第一篇:光电子技术领域的研究进展
光电子技术领域的研究进展
姓名:吴雄峰
学号:119084061 摘要:随着科学的进步,光电子技术得到了蓬勃的发展。他不仅由多科学互相融合和互相渗透,而且在各个科学领域的应用也十分广泛,随着光电子技术应用的快速发展以及在其他科技领域的渗透,又形成了许多市场可观、发展潜力巨大的光电子产业,毋庸置疑,光电子技术对推动21世纪信息技术的发展至关重要。本文旨在通过介绍光电子技术的概念和研究内容、光电子技术领域的发展历史、光电子技术领域的现状、以及光电子技术领域的展望来讲述光电子技术领域的研究进展。关键词:光电子技术、发展、现状、展望。
一、光电子技术的概念和研究内容光电子技术指利用光子激发电子或电子跃迁产生光子的物理现象所能提供的手段 和方法,它的核心内容是实现光电和电光转换。作为具有比电子更高频率和速度的信息载体,以其不存在电磁串扰和路径延迟的优点,光电子技术在信息领域的应用无可替代。
当代社会和经济发展中,信息的容量日益聚增,随着高容量和高速度的信息发展,电子学和微电子学遇到其局限性,而光作为更高频率和速度的信息载体,会使信息技术的发展产生突破,信息的探测,传输,存储,显示,运算和处理将由光子和电子共同参与来完成,所以,光电子技术的主要应用在信息领域。光电子技术属于信息技术的关键“硬件设备”之一,提供把全世界计算机联系起来的可能,甚至可以和卫星或外星球组成网络,目前成为组成覆盖范围巨大的因特网的支柱技术。在信息技术发展过程中,电子作为信息的载体作出了巨大的贡献。但它也在速率、容量和空间相容性等方面受到严峻的挑战。采用光子作为信息的载体,其响应速度可达到飞秒量级、比电子快三个数量级以上,加之光子的高度并行处理能力,不存在电磁串扰和路径延迟等缺点,使其具有超出电子的信息容量与处理速度的潜力。充分地综合利用电子和光子两大微观信息载体各自的优点,必将大大改善电子通信设备、电子计算机和电子仪器的性能。
光电子技术的研究范围为光与物质中的电子相互作用及能量转换的关系以及相关技术,其主要研究内容是光源激光化、传输波导化、手段电子化、电子学理论模式以及处理方法光学化。
光电子技术研究的先后内容为首先是辐射光源(激光光源),接着是光辐射探测器(激光探测器,PN结探测器),然后是光成像系统(CCD),最后发展为现在的信息显示技术。
二、光电子技术领域的发展历史
光电子技术是继微电子技术之后近30年来迅猛发展的综合性高新技术是由光学技术和电子学技术相结合而形成的。1962年半导体激光器的诞是近代科学技术史上一个重大事件。经历十多年的初期探索,从70年代后期起随 1
着半导体光电子器件和硅基光导纤维两大基础元件在原理和制造工艺上的突破,光子技术与电子技术开始结合并形成了具有强大生命力的信息光电子技术和产业。可以说光电子学技术是电子学技术在光频波段的延伸与扩展。
其中,光电子技术领域在我国的发展如下。我国光电子技术和发展,从“六五”起步,开始发展以激光技术为主的光电子技术。1987年科技部把信息光电子列入“863”计划,给予支持,激光科学技术的研究和发展受到国家的很大重视,在国防建设和社会应用上起了重要作用。我国光电子产业的原始基础是军事光学,军用光电子学和红外技术。自60年代以来,我国依靠自己的力量,研制出“神龙”高功率激光装置,激光分离同位素装置,军用靶场激光经纬仪,激光卫星测距仪,高速摄影机,红外扫描仪等重要的军用光电子设备,并在此过程中,形成了实力雄厚的10多个光电子技术研究基地。70年代末,光纤通信的研究和开发也在我国兴起。80年代中期光盘技术和光电平面显示技术也得到发展。我国在“八五”计划期间对一些光电器件企业进行了技术改造,已在“九五”计划中产生了效益。例如,12英寸彩色液晶显示屏已经在1996年投产。国家重大成套通信设备2.5Gbps同步数字系列(SDH)光通信系统,于1997年研制开发成功,现已广泛应用于国家通信骨干网的建设。
信息光电子技术是光电子学领域中最为活跃的分支。在信息技术发展过程中,电子作为信息的载体作出了巨大的贡献。但它也在速率、容量和空间相容性等方面受到严峻的挑战。采用光子作为信息的载体,其响应速度可达到飞秒量级、比电子快三个数量级以上,加之光子的高度并行处理能力,不存在电磁串扰和路径延迟等缺点,使其具有超出电子的信息容量与处理速度的潜力。充分地综合利用电子和光子两大微观信息载体各自的优点,必将大大改善电子通信设备、电子计算机和电子仪器的性能。光通信技术是光电子技术的一个主要方面,分无线光通信和光纤通信。无线光通信技术应用于空-空,地-空,地-地光通信以及星际光通信网,主要为军用和专业用。光纤通信技术在长距离和主干线应用上已趋完善,今后光纤通信主要应用于局域网络,计算机网络和多媒体通信进入家庭。
三、光电子技术领域的现状
