适应发展需要,必须加以改造。改造的方案很多,首先考虑到的是开发利用铜缆的潜力,进一步提高其带宽来满足一定时期的需要,然后再过渡到光缆。比如,当前不少国家都在采用的线对增容系统、高比特率数字用户环路(HDSL,High—Bit--Rate Digital Subscriber Loop)、不对称数字用户环路(ADSL,Asymmetric Digital Subscriber Loop)、混合光纤与同轴电缆系统(HFC,WTBX Hybrid Fiber and coaxial Cable)等等都属于一些过渡性措施,应用广泛。
近年来,Internet的崛起大大超出人们原来的估计,目前它的年增长率已达300%,形成爆炸性的增长,并促使电信、计算机、有线电视等技术的融合,走向三网合一。三网合一意味着数据、话音、视像等各种业务都综合起来进行传送。这种综合必将大大促进在接入网中大量使用光纤,促进光纤用户接入网的发展,加速光纤到户(FTTH,Fiber to the Home)的实现。
在实现光纤到户前,首先采用交换式数字图像(SDV,WTBX Switched Digital Video)系统是一种较好的方案。数字图像系统由一个以光源光网络(PON,WTBX Passive Optical Network)为基础的数字光纤到路边(FTTC,WTBX Fiber to the Curb)系统与一个单向的混合光纤与同轴电缆有线电视系统叠加而成。数字图像系统主干传输部分采用共缆分纤的空分复用(SDM,WTBX Space Division Multiplexing)方式分别传送双向数字信号和单向模拟视像信号。上述两种信号由设置于路边的光网络单元(ONU,WTBX Optical Network Unit)分别恢复成各自的基带信号,其中语音信号经双绞线送往用户,数字和模拟视像信号经同轴电缆送往用户。光网络单元由同轴电缆负责供电。数字图像技术的优点是数字视像和模拟视像可以兼容,较好地解决光纤到路边的供电问题,能较可靠地传送电信业务,对已有的混合光纤与同轴电缆网不必加以改造。因此,采用数字图像技术作为实现光纤到户前的过渡方案是可行的。
3.全光网技术
光纤通信技术是以光纤代替电缆,以光波代替原来频率较低的电磁波发展起来的。因此,至今在光纤通信系统上仍需用大量的电信设备,甚至本来的光信号源也要变换成电信号源,然后进入光纤通信系统。在传输过程中的放大、交换及接入设备终端等基本上全是电设备。这是由于电系统比较成熟、应用比较方便所造成的。但这些电设备会带来许多限制和干扰因素,而这些因素在光的系统中原本是可以避免的。
建立全光网的设想很早就提出来了,但困难很多,最关键的技术问题是解决光信号在传输过程中的损耗和光的交换问题。80年代出现了光纤放大器以后,研究工作的进展就比较快了。目前,光的交换技术研究也有了很大的进展,其中进展较快、较实际的是基于WDM技术的全光网。
迄今比较成熟的光放大器是掺铒光纤放大器,它的带宽通常在1 530~1 560nm之间,在单模光纤上开通4,8,16个波长是比较方便的。
光路交换可以有:针对光纤在不同空间位置的空分交换方式;控制不同时延进行的时分交换方式;转换不同波长/频率的波分/频分交换方式;或综合其中两种及两种以上的综合交换方式。
近年来,美国、欧洲、日本等一些国家已先后建立全光网的现场试验。比如美国组成的多波长全光通信试验网(MONET),泛欧光纤传输迭加网(PHOTON)等,其中还用到一些光器件,如光的交叉连接器(OXC,Optical Cross Connector);波长路由器(Wavelength Router)、波长转换器(Wavelength Convertor)、插分复接/分接复用器(ADM,Add--Drop Multiplexer--Demultiplexer)等。当波分复用系统的光纤进入本局的插分复接/分接复用器后,可以让部分波长从中分出,其它波长则直通;分出的部分波长负载上的信号进入本局,而由本局引出的信号荷载于同样波长进入插分复接/分接复用器。其工作原理与电的ADM原理相仿。随着各种光器件和光交换技术的不断完善,全光网技术也将日趋成熟。
二、光纤光缆发展的一些动向
1.光纤的类型
目前,使用最多的光纤是G.652单模光纤。这种光纤的零色散波长在1 310nm附近,但这个波长的衰减大,而在1 550nm处波长的衰减最小,但是其色散系数又很大(可达20ps/(km·nm)),因此限制了这种光纤的进一步发展。
G653色散位移光纤把零色散波长移到1 550 nm附近,但由于其色散过小时,又会因非线性现象产生的新波长引起四波混频(Four--Wave Mixing Efficiency)效应使传输信号减弱,同时产生串音,这就限制了这种光纤在波分复用系统上的应用。
G655非零色散位移单模光纤的衰减小,在1 530~1 565nm间的色散系数为0.1~6.0ps/(km·nm),可以避免出现四波混频效应,而色散系数值也不大,较适合波分复用系统的发展需要,估计这种光纤有较好的发展前景。为了尽可能减少非线性效应的影响,G.655光纤正趋向于开发大面积光纤,或称为大有效面积非零色散位移单模光纤(LEAF)。
2.接入网用光缆的特点
与长途干线光缆相比,用户接入网的用户平均距离比较短,传送信号的速率较低,用户分散,用户系统的成本要低,施工和维护工作要方便。因此,用户光缆的结构应具有一些特殊性。
(1)芯数多
每根光缆所需的芯数要根据用户分布情况、用户密度大小、用户的性质、城市的发展规划和光缆所处的位置而异。目前,日本首先提出要在2010年实现光纤到户,考虑的光缆芯数多达1 000~4 000芯的;其它一些发达国家,多考虑首先发展光纤到路边,所提出的用户光缆容量超过千芯的结构不多,大都在几百芯以内。
(2)带状结构
当接入网用光缆当芯数较少或用于室内配线时,多采用松套束管式或光纤带叠层嵌入松套管式;当芯数较多或用于馈线的时,则一般采用带状结构。这是由于带状光纤光缆作为大芯数光缆时,光纤的结构紧凑、集合度高且直径小,便于多芯连接。为了减少光缆的截面面积,目前光纤带的厚度都在300μm以下。
当采用骨架或U形带状结构成缆时,可采用S-Z绞,以便于在施工、维护中取出光纤带。
不少国家主张接入网用光缆采用干式光缆,即不填充油膏,而采用防潮纸作为阻水带进行包扎,以便于施工、维护工作。
(3)塑料光纤
过去由于塑料光纤的衰减太大、带宽太窄而没有考虑用于通信。近年来,通过日本、美国和欧洲一些国家的研究开发,降低了塑料光纤的的衰减、增大了带宽,使它用于短距离的接入网成为可能。
塑料光纤最主要的优点是成本低、易于加工、重量轻、可挠性好、芯径和数值孔径都比较大,耦合效率较高,对施工和维护都比较方便。
