南京工业大学 材料现代测试方法 刘云飞 李晓云 现代材料分析方法试题55则范文

时间:2019-05-12 20:49:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《南京工业大学 材料现代测试方法 刘云飞 李晓云 现代材料分析方法试题5》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《南京工业大学 材料现代测试方法 刘云飞 李晓云 现代材料分析方法试题5》。

第一篇:南京工业大学 材料现代测试方法 刘云飞 李晓云 现代材料分析方法试题5

一、名词解释(10分 每小题2分)

1.X射线光电效应:当X射线的波长足够短时,起光子的能量就很大,以至能把原子中处于某一能级

上的电子打出来,而它本身则被吸收。它的能量就传递给该电子了,使之成为具有一定能量的光电子,并使原子处于高能的激发态。这种过程我们称之为光电吸收或光电效应

2.衍射角:入射线与衍射线的交角。

3.背散射电子:电子射入试样后,受到原子的弹性和非弹性散射,有一部分电子的总散射角大于90o,重

新从试样表面逸出,称为背散射电子。

4.磁透镜:产生旋转对称磁场的线圈装置称为磁透镜。

5.差热分析:把试样和参比物置于相等的加热条件下,测定两者的温度差对温度或时间作图的方法。记录曲线称为差热曲线。

二、填空(每题2分,共10分)

1.X射线管中,焦点形状可分为 点焦点和线焦点,适合于衍射仪工作的是 线焦点。

2.X射线衍射方法有 劳厄法、转动晶体法、粉晶法和衍射仪法。

3.TEM的分辨率是 0.104—0.25 nm,放大倍数是100—80万倍;SEM的分辨率是 3—6 nm,放大倍数是 15—30万 倍。

4.解释扫描电子显微像镜的衬度有 形貌衬度、原子序数衬度 和 电压衬度 三种衬度。

5.XRD是X 射线衍射分析,TEM 是透射电子显微分析,SEM 是扫描电子显微分析。EPMA 是电子探针分析

6.光电子能谱是在近十多年才发展起来的一种研究物质表面的 性质和状态的新型物理方法。

三、问答题(42分)

1.X射线衍射的几何条件是d、θ、λ必须满足什么公式?写出数学表达式,并说明d、θ、λ 的意义。(5分)

答:X射线衍射的几何条件是d、θ、λ必须满足布拉格公式。其数学表达式:2dsinθ=λ(2dsinθ=nλ)

其中d是晶体的晶面间距。θ是布拉格角,即入射线与晶面间的交角。λ是入射X射线的波长。

2.画图说明半高宽中点法确定衍射峰位的方法(5分)

答: 先连接衍射峰两边的背底ab,从强度极大点P作PP’,交ab于P’点,PP’的中点O’即是峰高一半点。过O’

作ab的平行线与衍射峰交于M和N点,MN中点O的角位置即定作峰位。

3.扫描电镜的特点?(7分)

答:(1)可以观察直径为10—30mm的大块试样,制样方法简单。(1分)

(2)场深大,适用于粗糙表面和断口的分析观察,图像富有立体感真实感。(1分)

(3)放大倍数变化范围大,15~300000倍。(1分)

(4)分辨率3~6nm。透射电镜的分辨率虽然高,但对样品厚度的要求十分苛刻,且观察的区域小。

(5)可以通过电子学方法有效地控制和改善图像的质量。(1分)

(6)可进行多种功能的分析。观察阴极荧光图像和进行阴极荧光光谱分析。(1分)

(7)可使用加热、冷却和拉伸等样品台进行动态试验,观察各种环境条件下的项变及形态变化等。

4.在透射电子显微分析中,电子图像的衬度有哪几种?分别适用于哪种试样和成像方法?

答:质厚衬度、衍射衬度和相位衬度(1分)

质厚衬度:适用于非晶体薄膜和复形膜试样所成图象的解释(1分)

衍射衬度和相位衬度:适用于晶体薄膜试样所成图象的解释(1分)

5.差热分析中对参比物有哪些要求?常用什么物质作参比物?(5分)

答;掺比物的要求:

(1).在整个测温范围内无热效应。(1分)

(2).比热和导热性能与试样接近。(1分)

(3).粒度与试样相近(约50~150µm)。(1分)

掺比物常用物质:α-Al2O3(1720K煅烧过的高纯Al2O3粉)(2分)