国外光电子元器件和系统业已形成产业。最近几年来,光纤通信发展最为迅速。激光作为一种崭新的独特的科学研究的测量手段已成为当前研究超快现象的唯一方法和研究超精细结构、光与物质相互作用过程的重要手段,激光作为一种加工工具和医疗机械已被广泛采用,促进了传统机械和医疗机械的革新。
目前,我国的光电子行业在激光、红外线、夜视、光纤、光电检测、分析测试仪器、激光加工、遥感等技术及光电子元器件方面做了大量的工作,取得了可喜的成果。现在我国已经研制、生产多种光电子器件及大型高精度光电子设备和系统。其中,有些一接近国际水平。这些光电子产品以成功的用于机械、冶金、能源、交通、通讯、电子、医疗、军事等部门,在国民经济的发展以及国防建设中发挥了重要的作用。
四、光电子技术领域的展望
1、固态化、小型化、集成化和廉价化
目前,在各类光电子器件中固态化最差的是激光器。军事上用量最大的固态激光器还使用效率较低、寿命较短的抽运灯,有时还要带一个冷却冰箱,很累赘。20世纪80年代以来,出现了可以代替抽运灯的大功率激光二极管阵列。预期在不久的将来,固态化将成为激光器的主流。
平板显示器素有“巨型微电子器件”之称。以平板显示器取代阴极射线管作为仪器设备的显示器,可以显著减小整机的体积、质量和功耗,避免电磁辐射的影响。
2、工作波段范围扩大和响应速度加快
激光器是光波段的相干辐射源,然而迄今为止,只有一些为数不多的固定波长器件和覆盖了较宽范围而功率不大的可调谐器件,不能适应不同应用对波长的需求。为了满足形形色色的使用要求,人们正在利用各种途径研制特定波长的激光器,包括探索新的激光工作介质和利用非线性光学效应产生新波段或新的可调谐波段。
光电探测器覆盖的波段已很宽,但是许多探测器响应速度还较慢,或在快响应时灵敏度变差。为此,人们正在研究快速响应单元、多元和面阵光电探测器,首先将攻克若干特定波长的快响应高灵敏度探测器以及高速CCD。
3、更加适应恶劣环境
光电子器件从实验室走向应用现场,包括工业环境、战场环境乃至太空环境,必须经受严酷的环境考验。为此,有很多工作要做。为适应高、低温环境,采用保温、恒温、散热和制冷技术;为了抗核辐射和宇宙射线辐射,采用抗辐射加固技术。此外,一些基于新的工作原理、具有更好环境适应性的光电子器件不久将会问世。
五、小结
光电子技术在当今信息时代愈发占有重要的关键地位,至今光电子技术的应用已涉及科技,经济,军事和社会发展的各领域。信息的探测,传输,存储,显示,运算和处理已由光子和电子共同参与来完成。21世纪是光电子发挥作用的时代。在这样的一个发达的、信息共享的社会中,光电子技术发挥着异常重要的作用,没有光电子技术,在今天的社会,我们是寸步难行的,我们也不会有美好的生活。在以后的社会中,光电子技术必将越来越得到普及、得到应用,必将会把我们带进一个更加神奇的世界!让我们拭目以待吧!
参考文献:
1.光电子技术的发展动态;
2.光电子技术的发展与应用;
3.光电子相关概念;
4.光电子技术发展态势分析及应用论文;
5.光电子学论文;
6.现代光电子的发展现状_特征和趋势;
7.光电子技术现状与应用前景。
第二篇:光电子总结
周口师范学院2013~2014学第二学期期末考试
《光电子学基础 》试卷
物理与机电工程学院 光电子技术科学专业 李洁 201105100039
激光器的种类和应用
激光器的种类
按功率分:超大功率、大功率、中功率、小功率激光器.按输出激光连续性状况分:连续激光器、脉冲激光器;按泵浦方法分:光泵浦激光器、电泵浦激光器等。一般按激光工作物质的类型来划分:气体.液体.固体.半导体激光器
气体激光器
以气体为工作物质的激光器。
目前应用最广泛的一类激光器:小功率He-Ne激光器,大功率二氧化碳激光器等。大多数能连续工作,激励过程中涉及能级较固定,采用气体放电中的电子碰撞激发。根据能级跃迁类型,又分为原子、离子、分子、准分子型气体激光器。
1.原子气体激光器
工作物质:中性气体原子。
典型代表:He-Ne激光器。其激活介质按He:Ne=1:10填充,氖提供激光跃迁能级
2.离子气体激光器
工作物质:离子气体。
输出波长:大多在紫外和可见光区域,输出功率比原子气体激光器高。
3.分子气体激光器
工作物质:中性气体分子的激光器。
代表: CO2激光器,其能级与分子的振动和转动有关。充气:
又可分为直流放电型、横向放电大气压(TEA)型和波导型
4.准分子激光器
工作物质:稀有气体或稀有气体与卤素气体的混合气体,液体激光器
激光工作物质:液体。
可分为无机液体激光器和有机液体激光器。染料激光器最有代表性,典型例子:若丹明6G染料激光器。
固体激光器
激光工作物质:生长期间人为掺入杂质原子的晶体。
特点:体积小,结构稳,易维护,输出功率大且适于调Q产生高功率脉冲、锁模产生超短脉冲