目前,塑料光纤大都用在短波长,GI结构。据报道,日本和美国研制出的塑料光纤在100m上可以达到吉比特级。目前其市场正逐步上升,年增长率约为20%,这很值得注意。
第二篇:光纤通信系统的发展与现状
光纤通信系统的发展与现状
通信科学的发展历史悠久。近代通信技术分为电通信和光通信两类。电通信又分为有线通信和无线通信,是两种相当成熟的技术。通信技术发展过程中,围绕着增加信息传输的速率和距离,提高通信系统的有效性、可靠性和经济性方面进行了许多工作,取得了卓越的成就。光通信技术则是当代通信技术发展的最新成就,已成为现代通信系统的基石。
从广义的概念上说,凡是用光作为通信手段的都可称为光通信,则光通信的历史可追溯到远古时代,那时大部分文明社会已经用烟火信号传递单个信息,至18世纪末通过信号灯、旗帜和其他信号装置进行通信的类似方法已基本走到尽头。1792年,根据克劳特查普的建议,采用中继器使机械代码信号传送很长距离(约100km)。这种光通信系统速度很慢,其有效速率B<1b/s。
19世纪30年代电报的出现用电取代了光,开始了电信时代,利用新的代码技术,速率增加到3~10 b/s,采用中继站后允许进行长距离(约1000km)通信,1866年,第一条越洋电报电缆系统投入运营。电报也基本上使用数字法。1876年电话的发明引起了本质的变化,电信号通过连续变化电流的模拟形式传送,这种模拟电通信技术支配了通信系统达100年左右。
20世纪全球电话网的发展导致了电通信系统许多改进,使用同轴电缆代替双绞线大大提高了系统容量。第一代同轴电缆系统在1940年投入使用,是一个3MHz的系统,能够传输300路音频信号或1路视频信号,这种系统的带宽受到与频率相关的电缆损耗的影响,频率超过100MHz时,损耗迅速增加,这种限制导致了微波通信系统的发展。在微波系统中,利用1~10GHz的电磁波及合适的调制技术传递信号。最早的微波系统中,利用1~10GHz的电磁波及合适的调制技术传递信号。最早的微波系统工作于4GHz,1948年投入运营,从此以后,同轴和微波系统都得到了很大的发展,并都能工作于约100Mb/s。最先进的同轴系统于1975年投入运营,其速率达274Mb/s,但中继距离短(约1km),系统成本高。微波通通信系统速率亦受到载波频率的限制。
紧随研究与发展的步伐,经过许多现场试验后,于1978年工作于0.8μm的第一代光波系统正式投入商业应用,其比特率在20~100 Mb/s之间,最大中继距离约10km,最大通信容量(BL)约500(Mb/s)·km。与同轴电缆相比,中继间距长,投资和维护费用低,是工程和商业运营的追求目标。
在1970年时人们就认识到,使光波系统工作于1.3μm时,损耗<1.0dB/km,且有最低色散,可大大增加中继距离,这推动了全世界努力发展1.3μm的InGaAs半导体激光器和检测器。1977年研制成功这种激光器。接着在80年代初,早期的采用多模光纤的第二代光波通信系统问世,其中继距离超过了20km,但由于多模光纤的模间色散,早期的系统的比特率限制在100Mb/s以下。采用单模光纤能克服这种限制,一个实验室于1981年演示了比特率为2Gb/s,传输距离为44km的单模光波实验系统,并很快引入商业系统,至1987年1.3μm单模第二代光波系统开始投入商业运营,其比特率高达1.7Gb/s,中继距离约50km。第二代光波系统中继距离受到1.3μm附近光纤损耗(典型值为0.5dB/km)限制。理论研究发现,石英光纤最低损耗在1.55μm附近,实验技术上于1979年就达到了0.2dB/km的低损耗。然而由于1.55μm处高的光纤色散,而当时多纵模同时振荡的常规InGnAsP半导体激光器的谱展宽问题尚未解决,这两个因素,推迟了第三代光波系统的问世。后来的研究发现,色散问题可以通过使用设计在1.55μm附近,具有最小色散的色散位移光纤(DSF)与采用单纵模激光器来克服。在80年代这两种技术都得到了发展,1985年的传输试验显示,其比
特率达到4Gb/s,中继距离超过100km。至1990年,工作于2.4 Gb/s,1.55μm的第三代光波系统已能提供通信商业业务。这样的第三代光波系统,通过精心设计激光器和光接收机,其比特率能超过10Gb/s。后来,10Gb/s的光波系统在一些国家得到了重点发展。
第四代光波系统以采用光放大器(OA)增加中继距离和采用频分与波分复用(FDM与WDM)增加比特率为特征,这种系统有时采用零差或外差方案,称为相干广播通信系统,在80年代在全世界得到了发展。在一次试验中利用星型耦合器实现100路622Mb/s数据复用,传输距离50km,其信道间串扰可以忽略。在另一次试验中,单信道速率2.5Gb/s,不用再生器,光纤损耗用光纤放大器(EDFA)补偿,放大器间距为80km,传输距离达2232km。光波系统采用相干检测技术并不是使用EDFA的先决条件。有的实验室曾使用常规非相干技术,实现了2.5Gb/s,4500km和10Gb/s,1500km的数据传输。另一实验曾使用循环回路实现了
2.4Gb/s,2100km和5Gb/s,14000km数据传输。90年代初期光纤放大器的问世引起了光纤通信领域的重大变革。
第五代光波通信系统的研究与发展经历了近20年历程,已取得突破性进展。它基于光纤非线性压缩抵消光纤色散展宽的新概念产生光孤子,实现光脉冲信号保形传输,虽然这种基本思想1973年就已提出,但直到1988年才由贝尔实验室采用受激喇曼散射增益补充光纤损耗,将数据传输了4000km,次年又将传输距离延长到6000km。EDFA用于光孤子放大开始于1989年,它在工程实际中有更大的优点,自那以后,国际上一些著名实验室纷纷开始验证通信作为高速长距离通信的巨大潜力。1990——1992年在美国与英国的实验室,采用循环回路曾将2.5与5Gb/s的数据传输 km。1995年,法国的实验室则将20Gb/s的数据 km,中继距离达140km。1995年线形试验也将20Gb/s的数据传输8100km,40Gb/s传输5000km。线形光孤子系统的现场试验也在日本东京周围的城域网中进行,分别将10Gb/s与20Gb/s的数据传输了2500km与1000km。1994年和1995年80Gb/s和160Gb/s的高速数据也分别传输500km和200km。
光波通信技术得到巨大发展,现在世界通信业务的60%需经光纤传输,至本世纪末将达85%。随着光波通信系统技术的发展,光波通信系统在通信网中的应用得到了相应的发展。现在世界上许多国家都将光波系统引入了公用电信网、中继网和接入网中。但是目前这种奇特媒质的真正应用还仅仅是在现有电信网络的骨架结构内用光纤代替铜线,是通信网的性能得到了某种改善,降低了成本,而网络的拓扑骨架结构基本上还是光波通信出现之前的模式,光波通信的潜力尚未完全发挥。在目前的通信网中光纤通信技术应用尚属于一种经典应用,在通信网的发展中属于第二代通信网(第一代为纯电信网)。进入90年代后,随着光纤与光波电子技术的发展,光放大器,波分复用器,光子开关,光逻辑门,路由器等许多新颖光纤与半导体功能光器件相继问世,在全世界范围内掀起了发展第三代通信网——全光通信网的潮流。这种通信网中,不仅用光波系统传输信号,交换、复用、控制与路由选择等亦全部在光域完成,由此构建真正的光波通信网。
光波通信发展至今不到30年,但其进展之快,对通信技术影响之大,始所未料,目前大量新的理论与技术研究和发展工作正在继续进行。
光纤通信的特点与应用
收
光纤通信技术的现状及发展趋势
http://.cn/20080308/ca464325.htm
(2008-05-12 15:54:56)
摘要 简要介绍了光纤通信的现状,总结了目前正在使用的波分复用技术和光纤接入技术的基本原理和发展状况,从超大容量、超长距离传输技术和光弧子通信技术,以及全光网络3个方面论述了光纤通信技术的发展趋势。
光纤通信自从问世以来,给整个通信领域带来了一场革命,它使高速率、大容量的通信成为可能。光纤通信由于具有损耗低、传输频带宽容量大、体积小、重量轻、抗电磁干扰、不易串音等优点而备受业内人士的青睐,发展非常迅速。光纤通信系统的传输容量从1980年到2000年这20年间增加了近一万倍,传输速度在过去的10年中大约提高了100倍。目前,我国长途传输网的光纤化比例已超过80%,预计到2010午,全国光缆建设长度将再增加约105km,并且将有11个大城市铺设10G以上的大容量光纤通信网络[1]。
一、光纤通信技术的现状
光纤通信的发展依赖于光纤通信技术的进步。目前,光纤通信技术已有了长足的发展,新技术也不断涌现,进而大幅度提高了通信能力,并不断扩大了光纤通信的应用范围。
1.波分复用技术
波分复用WDM(Wavelength Division Multiplexing)技术可以充分利用单模光纤低损耗区带来的巨大带宽资源。根据每一信道光波的频率(或波长)不同,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端采用波分复用器(合波器),将不同规定波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由一波分复用器(分波器)将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。自从上个世纪末,波分复用技术出现以来,由于它能极大地提高光纤传输系统的传输容量,迅速得到了广泛的应用。
1995年以来,为了解决超大容量、超高速率和超长中继距离传输问题,密集波分复用DWDM(Dens Wavelength Division Multiplexing)技术成为国际上的主要研究对象。DWDM光纤通信系统极大地增加了每对光纤的传输容量,经济有效地解决了通信网的瓶颈问题。据统计,截止到2002年,商用的DWDM系统传输容量已达400Gbit/s。以10Gbit/s为基础的DWDM系统已逐渐成为核心网的主流。DWDM系统除了波长数和传输容量不断增加外,光传输距离也从600km左右大幅度扩展到2000km以上[2]。
与此同时,随着波分复用技术从长途网向城域网扩展,粗波分复用CWDM(Coarse Wavelength Division Multiplexing)技术应运而生。CWDM的信道间隔一般为20nm,通过降低对波长的窗口要求而实现全波长范围内(1260nm~1620nm)的波分复用,并大大降低光器件的成本,可实现在0km~80km内较高的性能价格比,因而受到运营商的欢迎。
2.光纤接入技术
光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达位置的不同,有FTTB、FTTC、FTTCab和FTTH等不同的应用,统称FTTx。
FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了FTTH的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地产开发商主导和政府主导等多种模式,发展势头良好。不少城市制订了FTTH的技术标准和建设标准,有的城市还制订了相应的优惠政策,这些都为FTTH在我国的发展创造了良好的条件。
在FTTH应用中,主要采用两种技术,即点到点的P2P技术和点到多点的xPON技术,亦可称为光纤有源接入技术和光纤无源接入技术。P2P技术主要采用通常所说的MC(媒介转换器)实现用户和局端的直接连接,它可以为用户提供高带宽的接入。目前,国内的技术可以为用户提供FE或GE的带宽,对大中型企业用户来说,是比较理想的接入方式。
xPON意味着包括多种PON的技术,例如APON(也称为BPON)、EPON(具有GE能力的称为GEPON)以及GPON。APON出现最早,我国的“863”项目也成功研发出了APON,但由于诸多原因,APON在我国基本上没有应用。目前用得比较多的是EPON中的GEPON,我国的GEPON依然属于“863”计划的成果,而且得到广泛的应用,还出口到日本、独联体、欧洲、东南亚等海外一些国家和地区。GPON由于芯片开发出来比较晚,相对不是很成熟。成本还偏高,所以,起步较晚,但在我国已经开始有所应用。由于其效率高、提供TDM业务比较方便,有较好的QoS保证,所以,很有发展前景。EPON和GPON各有优缺点,EPON更适合于居民用户的需求,而GPON更适合于企业用户的接入[3]。
二、光纤通信技术的发展趋势
对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。
1.超大容量、超长距离传输技术
波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有很大的应用前景,这几年波分复用系统发展也确实十分迅猛。目前,1.6Tbit/s的WDM系统已经大量商用,同时,全光传输距离也在大幅度扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率提高传输容量,其实现的单信道最高速率达640Gbit/s。
仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分