典型例子:红宝石激光器、Nd:YAG(掺钕的钇铝石榴石激光器)、钛蓝宝石激光器等。半导体激光器
工作物质:半导体材料(主要是化合物半导体)
泵浦:电流注入
激光器的应用
继固体激光器后, 气体激光器、化学激光器、染料激光器、原子激光器、离子激光器、半导体激光器、X 射线激光器和光纤激光器相继问世, 运用范畴也扩展到比如电子、轻工、包装、礼物、小五金工业、医疗器械、汽车、机械制作、钢铁、冶金、石油等, 为传统工业的技能改造和制作业的现代化供给领先的技能装备。
激光与通常光对比有4个特性即: 单色性(单一波长)、相干性、方向性和高光强。激光束易于传输, 其时刻特性和空间特功用够别离操控, 经集合后可得到极小的光斑, 具有极高功率密度的激光光束能够熔化、气化任何资料, 也可对资料的有些区域进行精细疾速加工。加工过程中输入工件的热量小,热影响区和热变形小;加工功率高;易于完成自动化。激光技能是一门归纳性高新技能, 触及光学、机械学、电子学等学科。一样, 激光加工设备也触及到很多学科, 因此决议了它的高科技性和高收益率。纵观世界和国内激光运用状况经过多年的研讨开发和完善, 今世的激光器和激光加工技能与设备已适当老练, 形成了系列激光加工技能。
我们来介绍激光加工技能在金属切开、焊接方面的运用状况。激光切开的特色及运用
激光切开是当时各国运用最多的激光加工技能, 在国外许多范畴, 例如, 汽车制作业和机床制作业都选用激光切开进行钣金零部件的加工。跟着大功率激光器光束质量的不断提高, 激光切开的加工目标规划将愈加广泛, 简直包含了一切的金属和非金属资料。例如能够运用激光对高硬度、高脆性、高熔点的资料进行形状杂乱的三维立体零件切开, 这也正是激光切开的优势地点。
激光切开的几项关键技能是光、机、电一体化的归纳技能。激光光束的参数、机器与数控体系的功用和精度都直接影响激光切开的功率和质量。激光切开的精准度、功率和质量因不一样的参数而改动, 如切开功率、速度、频率、资料厚度及原料等, 故操作人员的丰厚经历特别重要。
激光切开的首要长处
(1)切开质量好: 切断宽度窄,精度高、切断外表粗糙度好, 切缝通常不需求二次加工即可焊接。
(2)切开速度快, 例如选用2kW激光功率, 厚度8mm的碳钢切开速度为1.6m/min;厚度2mm的不锈钢切开速度为3.5m/min, 热影响区小, 变形极小。
(3)清洗、安全、无污染, 大大改进了操作人员的作业环境。
激光切开归于非触摸光学热加工, 被誉为“永不磨损的全能东西”。工件能够进行恣意方法的严密排料或套裁, 使原资料得到充分运用。因为对错触摸加工, 加工后的零件的歪曲表象降至最低并减少了磨损量。
其实激光切开亦有其不足之处, 就精度和切断外表粗度而言, 激光切开未能超越电加工, 就切开厚度而言难以达到火焰和等离子切开的水准。别的它亦不能像转塔冲床一样进行成型、攻牙及折边等。
激光切开的典型运用汽车范畴的运用
领先的三维激光设备, 不光能够完成车体零件的切开, 还可完成整个轿车车身全体的切开、焊接、热处理、熔覆、乃至三维丈量, 然后完成惯例加工无法完成的技能需求。德国通快公司的三维激光设备在奔、通用公司、福特公司、雷诺公司、SKODA公司、欧宝公司、SAAB公司、VOLVO公司和戴姆勒一克莱斯勒公司成功地运用多年。航空范畴的广泛运用
世界上很多的航空发动机公司选用三维激光设备进行燃烧器段的高温合金资料的切开和打孔使命, 在军用和民用航空器的铝合金资料或特别资料的激光切开都获得了成功。
2.激光焊接的特色及运用
激光焊接是一种高速度、非触摸、变形极小的焊接方法, 十分合适很多而接连的在线加工。跟着激光设备和加工技能的开展, 激光焊接才能也在不断增强。当前, 运用4kW的C02激光器焊接1mm的板材, 焊接速度高达20m/min, 例如, 汽车职业的轿车箱底的大板拼接焊接作业等。激光焊接的方法首要有传导焊和穿透焊2 种。当前全球的激光运用首要以穿透焊为主。近些年来, 高功率万瓦级激光器在机械、汽车、钢铁等工业部门获得了日益广泛的运用。
激光焊接机与其他焊接技能对比, 首要长处是:
(1)激光焊接速度快, 焊缝深宽比很大(可达5~10), 变形小。
(2)合适于精细件、箱体件和有密封需求焊接件的加工。激光束经集合后可获得很小的光斑, 能精细定位, 可运用于大批量自动化出产, 不只出产功率大大提高, 且热影响区小, 焊点无污染, 大大提高了焊接的质量。
(3)激光焊缝机械功用好, 通常焊缝的机械功用均强于母材。
激光焊接的典型运用激光焊接汽车用大板拼接的运用
为了满意汽车职业对宽幅钢板和特别功用钢板的需求, 经过激光焊接进行大板拼接, 满意汽车厂大型三维功用冲压件的需求。全球汽车制作商都已完成此类部件的激光焊接运用。例如, 奔驰、宝马、通用、丰田、欧宝SAAB、戴姆勒一克莱斯勒等很多公司都早已运用。能够把1m宽的冷轧钢板, 经过激光焊接, 拼成2m 宽的钢板。激光焊接在齿轮加工方面的运用
激光焊接齿轮的技能从根本上改动了传统的描绘和制作理念, 为齿轮箱体类部件的加工供给了非常好的经济性和更为紧凑的布局。运用激光焊接齿轮技能, 需求先加工整个环状长齿圈, 然后截成若干个齿圈, 再别离依据齿轮箱的需求焊在传动轴上
激光加工技能已在很多范畴得到广泛运用, 跟着激光加工技能、设备、技能研讨的不断深入, 将具有更宽广的运用远景。
第三篇:光电子技术
光电子技术
1.世界上第一台激光器,由修斯研究室的梅曼研制,并最终在1960年成功运转。(红宝石激光器)
2.黑体:能够完全吸收任何波长的电磁辐射。
3.跃迁:原子中的电子在特定的轨道上运动,并具有能量,各能量级能量不连续,当原子从某一能级吸收或释放了能量,转移到另一能级时,就称为跃迁。4.自发辐射:处于高能级E2上的原子自发的向低能级E1跃迁,并发射一个频率v=(E2-E1)/h的光子的过程称为自发辐射跃迁。5.受激辐射:处于高能级E2上的原子在频率为v=(E2-E1)/h的辐射场激励作用下或在频率为v=(E2-E1)/h的光子诱发下,向低能级E1跃迁并辐射出一个与激励辐射场光子或诱发光子的状态(包括频率、运动方向、相位等)完全相同的光子的过程称为受激辐射跃迁。
6.受激吸收:受激辐射的反过程为受激吸收过程,一般也称作吸收。
7.激光产生的基本原理:在受激辐射跃迁的过程中,一个诱发光子可以使处在上能级上的发光粒子产生一个与该光子状态完全相同的光子,这两个光子又可以去诱发其他发光粒子,从而产生更多状态相同的光子。必要条件:使激光工作物质处于粒子束反转状态。粒子束反转:采用诸如光照、放电等方法从外界不断地向发光物质输入能量,把处于下能级的发光粒子激发到上能级去,便可使上能级E2的粒子数密度超过下能级E1的粒子数密度的状态。此时,受激辐射大于受激吸收。
8.激光器构造:由三部分构成,包括激光工作物质(基质与激活粒子)、泵浦源(对激光工作物质进行激励)和光学谐振腔(得到稳定、持续、有一定功率的高质量激光输出)。9.激光粒子的能级系统:1三能级系统2四能级系统(P9页)
10.光学谐振腔:是常用激光器的三个主要组成部分之一。它是在激活物质两端适当位置放置两个反射镜组成。主要作用:1.提供光学正反馈作用。2.产生对振荡光束的控制作用。11.谐振腔的Q值:品质因数Q=ωW/ρ,式中ω为角频率,W为存储在谐振腔内的能量,ρ为每秒损失的能量。(P21页)12.横模:激光光束横截面上稳定的光场分布称之为横模。
13.激光纵模:激光器谐振腔内获得振荡的几种波形(波长稍微不同)沿光轴方向的分布。14.纵模的选择:1短腔法:两个相邻纵模间的频率差Δνq=νq-νq-1=c/2L’
(L’=(L-l)+nL表示谐振腔的光学长度;n晶体折射率,L物理长度,l晶体长度,c表示真空中的光速)例:在氦氖激光器中,其荧光谱线ΔνF约为1500MHZ。若激光器腔长为10cm,则纵模间隔Δνq为Δνq= c/2L’=3*108m/s /2*1*10*10-2m=1500MHZ 15.稳频技术:通常讲的频率的稳定性包括两方面:一是“稳定度”,指的是激光器在连续工作期间内它的频率该变量Δν’在振荡频率ν中所占的比例,即
Δν’/ν。二是“复现度”,指的是同样设计、同样方法制成的激光器在同样条件下使用时相互之间的频率偏差,或是在完全不同设计、和不同条件下,用相同的能级跃迁所制成的激光器,其振荡频率与与原子跃迁中心频率的偏差,如果这方面的偏差用Δν表示,则其在ν中所占比例Δν’’/ν称为复现度。
16.固体激光器:一般采用光激励(泵浦灯),其能量转换环节多,所以效率低。(光的激励能量大部分转换为热能)。气体激光器:一般采用电激励,其效率高、寿命长,长采用连续方式。
17.掺钕钇铝石榴激光器(YAG):典型的四能级系统,激光波长为1.0641μm,优点是阈值功率低,可以做成连续激光器,输出功率已达千瓦量级。激光输出为多纵模。每次脉冲
’’输出功率在几千瓦以上。
18.红宝石激光器:属于三能级激光器,是最早的一种激光器。它的效率比较低,但由于它发射694.3nm的红光且能得到相干性好的单模输出,当研究顺便过程的全息照相时,作为可见光脉冲光源是比较合适的。