复用,从而大大提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此,现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。欧共体的RACE计划和美国正在执行的ARPA计划在发展宽带全光网中都部署了WDM和OTDM混合传输方式,以提高通信网络的带宽和容量。WDM/OTDM系统已成为未来高速、大容量光纤通信系统的一种发展趋势,两者的适当结合应该是实现Tbit/s以上传输的最佳方式。实际上,最近大多数超过3Tbit/s的实验都采用了时分复用(TDM、OTDM、ETDM)和WDM相结合的传输方式[4]。
2.光弧子通信
光弧子是一种特殊的ps数量级上的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而,经过光纤长距离传输后,波形和速度都保持不变。光弧子通信就是利用光弧子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。
在光弧子通信领域内,由于其具有高容量、长距离、误码率低、抗噪声能力强等优点,光弧子通信备受国内外的关注,并大力开展研究工作。美国和日本处于世界领先水平。美国贝尔实验室已经成功实现了将激光脉冲信号传输5 920km,还利用光纤环实现了5Gbit/s、传输15 000km的单信道孤子通信系统和10Gbit/s、传输11 000km的双信道波分复用孤子通信系统;日本利用普通光缆线路成功地进行了超高20Tbit/s、远距离1 000km的孤立波通信,日本电报电话公司推出了速率为10 Gbit/s、传输12 000km的直通光弧子通信实验系统。在我国,光弧子通信技术的研究也有一定的成果,国家“863”研究项目成功地进行了OTDM光弧子通信关键技术的研究,实现了20Gbit/s、105km的传输。近年来,时域上的亮孤子、正色散区的暗孤子、空域上展开的三维光弧子等,由于它们完全由非线性效应决定,不需要任何静态介质波导而备受国内外研究人员的重视[5]。
光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使?a href=“http://.cn/cnii_zte/index.htm” class=“yt” >中兴俾?0~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000公里以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然,实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使我们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。
3.全光网络
未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此,真正的全光网成为一个非常重要的课题。
全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。
全光网络具有良好的透明性、开放性、兼容性、可靠性、可扩展性,并能提供巨大的带宽、超大容量、极高的处理速度、较低的误码率,网络结构简单,组网非常灵活,可以随时增加新节点而不必安装信号的交换和处理设备。当然,全光网络的发展并不可能独立于众多通信技术之中,它必须要与因特网、ATM网、移动通信网等相融合[6]。
目前全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。
三、结束语
目前,光纤通信已成为一种最主要的信息传输技术,迄今尚未发现可以取代它的更好的技术。即使是在全球通信行业处于低迷时期,光纤通信的发展也从未停滞过,就我国而言,2002年的光通信市场相比2001年仍处增长状态。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来如愿到来。
第三篇:光纤通信的发展(精选)
光纤通信的发展
光纤通信一直是推动整个通信网络发展的基本动力之一,是现代电信网络的基础。光纤通信的诞生与发展是电信史上的一次重要革命,光纤通信技术发展所涉及的范围,无论从影响力度还是影响广度来说都已远远超越其本身,并对整个电信网和信息业产生深远的影响。它的演变和发展结果将在很大程度上决定电信网和信息业的未来大格局,也将对社会经济发展产生巨大影响。
纳米技术与光纤通信
纳米是长度单位,为10-9米,纳米技术是研究结构尺寸在1至100纳米范围内材料的性质和应用。建立在微米/纳米技术基础上的微电子机械系统(MEMS)技术目前正在得到普遍重视。在无线终端领域,对微型化、高性能和低成本的追求使大家普遍期待能将各种功能单元集成在一个单一芯片上,即实现
SOC(System On a Chip),而通信工程中大量射频技术的采用使诸如谐振器,滤波器、耦合器等片外分离单元大量存在,MEMS技术不仅可以克服这些障碍,而且表现出比传统的通信元件具有更优越的内在性能。德国科学家首次在纳米尺度上实现光能转换,这为设计微器件找到了一种潜在的能源,对实现光交换具有重要意义。
可调光学元件的一个主要技术趋势是应用MEMS技术。MEMS技术可使开发就地配置的光器件成为可能,用于光网络的MEMS动态元件包括可调的激光器和滤波器、动态增益均衡器、可变光衰减器以及光交叉连接器等。此外,MEMS技术已经在光交换应用中进入现场试验阶段,基于MEMS的光交换机已经能够传递实际的业务数据流,全光MEMS光交换机也正在步入商用阶段,继朗讯科技公司的“Lamda-Router”光MEMS交换机之后,美国Calient Networks公司的光交叉连接装置也采用了光MEMS交换机。
2.光交换是实现高速全光网的关键
光交换是指光纤传送的光信号直接进行交换。长期以来,实现高速全光网一直受交换问题的困扰。因为传统的交换技术需要将数据转换成电信号才能进行交换,然后再转换成光信号进行传输,这些光电转换设备体积过于庞大,并且价格昂贵。而光交换完全克服了这些问题。因此,光交换技术必然是未来通信网交换技术的发展方向。
未来通信网络将是全光网络平台,网络的优化、路由、保护和自愈功能在未来光通信领域越来越重要。光交换技术能够保证网络的可靠性,并能提供灵活的信号路由平台,光交换技术还可以克服纯电子交换形成的容量瓶颈,省去光电转换的笨重庞大的设备,进而大大节省建网和网络升级的成本。若采用全光网技术,将使网络的运行费用节省70%,设备费用节省90%。所以说光交换技术代表着人们对光通信技术发展的一种希望。
目前,全世界各国都正在积极研究开发全光网络产品,其中关键产品便是光变换技术的产品。目前市场上的光交换机大多数是光电和光机械的,随着光交换技术的发展和成熟,基于热学、液晶、声学、微机电技术的光交换机将会研究和开发出来,其中以将纳米技术为基础的微电子机械系统MEMS应用于光交换产品的开发更会加速光交换技术的发展。
第四篇:光纤通信系统发展综述
光纤通信系统发展综述
摘要: 光纤通信技术(optical fiber communications)从光通信中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。
仅在过去5年中,光纤技术领域取得了大量突破性进展,其中包括10Gbit/s网络的构建和单根光纤上每秒太比特容量的成功演示。不久前,业内成功演示了40Gbit/s和80Gbit/s网络。这些演示进一步突出了对速度更高、容量更大的网络的需求和期望。
一、光纤通信的发展史
世界光纤通信发展史
光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。
1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。
于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特兰大到华盛顿间建立了世界第一条实用化的光纤通信线路,速率为45Mb/s,采用的是多模光纤,光源用的是发光管LED,波长是0.85微米的红外光。在上世纪70年代末,大容量的单模光纤和长寿命的半导体激光器研制成功。光纤通信系统开始显示出长距离、大容量无比的优越性。
按理论计算:就光纤通信常用波长1.3微米和1.55微米波长窗口的容量至少有25000GHz。自然会想到采用多波长的波分复用技术WDM(WavelengthDivisionMultiplex)。1996年WDM技术取得突破,贝尔实验室发展了WDM技术,美国MCI公司在1997年开通了商用的WDM线路。光纤通信系统的速率从单波长的2.5Gb/s和10Gb/s爆炸性地发展到多波长的Tb/s(1Tb/s=1000Gb/s)传输。当今实验室光系统速率已达10Tb/s,几乎是用之不尽的,所以它的前景辉煌。
中国光纤通信发展史
1973年,世界光纤通信尚未实用。邮电部武汉邮电科学研究院(当时是武汉邮电学院)就开始研究光纤通信。由于武汉邮电科学研究院采用了石英光纤、半导体激光器和编码制式通信机正确的技术路线,使我国在发展光纤通信技术上少走了不少弯路,从而使我国光纤通信在高新技术中与发达国家有较小的差距。
我国研究开发光纤通信正处于十年**时期,处于封闭状态。国外技术基本无法借鉴,纯属自己摸索,一切都要自己搞,包括光纤、光电子器件和光纤通信系统。就研制光纤来说,原料提纯、熔炼车床、拉丝机,还包括光纤的测试仪表和接续工具也全都要自己开发,困难极大。武汉邮电科学研究院,考虑到保证光纤通信最终能为经济建设所用,开展了全面研究,-1-
除研制光纤外,还开展光电子器件和光纤通信系统的研制,使我国至今具有了完整的光纤通信产业。
1978年改革开放后,光纤通信的研发工作大大加快。上海、北京、武汉和桂林都研制出光纤通信试验系统。1982年邮电部重点科研工程“八二工程”在武汉开通。该工程被称为实用化工程,要求一切是商用产品而不是试验品,要符合国际CCITT标准,要由设计院设计、工人施工,而不是科技人员施工。从此中国的光纤通信进入实用阶段。
在20世纪80年代中期,数字光纤通信的速率已达到144Mb/s,可传送1980路电话,超过同轴电缆载波。于是,光纤通信作为主流被大量采用,在传输干线上全面取电缆。经过国家“六五”、“七五”、“八五”和“九五”计划,中国已建成“八纵八横”干线网,连通全国各省区市。现在,中国已敷设光缆总长约250万公里。光纤通信已成为中国通信的主要手段。在国家科技部、计委、经委的安排下,1999年中国生产的8×2.5Gb/sWDM系统首次在青岛至大连开通,随之沈阳至大连的32×2.5Gb/sWDM光纤通信系统开通。2005年3.2Tbps超大容量的光纤通信系统在上海至杭州开通,是至今世界容量最大的实用线路。
中国已建立了一定规模的光纤通信产业。中国生产的光纤光缆、半导体光电子器件和光纤通信系统能供国内建设,并有少量出口。
有人认为,我国光纤通信主要干线已经建成,光纤通信容量达到Tbps,几乎用不完,再则2000年的IT泡沫,使光纤的价格低到每公里100元,几乎无利可图。因此不要发展光纤通信技术了。
实际上,特别是中国,省内农村有许多空白需要建设;3G移动通信网的建设也需要光纤网来支持;随着宽带业务的发展、网络需要扩容等,光纤通信仍有巨大的市场。现在每年光纤通信设备和光缆的销售量是上升的。
二、光纤通信的原理及其优点
光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息.
光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。光纤通信之所以发展迅猛,主要缘于它具有以下特点:
(1)通信容量大、传输距离远;一根光纤的潜在带宽可达20THz。采用这样的带宽,只需一秒钟左右,即可将人类古今中外全部文字资料传送完毕。目前400Gbit/s系统已经投入商业使用。光纤的损耗极低,在光波长为1.55μm附近,石英光纤损耗可低于0.2dB/km,这比目前任何传输媒质的损耗都低。因此,无中继传输距离可达几
十、甚至上百公里。
(2)信号串扰小、保密性能好;
(3)抗电磁干扰、传输质量佳,电通信不能解决各种电磁干扰问题,唯有光纤通信不受各种电磁干扰。
(4)光纤尺寸小、重量轻,便于敷设和运输;
(5)材料来源丰富,环境保护好,有利于节约有色金属铜。
(6)无辐射,难于窃听,因为光纤传输的光波不能跑出光纤以外。
(7)光缆适应性强,寿命长。
(8)质地脆,机械强度差。
(9)光纤的切断和接续需要一定的工具、设备和技术。
(10)分路、耦合不灵活。
(11)光纤光缆的弯曲半径不能过小(>20cm)
(12)有供电困难问题。
利用光波在光导纤维中传输信息的通信方式.由于激光具有高方向性、高相干性、高单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光-光纤通信.
光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤.采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信.中国光纤通信已进入实用阶段.