19.尖峰振荡效应:不加任何特殊装置的固体脉冲激光器,在一次输出中,激光脉冲的宽度大约是ms数量级。经过仔细的观察和分析会发现,这个脉冲并不是平滑的,而是包含着很多宽度更窄的短脉冲序列。而且随着激励的增强,短脉冲的时间间隔会更小。这种现象被称做弛豫振荡效应或尖峰振荡效应。其定性解释:一个短脉冲形成和消失,可以由激光系统反转粒子数密度的增减变化来解释。造成系统反转粒子数密度增加的因素是光泵浦,其增加速率在一个短脉冲序列的消长过程中可以看成是不变的。是反转粒子数密度减少的因素是受激辐射,其减少速率则是因腔内光子数密度的多少而变化。20.调Q技术原理:初期它处于关闭状态(Q值很低),抑制受激辐射的作用,在泵浦抽运工作一段时间后,突然将Q值提高(Q开关导通),上能级粒子瞬间释放,获得高功率巨脉冲。(腔内储存的能量通过受激辐射一下释放出来,瞬间达到获得高功率巨脉冲的目的)。
21.电光调Q激光器 :(电光效应:对于某些晶体经过特殊方向的切割后,如果在某个特定的方向上外加电压,就可以通过它的线偏振光改变振动方向。)原理流程图如下(P60页)
22.声光Q开关原理:声光介质在超声波的作用下,介质的折射率会发生周期性的变化,使介质变成为正弦相位光栅,当光通过此介质时,由于衍射会造成光的偏折。如果这个装置放在激光器腔内,就会增加损耗改变腔的Q值。
其流程如下:(P61页)
23.三基色:本质是三基色具有独立性,三基色中任何一色都不能用其余两种色彩合成。三基色具有最大的混合色域,其他色彩可由三基色按一定的比例混合出来,并且混合后得到颜色数目最多。红、绿、蓝为色光三基色。为了统一认识,1931年国际照明委员会规定了三基色的波长:红光为700.0nm,绿光546.1nm,蓝光为435.8nm。
24.相加混色原理 :由两种或两种以上的色光相混合时,会同时或者在极短时间内连续刺激人的视觉器官,使人产生一种新的色彩感觉。称这种色光混合为加色混合。这种由两种以上色光相混合,呈现一种色光的方法称为色光加色法。
25.激光显示技术:分三种类型;第一种是激光阴极射线管LCRT(laser cathode tube),其基本原理是用半导体激光器代替阴极射线显像管荧光屏的一种新型显示器件;第二种是激光光阀显示,基本原理是激光束仅用来改变某些材料(如液晶等)的光学参数(如折射率或透过率)而再用另外的光源使这种光学参数变化而形成的像投射到屏幕上,从而实现图像显示;第三种是直观式(点扫描)电视激光显示,它是将经过信号调制过的RGB三色激光束直接通过机械扫描方法偏转扫描到显示屏上。
26.德国 Jenoptik 公司RGB全固态激光器光路图:Oscillator振荡器;Amplifier放大器;SHG倍频,频率增加一倍,波长减少一半;SFM和频;OPO(Optical Parametric Oscillation)光学参量振荡器;AOM(Acoustic Optical Modulator)声光调制器;KTA crystal(KTA晶体,砷酸钛氧钾);LBO晶体(三硼酸锂);流程图如下:(p113页)
27.光电探测器的物理效应:通常分为两大类:光子效应和光热效应。光子效应:指单个光子的性质对产生的光电子起直接作用的一类光电效应,对光波频率表现出选择性,在光子直接与电子相互作用的情况下,其影响速度一般比较快。(光电效应:在光的照射下,某些物质内部的电子会被光子激发出来而形成电流。)光热效应:指材料收到光照射后,光子能量与晶格相互作用,振动加剧,温度升高,由于温度的变化而造成物质的电学特性变化。
28.光电发射效应:在光照下,物体向表面以外的空间发射电子(即光电子)的现象,称为光电发射效应。爱因斯坦方程:Ek=hυ—Eψ,Ek=mv/2是电子离开发射体表面时的动能;m是电子质量;v是电子离开时的速度;hυ是光子能量,Eψ是光电发射体的功率函数。光电发射效应发生的条件:υ≥Eψ/h≡υc(入射光波的截止频率),或用波长表示时:λ≤hc/ Eψ≡λc(截止波长)。
29.光电导效应:在光线作用下,对于半导体材料电导率吸收了入射光子能量,若光子能量大于或等于半导体材料的禁带宽度,就激发出电子空穴对,使载流子浓度增加,半导体的导电性增加,阻值降低,这种现象称为光电导效应。(P148页)30.光伏效应:如果光导现象是半导体的材料的体效应,那么光伏现象则是半导体材料的“结”
效应。当照射光激发出电子-空穴对时,电势垒的内建电场将把电子-空穴对分开,从而在势垒两侧形成电荷堆积,形成光生伏特效应。(光照零偏PN结产生开路电压的效应,又称光伏效应。)31.温差电效应:当两种不同的配偶材料(可以是金属或半导体)两端并联熔接时,如果两个接头的温度不同,并联回路中就产生电动势,称为温差电动势,回路中就有电流流通。如果把冷端分开并与一个电流表连接,那么当光照熔接端时,熔接端吸收光能使其温度升高,电流表就有相应的电流读数,电流的数值间接反映了光照能量的大小。——用热电偶来探测光能的原理。
232.热释电效应:当强度变化的光打到晶体上,引起材料温度变化——电极化强度发生变化——面电荷发生变化——产生热释电电流。压电晶体:发生压电效应的晶体。压电效应:某些晶体在特定的方向上施加外力,那么就会在某两个表面产生面电荷,当外力消失,晶体回到不带电。
33.量子效率η:灵敏度R从宏观描述了光电探测器的光电、光谱以及频率特性,量子效率则是对同一问题的微观-宏观描述。
η=hυRi/e(Ri电流的灵敏度),光谱量子效率
:ηλ =hcRiλ/eλ
(c是材料的光速)34.归一化探测度D*:
D*大的探测器其探测能力一定好。
35.光电导探测器——光敏电阻:利用光电导效应而工作的探测器。光电导效应是半导体材料的一种体效应,无需形成PN结,故又常称为无结光电探测器。这种元件在光照下会改变自身的电阻率,光照愈强,元件自身的电阻率愈小,因此常常又称光敏电阻或光导管。本征型光敏电阻一般在室温下工作,适用于可见光和近红外辐射探测;非本征型光敏电阻通常必须在低温条件下工作,常用于中、远外辐射探测。由于光敏电阻没有极性,只要把它当做电阻值随光照强度而变化的可变电阻器对待即可,因此在电子电路、仪器仪表、光电控制、计量分析、光电制导、激光外差探测等领域获得了十分广泛的应用。常见的光敏电阻有CdS、CdSe、PbS以及TeCdHg等。其中CdS是工业上应用最多的,而PbS主要用于军事装备。
36.光频外差探测技术:原理:基于两束相干光在探测器光敏面上的相干效应。故也常称为光波的相干探测。相干光:振动方向相同,振动频率相同,相位相同或相位差保持恒定。37.曼莱-罗威关系:公式(P307页)
相互作用中三个光电场光子数的变化关系:ω1和ω3的光子数之和及ω2和ω3的光子数之和在非线性过程中始终保持不变。ω1与ω2光子数之差保持不变。如果频率为ω1与ω2的两个光子同时湮灭,可以产生频率为ω3的一个光子,这就是和频与倍频的情况。反过来ω3光子湮灭,同时产生两个频率为ω1与ω2的光子,这就是参量产生的过程。
38.相位匹配技术:为有效的进行非线性光学频率变换,必须使参与互作用的光波在介质中传播时具有相同的相速度。实现有效频率变换的方法之一是相位匹配技术,利用非线性晶体的双折射与色散特性达到相位匹配。39.单轴晶体的相位匹配条件及匹配角:(折射率)负单轴晶体——n0>ne。正单轴晶体——ne>n0.40.二次谐波的产生:能量守恒和动量守恒(P314页)
41.参量振荡器:光学参量振荡器(OPO)是利用非线性晶体的混频特性来实现频率变换的器件,其中有一个或两个光波具有振荡特性,具有谐振腔。具有调谐范围宽、结构简单及工作可靠等特性。光学参量放大的原理:实质上是一个差频产生的三波混频过程。由曼莱-罗威关系可知,在差频过程中,每湮灭一个最高频率的光子,同时要产生两个低频光子,在此过程中这两个低频获得增益,因此光学参量放大器可作为他们的放大器。如果将非线性晶体置于谐振腔中,并用强的泵浦光照射,当增益超过损耗时,在腔内可以从噪声中建立起相当强的信号光及空闲光。在光学参量振荡器中建立起来的两种频率的光波,任何一个光波都可以称为信号光或者空闲光。
42.参量振荡器的阈值:判断阈值与什么参量有关系?(P331页公式)
式中,k=
;gs为模耦合系数;l为有效参量增益长度;τ为1/e处脉冲半宽度;L=L’+(n-1)l;L’为OPO腔长;l为非线性晶体长度;n为信号输出 100μJ时(定义为阈值临界状态)腔内振荡次数;Pn为阈值处信号波能量;P0为参量量子噪声能量;a为参量光在介质中的场吸收系数;R为腔内各种损耗的总和。
43.光的干涉:用波的叠加而引起强度从新分配的现象。三个必要条件:频率相等,两束光存在相互平行的振动分量,位相差δ(P)恒定。
第四篇:先进制造技术领域
附件7 “十二五”国家科技计划先进制造技术领域
2012预备项目征集指南
为深入贯彻《国家中长期科学和技术发展规划纲要(2006-2020年)》、科技发展“十二五”规划和国家科技计划管理改革的总体精神,促进科技支撑传统制造业转型和战略性新兴产业的发展,有效地组织实施“十二五”先进制造技术领域国家科技计划,做好2012年先进制造技术领域预备项目库建设工作,特制定本指南。
一、指南内容
(一)基础研究
1、绿色制造基础理论与共性技术(1)绿色制造基础理论
(2)产品寿命预测与安全服役基础理论
2、智能制造
(3)智能装备产品创新设计理论(4)精密与超精密加工技术
3、服务机器人
(5)仿生材料与结构一体化设计(6)高功率密度能源动力理论
(7)脑生肌电认知与智能假肢控制理论
(二)前沿技术研究
1、绿色制造
(1)绿色制造基础数据库与标准
(2)基于全生命周期的产品设计工具应用(3)绿色生产工艺关键技术与装备(4)制造过程碳效优化技术
(5)产品寿命预测与安全服役关键技术(6)低碳烯烃及衍生物关键工艺、技术及装备
2、智能制造
(7)微纳制造技术与应用