光纤通信的诞生和发展是电信史上的一次重要革命与卫星通信、移动通信并列为20世纪90年代的技术。进入21世纪后,由于因特网业务的迅速发展和音频、视频、数据、多媒体应用的增长,对大容量(超高速和超长距离)光波传输系统和网络有了更为迫切的需求。光纤通信就是利用光波作为载波来传送信息,而以光纤作为传输介质实现信息传输,达到通信目的的一种最新通信技术。
通信的发展过程是以不断提高载波频率来扩大通信容量的过程,光频作为载频已达通信载波的上限,因为光是一种频率极高的电磁波,因此用光作为载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,光通信是人们早就追求的目标,也是通信发展的必然方向。
光纤通信的应用领域是很广泛的,主要用于市话中继线,光纤通信的优点在这里可以充分发挥,逐步取代电缆,得到广泛应用。还用于长途干线通信过去主要靠电缆、微波、卫星通信,现以逐步使用光纤通信并形成了占全球优势的比特传输方法;用于全球通信网、各国的公共电信网(如我国的国家一级干线、各省二级干线和县以下的支线);它还用于高质量彩色的电视传输、工业生产现场监视和调度、交通监视控制指挥、城镇有线电视网、共用天线(CATV)系统,用于光纤局域网和其他如在飞机内、飞船内、舰艇内、矿井下、电力部门、军事及有腐蚀和有辐射等中使用。
三、近几年技术大突破
要全面发挥互联网的潜力,我们必须不断提高网络可靠性、速度和灵活性。这就要求我们构想一种非常可靠、可以灵活地支持新应用和业务而且成本低廉的网络。有一套真正的端到端
解决方案,对于构建更可靠、速度更高而且更灵活的互联网也至关重要。
此外,我们还需要智能网络,它必须提供动态的带宽管理、集成的分组和光纤联网以及通过一体化解决方案实现的协调一致的故障排除功能。将来的网络还必须提供可扩展、可实现业务的多太比特连接管理解决方案,它应该可以集合和整理(groom)波长和子波长(sub wavelength)业务并提供灵活的恢复机制来满足业务需要。
超高容量和超远距离(4000km)解决方案对于演进长途网络也很关键,而先进的DWDM系统则是城域解决方案的一个重要组成部分。可靠性不再是一个业务差分因素,它已成为一项必备要求,而光纤层保护和恢复则是它的一部分。光纤和分组层上采用的经过实践验证的功能恢复方法可以更可靠、智能地根据根本原因处理网络性能下降情况。
要在一个业务要求瞬息万变的环境中提供灵活性,模块化光纤系统是一项必备条件。从收集层到高速核心网之间,我们需要提供多样化的上高速路(OnRamp)手段,使得我们能处理不同的协议和不同的传输速率。这是收集层波分复用设备非常重要的要求。
时分复用(TDM)和密集波分复用(DWDM)技术的发展帮助我们顺利演进了网络以处理业务容量问题。这两种技术可以提高光纤吞吐量模块性,而DWDM还可以提供一种解决容量问题的方法,因为它使服务供应商可以在一根光纤上合并和发送多个光信号。这样,服务供应商便可以灵活地增加专为增加光纤容量而设计的下一代TDM技术,以便通过将时间划分为更短的时间段和增加每秒传输的比特数量来处理比特率。
然而,寻求实现2.5Gbit/s和10Gbit/s以上线路速率的服务供应商还必须满足这一要求。服务供应商们正在寻求可以支持更高光纤核心传输速率的解决方案,以便实现高性能骨干太比特容量并有效管理带宽增长,同时降低在光纤上将每比特业务传输1英里所需的成本。下一代技术的发展可以提高光纤层的容量和效率,而且还可以在一根传输线路速率为40Gbit/s的光纤上支持高达64Tbit/s的容量。这种结构可以扩展到80Gbit/s甚至更高。与DWDM网络设备协同使用时,全新的40G解决方案实现的太比特容量可以实现一种非常优化的解决方案来缓解网络核心的业务拥塞和瓶颈。
40Gbit/s平台可以提高网络的经济高效性,扩大光纤覆盖范围,同时降低对传统网络单元的需求。它在每英里上传输1比特业务的成本最低而且设计小巧,可以减少在中心局中所需的空间。一个完整的40Gbit/s平台将可以集成一个智能ASON(自动交换式光纤网络),以提供在传输层管理容量的功能,同时实现将带宽设置和多种端到端业务迅速重新路由至网络任何地方的灵活性。这有助于确保需求可以得到经济高效的满足。
光纤组件的其它进步和一体化网状体系结构的建立将为服务供应商带来更高效的解决方案。网状网的灵活性可以提高网络效率,同时降低总投资成本。网状体系结构允许进行多种灵活的网络配置,每一种配置都可以支持基于智能光纤交换机的电路设置和所请求保护级别上对不同多级别业务的路由。
多重路由功能允许经济高效的业务设置,而且可以通过缩短恢复时间提高网络的整体可靠性。灵活的带宽管理还使服务供应商可以在必要时租用不同波长。另外,可调谐的发射机将为光纤核心带来更大的灵活性,并通过在所有波长上使用相同激光器来降低库存成本。
四、光通信器件的介绍
光通信器件是光通信的关键部分,对光通信的发展起到了制约的作用,直接影响到整个光纤通信系统设备的技术水平和市场竞争力。随着密集波分复用系统、光传送网和光纤接入网的发展,对器件的质量要求越来越高,并且不断向交换、无线通信、光互连和传感器等领域扩展。
光纤通信器件分为有源器件、无源器件,其中有源器件包括激光器及组件、光纤放大器(以掺铒光纤放大器为主)、发送器、接收器等;无源器件可分为波分复用器、光开关、连接器、衰减器、准直器 隔离器等。
随着目前全光网络、太比特速率以及密集波分复用技术等光纤通信新技术的涌现,由光电集成和光子集成组成的光纤通信器件在整个光纤通信系统中所起的作用越来越重要,用量大增,其占据光纤通信市场份额迅速上升。在2000年,有源器件在整个光通信市场份额占40%,无源器件占9%。同时,光纤通信技术能否持续发展,很大程度取决于器件水平。可以说光纤通信进步的基础在于光器件。
五、光通信材料的介绍
一般而言,新材料的研制开发大多来源于新兴器件技术的需求,对于光纤(Optical Fiber)材料也有类似情形,玻璃作为传输介质的研制探索已有近一个世纪的历史,目的主要在于改善宽频带(Broadband)的长途通信(Teleconmunication),使得借助玻璃纤维传输的光信号优于通过金属电线传导的电信号.
早期的电话是通过电线传输的直流信号,它的强度(音量大小)由碳话筒(Car-fon Microphone)产生的电阻变化而调制.随着真空管(Vacuum Tube)的出现,声信号通过交流载波器(Carrier)而调幅,并建立起间隔为4000Hz的十二个交流载波器组成的频率体系(Frequency Hierarchy).越高的载波频率允许越大的信息承载容量.由于金属电线的阻抗随频率增高而变大,该系统在高于IMHk频率就不能使用.这种限制在二战后被克服,采用单边带微波无线电(Single Sideband MicrowaveRadio)明显地增大了单个传输通道的带宽容量,它们早先通过塔杆而后使用卫星进行传送.后来,可用的频带限制了其增长,人们的汪意力转向波导(Waveguide)以及同轴电缆(Coaxial Cable)的研制开发。
不久同轴电缆就用在大容量的中继主干线路(Trunk Line),但因高损耗而在间距
一、两公里就需放大处理.寻求更有效的系统导致了毫米波导的开发.相比起同轴系统传输600对声音信号,每个波导可提供多达238,000对声音回路.但是,波导系统的复杂性和调节的紧密性使得系统非常昂贵,光通信设想早已被注意,原因在于 10 12 Hz频率的光可提供几乎无限的带宽.然而,主要的障碍在于获得透明的传输介质.最早的实验利用空气来传输,但因雾。烟、雨等干扰而未能实用化.然后,尝试用铝管中的压缩空气来传输,纯净的空气透光性好,不过用于补偿光束发散的透镜会导致高的反射损耗.一种巧妙发明的气体透镜,可对称地加热管中的气体引起密度因而折射率(Refractiv Index)的梯度变化,从而起到聚焦作用,这种通过加热金属管的传输系统同样不大经济.
采用头发丝细的玻璃纤维可以代替气体作为传输质.这种圆柱形纤维中高折射率的内芯,被低折射率的包覆层围绕,从而使光线芯子与包覆层的界面发生全反射,并且无反射损耗地传输.由这种光学特性可以预计,光纤能在比金属波导低的生产和安装成本下达测望的适应性能.若低于lppm的过渡金属杂质,则透明石英光纤能达到小于20 dB/km的损耗.
六、光纤通信的发展前景
FTTH(光纤到家庭)是光纤通信进一步发展的方向,它被公认为理想的宽带接入网。目前,所谓宽带业务,大多是500kbps的影视节目。运营商为了充分利用铜线资源,采用ADSL技术就可提供,这使FTTH成为接入网主流的时间有所推迟。不久的将来,在HDTV普及的情况下,ADSL不能满足要求,而先进的ADSL2+也许可满足1chHDTV/户。如果4chHDTV/户采用FTTH比较合理。在双向业务广泛应用的情况下,上下行不对称的ADSL难以对应。目前,发达国家FTTH建设普遍开展,日本、韩国和美国比较发达,采用各种无源光网PON和以太网技术。中国的运营商和房地产开发商已对FTTH进行了试点。近来出现了所谓的网络电视(IPTV),电信运营商提出IPTV的初衷是考虑到有计算机的人少而有电视机的人多。提出的IPTV是采用专用的机顶盒连接电视机可直接浏览电信网的内容,而不要计算机。IPTV具有常规电视并兼有点播和时移电视的功能,可能会取代常规电视。由于IPTV的发展,影响光纤接入网和FTTH的构建。另外,也产生电信运营商和广播运营商的利益冲突。尽管有限制发牌照政策以保护广播运营商,但大势所趋,不可阻挡。实际上,许多广播运营商也开始改造其广播网为数字双向,也具备了发展IPTV的功能。广播运营商和电信运营商的界限开始有些模糊。
七、总结:
光纤通信系统可以传输数字信号,也可以传输模拟信号。用户要传输的信息多种多样,一般有话音、图像、数据或多媒体信息。光纤通信系统,包括发射、接收和作为广义信道的基本光纤传输系统。在任何一种通信网络中,光纤是核心和关键。现代通信系统的发展日新月异,新技术、新产品的不断出现,它迅速改善和提高了人们的生活水平
参考文献: 光纤通信 刘增基 周洋溢西安电子科技大学出版社
光纤光学刘明德中国科学出版社
光纤通信系统欣婉仪北京邮电大学出版社
第五篇:光纤通信技术发展历程、特点及现状
学号: 20085044013 本科学年论文
学
院
物理电子工程学院
专
业
电子科学与技术
年
级
2008级
姓
名
王震
论文题目
光纤通信技术发展历程、特点及现状
指导教师
张新伟
职称
讲师
成绩
2012年1月10日
目 录
摘 要.......................................................1 Abstract................................................................1 绪 论.......................................................1 1光纤通信发展历程..........................................1 1.1 世界光纤通信发展史.....................................1 1.2 中国光纤通信发展史.....................................2 2 光纤通信技术的特点........................................3 2.1 频带极宽,通信容量大...................................3 2.2 损耗低,中继距离长.....................................3 2.3 抗电磁干扰能力强.......................................3 2.4 无串音干扰,保密性好...................................3 3 不断发展的光纤通信技术....................................3 3.1 SDH系统...............................................3 3.2 不断增加的信道容量.....................................3 3.3 光纤传输距离...........................................4 3.4 向城域网发展...........................................4 3.5 互联网发展需求与下一代全光网络发展趋势.................4 4 结束语....................................................4 参考文献....................................................4
光纤通信技术发展历程、特点及现状
摘 要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。
关键词:光纤通信;发展历程;特点;发展现状
绪论
光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。光电子技术将继微电子技术之后再次推动人类科学技术的革命。有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。光纤通信发展历程
1.1 世界光纤通信发展史