(8)基于系统与装备功能安全的新型控制系统(9)箱体类精密工作母机(10)新型太阳能产品制造成套装备(11)半导体照明产品制造成套装备(12)智能化工程机械成套装备(13)高端传感器、仪器仪表
3、服务机器人(14)仿人机器人
(15)机器人模块化、网络化技术、平台、标准与测试规范
4、面向制造业的核心软件产品开发(16)产品设计平台技术与系统(17)制造过程平台技术与系统(18)经营管理平台技术与系统
(19)复杂产品全生命周期监测与服务支持系统
(三)应用开发及集成示范
1、绿色制造
(1)行业、区域绿色制造产业应用示范
2、智能制造
(2)高端制造装备重点行业技术集成与应用示范(3)支撑区域支柱产业发展的装备与自动化生产线
3、服务机器人
(4)公共安全与救援机器人(5)医疗机器人
4、制造业信息化
(6)集团企业数字化应用示范(7)中小企业服务支撑平台开发与应用(8)RFID技术开发与系统集成应用(9)制造过程物联网关键技术与应用
(10)支撑行业、地方支柱产业的制造业信息化综合应用示范
5、机械产品数控化
(11)数控机械设备生产工艺技术及应用
(12)机械设备专用数控系统与驱动装置的研发及应用
(13)机床、纺织、建材、印刷、包装、木工机械行业设备数控化应用示范(包括服务平台、培训平台和标准体系)(14)数控机械设备产业集群区域应用示范
二、具体要求
(一)指南发布
预备项目推荐工作自本通知发布之日起开始,指南可从科技部网站(http://www.xiexiebang.com
第五篇:高新技术领域目录
国家重点支持的高新技术领域目录
一、电子信息技术
(一)软件
1、系统软件
2、支撑软件
3、中间件软件
4、嵌入式软件
5、计算机辅助工程管理软件
6、中文及多语种处理软件
7、图形和图像软件
8、金融信息化软件
9、地理信息系统
10、电子商务软件
11、电子政务软件
12、企业管理软件
(二)微电子技术
1、集成电路设计技术
2、集成电路产品设计技术
3、集成电路封装技术
4、集成电路测试技术
5、集成电路芯片制造技术
6、集成光电子器件技术
(三)计算机及网络技术
1、计算机及终端技术
2、各类计算机外围设备技术
3、网络技术
4、空间信息获取及综合应用集成系统
5、面向行业及企业信息化的应用系统
6、传感器网络节点、软件和系统
(四)通信技术
1、光传输技术
2、小型接入设备技术
3、无线接入技术
4、移动通信系统的配套技术
5、软交换和VoIP系统
6、业务运营支撑管理系统
7、电信网络增值业务应用系统
(五)广播电视技术
1、演播室设备技术
2、交互信息处理系统
3、信息保护系统
4、数字地面电视技术
5、地面无线数字广播电视技术
6、专业音视频信息处理系统
7、光发射、接收技术
8、电台、电视台自动化技术
9、网络运营综合管理系统
10、IPTV技术
11、高端个人媒体信息服务平台
(六)新型电子元器件
1、半导体发光技术
2、片式和集成无源元件技术
3、片式半导体器件技术
4、中高档机电组件技术
(七)信息安全技术
1、安全测评类
2、安全管理类
3、安全应用类
4、安全基础类
5、网络安全类
6、专用安全类
(八)智能交通技术
1、先进的交通管理和控制技术
2、交通基础信息采集、处理设备及相关软件技术
3、先进的公共交通管理设备和系统技术
4、车载电子设备和系统技术`
二、生物与新医药技术
(一)医药生物技术
1、新型疫苗
2、基因工程药物
3、重大疾病的基因治疗
4、单克隆抗体系列产品与检测试剂
5、蛋白质/多肽/核酸类药物
6、生物芯片
7、生物技术加工天然药物
8、生物分离、装置、试剂及相关检测试剂
9、新生物技术
(二)中药、天然药物
1、创新药物
2、中药新品种的开发
3、中药资源可持续利用
(三)化学药
1、创新药物
2、心脑血管疾病治疗药物
3、抗肿瘤药物
4、抗感染药物(包括抗细菌、抗真菌、抗原虫药等)
5、老年病治疗药物
6、精神神经系统药物
7、计划生育药物
8、重大传染病治疗药物
9、治疗代谢综合症的药物
10、罕见病用药(Orphan Drugs)及诊断用药
11、手性药物和重大工艺创新的药物及药物中间体
(四)新剂型及制剂技术
1、缓、控、速释制剂技术——固体、液体及复方
2、靶向给药系统
3、给药新技术及药物新剂型
4、制剂新辅料
(五)医疗仪器技术、设备与医学专用软件
1、医学影像技术
2、治疗、急救及康复技术
3、电生理检测、监护技术
4、医学检验技术
5、医学专用网络环境下的软件
(六)轻工和化工生物技术
1、生物催化技术
2、微生物发酵新技术
3、新型、高效工业酶制剂
4、天然产物有效成份的分离提取技术
5、生物反应及分离技术
6、功能性食品及生物技术在食品安全领域的应用
(七)现代农业技术
1、农林植物优良新品种与优质高效安全生产技术
2、畜禽水产优良新品种与健康养殖技术
3、重大农林植物灾害与动物疫病防控技术
4、农产品精深加工与现代储运
5、现代农业装备与信息化技术
6、水资源可持续利用与节水农业
7、农业生物技术
三、航空航天技术
1、民用飞机技术
2、空中管制系统
3、新一代民用航空运行保障系统
4、卫星通信应用系统
5、卫星导航应用服务系统
四、新材料技术
(一)金属材料
1、铝、镁、钛轻合金材料深加工技术
2、高性能金属材料及特殊合金材料生产技术
3、超细及纳米粉体及粉末冶金新材料工艺技术
4、低成本、高性能金属复合材料加工成型技术
5、电子元器件用金属功能材料制造技术
6、半导体材料生产技术
7、低成本超导材料实用化技术
8、特殊功能有色金属材料及应用技术
9、高性能稀土功能材料及其应用技术
10、金属及非金属材料先进制备、加工和成型技术
(二)无机非金属材料
1、高性能结构陶瓷强化增韧技术
2、高性能功能陶瓷制造技术
3、人工晶体生长技术
4、功能玻璃制造技术
5、节能与环保用新型无机非金属材料制造技术
(三)高分子材料
1、高性能高分子结构材料的制备技术
2、新型高分子功能材料的制备及应用技术
3、高分子材料的低成本、高性能化技术
4、新型橡胶的合成技术及橡胶新材料
5、新型纤维材料
6、环境友好型高分子材料的制备技术及高分子材料的循环再利用技术
7、高分子材料的加工应用技术
(四)生物医用材料
1、介入治疗器具材料
2、心血管外科用新型生物材料及产品
3、骨科内置物
4、口腔材料
5、组织工程用材料及产品
6、载体材料、控释系统用材料
7、专用手术器械及材料
(五)精细化学品
1、电子化学品
2、新型催化剂技术
3、新型橡塑助剂技术
4、超细功能材料技术
5、功能精细化学品
五、高技术服务业
1、共性技术
2、现代物流
3、集成电路
4、业务流程外包(BPO)
5、文化创意产业支撑技术
6、公共服务
7、技术咨询服务
8、精密复杂模具设计
9、生物医药技术
10、工业设计
六、新能源及节能技术
(一)可再生清洁能源技术
1、太阳能
2、风能
3、生物质能
4、地热能利用
(二)核能及氢能
1、核能技术
2、氢能技术
(三)新型高效能量转换与储存技术
1、新型动力电池(组)、高性能电池(组)
2、燃料电池、热电转换技术
(四)高效节能技术
1、钢铁企业低热值煤气发电技术
2、蓄热式燃烧技术
3、低温余热发电技术
4、废弃燃气发电技术
5、蒸汽余压、余热、余能回收利用技术
6、输配电系统优化技术
7、高泵热泵技术
8、蓄冷蓄热技术
9、能源系统管理、优化与控制技术
10、节能监测技术
11、节能量检测与节能效果确认技术
七、资源与环境技术
(一)水污染控制技术
1、城镇污水处理技术
2、工业废水处理技术
3、城市和工业节水和废水资源化技术
4、面源水污染的控制技术
5、雨水、海水、苦咸水利用技术
6、饮用水安全保障技术
(二)大气污染控制技术
1、煤燃烧污染防治技术
2、机动车排放控制技术
3、工业可挥发性有机污染物防治技术
4、局部环境空气质量提高与污染防治技术
5、其他重污染行业空气污染防治技术
(三)固体废弃物的处理与综合利用技术
1、危险固体废弃物的处置技术
2、工业固体废弃物的资源综合利用技术
3、有机固体废物的处理和资源化技术
(四)环境监测技术
1、在线连续自动监测技术
2、应急监测技术
3、生态环境监测技术
(五)生态环境建设与保护技术
(六)清洁生产与循环经济技术
1、重点行业污染减排和“零排放”关键技术
2、污水和固体废物回收利用技术
3、清洁生产关键技术
4、绿色制造关键技术
(七)资源高效开发与综合利用技术
1、提高资源回收利用率的采矿、选矿技术
2、共、伴生矿产的分选提取技术
3、极低品位资源和尾矿资源综合利用技术
八、高新技术改造传统产业
(一)工业生产过程控制系统
1、现场总线及工业以太网技术
2、可编程序控制器(PLC)
3、基于PC的控制系统
4、新一代的工业控制计算机
(二)高性能、智能化仪器仪表
1、新型自动化仪表技术
2、面向行业的传感器技术
3、新型传感器技术
4、科学分析仪器、检测仪器技术
5、精确制造中的测控仪器技术
(三)先进制造技术
1、先进制造系统及数控加工技术
2、机器人技术
3、激光加工技术
4、电力电子技术
5、纺织及轻工行业专用设备技术
(四)新型机械
1、机械基础件及模具技术
2、通用机械和新型机械
(五)电力系统信息化与自动化技术
1、采用新型原理、新型元器件的电力自动化装置
2、采用数字化、信息化技术,提高设备性能及自动化水平的技术
3、电力系统应用软件
4、用于输配电系统和企业的新型节电装置
(六)汽车行业相关技术
1、汽车发动机零部件技术
2、汽车关键零部件技术
3、汽车电子技术
4、汽车零部件前端技术