光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。
1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特兰大到华盛顿间建立了世界第一条实用化的光纤通信线路,速率为45Mb/s,采用的是多模光纤,光源用的是发光管LED,波长是0.85微米的红外光。在上世纪70年代末,大容量的单模光纤和长寿命的半导体激光器研制成功。光纤通信系统开始显示出长距离、大容量无比的优越性。
按理论计算:就光纤通信常用波长1.3微米和1.55微米波长窗口的容量至少有25000GHz。自然会想到采用多波长的波分复用技术WDM。1996年WDM技术取得突破,贝尔实验室发展了WDM技术,美国MCI公司在1997年开通了商用的WDM线路。光纤通信系统的速率从单波长的2.5Gb/s和10Gb/s爆炸性地发展到多波长的Tb/s(1Tb/s=1000Gb/s)传输。当今实验室光系统速率已达10Tb/s,几乎是用之不尽的,所以它的前景辉煌。1.2 中国光纤通信发展史
1973年,世界光纤通信尚未实用。邮电部武汉邮电科学研究院(当时是武汉邮电学院)就开始研究光纤通信。由于武汉邮电科学研究院采用了石英光纤、半导体激光器和编码制式通信机正确的技术路线,使我国在发展光纤通信技术上少走了不少弯路,从而使我国光纤通信在高新技术中与发达国家有较小的差距。
我国研究开发光纤通信正处于十年**时期,处于封闭状态。国外技术基本无法借鉴,纯属自己摸索,一切都要自己搞,包括光纤、光电子器件和光纤通信系统。就研制光纤来说,原料提纯、熔炼车床、拉丝机,还包括光纤的测试仪表和接续工具也全都要自己开发,困难极大。武汉邮电科学研究院,考虑到保证光纤通信最终能为经济建设所用,开展了全面研究,除研制光纤外,还开展光电子器件和光纤通信系统的研制,使我国至今具有了完整的光纤通信产业。
1978年改革开放后,光纤通信的研发工作大大加快。上海、北京、武汉和桂林都研制出光纤通信试验系统。1982年邮电部重点科研工程“八二工程”在武汉开通。该工程被称为实用化工程,要求一切是商用产品而不是试验品,要符合国际CCITT标准,要由设计院设计、工人施工,而不是科技人员施工。从此中国的光纤通信进入实用阶段。
在20世纪80年代中期,数字光纤通信的速率已达到144Mb/s,可传送1980路电话,超过同轴电缆载波。于是,光纤通信作为主流被大量采用,在传输干线上全面取代电缆。经过国家“六五”、“七五”、“八五”和“九五”计划,中国已建成“八纵八横”干线网,连通全国各省区市。现在,中国已敷设光缆总长约250万公里。光纤通信已成为中国通信的主要手段。在国家科技部、计委、经委的安排下,1999年中国生产的8×2.5Gb/s WDM系统首次在青岛至大连开通,随之沈阳至大连的32×2.5Gb/s WDM光纤通信系统开通。2005年3.2Tbps超大容量的光纤通信系统在上海至杭州开通,是至今世界容量最大的实用线路。
中国已建立了一定规模的光纤通信产业。中国生产的光纤光缆、半导体光电子器件和光纤通信系统能供国内建设,并有少量出口。光纤通信技术的特点
2.1 频带极宽,通信容量大
光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。2.2 损耗低,中继距离长
目前,商品石英光纤和其它传输介质相比的损耗是最低的;如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。2.3 抗电磁干扰能力强
石英有很强的抗腐蚀性,而且绝缘性好。而且它还有一个重要的特性就是抗电磁干扰的能力很强,它不受外部环境的影响,也不受人为架设的电缆等干扰。这一点对于在强电领域的通讯应用特别有用,而且在军事上也大有用处。2.4 无串音干扰,保密性好
在电波传输的过程中,电磁波的传播容易泄露,保密性差。而光波在光纤中传播,不会发生串扰的现象,保密性强。除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。正是因为光纤的这些优点,光纤的应用范围越来越广。不断发展的光纤通信技术
3.1 SDH系统
光通信从一开始就是为传送基于电路交换的信息的,所以客户信号一般是TDM的连续码流,如PDH、SDH等。伴随着科技的进步,特别是计算机网络技术的发展,传输数据也越来越大。分组信号与连续码流的特点完全不同,它具有不确定性,因此传送这种信号,是光通信技术需要解决的难题。而且两种传送设备也是有很大区别的。3.2 不断增加的信道容量 光通信系统能从PDH发展到SDH,从155Mb/s发展到l0Gb/s,近来,40GB/s已实现商品化。专家们在研究更大容量的,如160Gb/s(单波道)系统已经试验成功,目前还在为其制定相应的标准。此外,科学家还在研究系统容量更大的通讯技术。3.3 光纤传输距离
从宏观上说,光纤的传输距离是越远越好,因此研究光纤的研究人员们,一直在这方面努力。在光纤放大器投入使用后,不断有对光纤传输距离的突破,为增大无再生中继距离创造了条件。3.4 向城域网发展
光传输目前正从骨干网向城域网发展,光传输逐渐靠近业务节点。而人们通常认为光传输作为一种传输信息的手段还不适应城域网。作为业务节点,既接近用户,又能保证信息的安全传输,而用户还希望光传输能带来更多的便利服务。3.5 互联网发展需求与下一代全光网络发展趋势
近年来,互联网业发展迅速,IP业务也随之火爆。研究表明,随着IP业的迅速发展,通信业将面临“洗牌”,并孕育着新技术的出现。随着软件控制的进一步开发和发展,现代的光通信正逐步向智能化发展,它能灵活的让营运者自由的管理光传输。而且还会有更多的相关应用应运而生,为人们的使用带来更多的方便。
综上所述,以高速光传输技术、宽带光接入技术、节点光交换技术、智能光联网技术为核心,并面向IP互联网应用的光波技术是目前光纤传输的研究热点,而在以后,科学家还会继续对这一领域的研究和开发。从未来的应用来看,光网络将向着服务多元化和资源配置的方向发展,为了满足客户的需求,光纤通信的发展不仅要突破距离的限制,更要向智能化迈进。结束语
现在光通信网络的容量虽然已经很大,但还有许多应用能力在闲置,今后随着社会经济的不断发展,作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力,推动通信网络的继续发展。因此,光纤通信技术在应用需求的推动下,一定不断会有新的发展。
参考文献
[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息,2006(4):12-14.[2]辛化梅,李忠.论光纤通信技术的现状及发展[J].山东师范大学学报,2003(4): 5-6.[3]韦乐平.光同步数字传送网[M].北京:人民邮电出版社,1998: 5-7.[4]毛谦.我国光纤通信技术发展的现状和前景[J].电信科学, 2006: 12-13.[5]祁斌.浅析光纤通信技术及其展望[J].科技创新, 2010: 45-47.[6]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信, 2004(2): 15-17.[7]李超.17-18.浅谈光纤通信技术发展的现状与趋势[J].沿海企业与科技, 2007(7):