6.红外光谱分析主要用于哪几方面、哪些领域的研究和分析?红外光谱法有什么特点?(5分)答:红外光谱主要用于(1).化学组成和物相分析,(2).分子结构研究。(2分)

应用领域:较多的应用于有机化学领域,对于无机化合物和矿物的鉴定开始较晚。(1分)

红外光谱法的特点:(1).特征性高;(2).不受物质的物理状态限制;(3).测定所需样品数量少,几克甚至几毫克;(4).操作方便,测定速度快,重复性好;(5).已有的标准图谱较多,便于查阅。

四、论述题(10分)

你认为“电子显微分析只能观察显微形貌”这种说法对吗?论述电子显微分析可对无机非金属材料进行哪些方面的分

析?电子显微分析有什么特点?

答:(答题要点)

“电子显微分析只能观察显微形貌”这种说法是不对的。(1分)

电子显微分析还可对无机非金属材料进行以下方面的分析:(4分)

(1).形貌观察:颗粒(晶粒)形貌、表面形貌。

(2).晶界、位错及其它缺陷的观察。

(3).物相分析:选区、微区物相分析,与形貌观察相结合,得到物相大小、形态和分布信息。

(4).晶体结构和取向分析。

电子显微分析有以下特点:(5分)

(1)分辨率高:0.2~0.3nm

(2)放大倍数高:20倍~80万倍

(3)是选区、微区分析方法:可进行纳米尺度的晶体结构和化学成分分析

(4)多功能、综合性分析:形貌、成分和结构分析

五、应用题(共10分)

TiO2有金红石和锐钛矿两种晶型,用溶胶-凝胶法制备TiO2纳米晶,经600℃煅烧后得到白色粉体。现要分析粉体的物相和粒度大小,请说明用什么分析方法?并简要说明分析过程。

答:物相分析:1.用X射线衍射进行物相分析2.用电子衍射进行物相分析

粒度分析:1.电镜(透射、扫描)2.谢乐公式计算

第二篇:材料现代分析测试方法

一、名词解释(共有20分,每小题2分。)

1.辐射的发射:指物质吸收能量后产生电磁辐射的现象。

2.俄歇电子:X射线或电子束激发固体中原子内层电子使原子电离,此时原子(实际是离子)处于激发

态,将发生较外层电子向空位跃迁以降低原子能量的过程,此过程发射的电子。

3.背散射电子:入射电子与固体作用后又离开固体的电子。

4.溅射:入射离子轰击固体时,当表面原子获得足够的动量和能量背离表面运动时,就引起表面粒

子(原子、离子、原子团等)的发射,这种现象称为溅射。

5.物相鉴定:指确定材料(样品)由哪些相组成。

6.电子透镜:能使电子束聚焦的装置。

7.质厚衬度:样品上的不同微区无论是质量还是厚度的差别,均可引起相应区域透射电子强度的改

变,从而在图像上形成亮暗不同的 区域,这一现象称为质厚衬度。

最大)向短波方8.蓝移:当有机化合物的结构发生变化时,其吸收带的最大吸收峰波长或位置(向移动,这种现象称为蓝移(或紫移,或“向蓝”)。

9.伸缩振动:键长变化而键角不变的振动,可分为对称伸缩振动和反对称伸缩振动。

10.差热分析:指在程序控制温度条件下,测量样品与参比物的温度差随温度或时间变化的函数关系的技术。

二、填空题(共20分,每小题2分。)

1.电磁波谱可分为三个部分,即长波部分、中间部分和短波部分,其中中间部分包括(红外线)、(可见光)和(紫外线),统称为光学光谱。

2.光谱分析方法是基于电磁辐射与材料相互作用产生的特征光谱波长与强度进行材料分析的方法。

光谱按强度对波长的分布(曲线)特点(或按胶片记录的光谱表观形态)可分为(连续)光谱、(带状)光谱和(线状)光谱3类。

3.分子散射是入射线与线度即尺寸大小远小于其波长的分子或分子聚集体相互作用而产生的散射。

分子散射包括(瑞利散射)与(拉曼散射)两种。

4.X射线照射固体物质(样品),可能发生的相互作用主要有二次电子、背散射电子、特征X射线、俄

歇电子、吸收电子、透射电子

5.多晶体(粉晶)X射线衍射分析的基本方法为(照相法)和(X射线衍射仪法)。

6.依据入射电子的能量大小,电子衍射可分为(高能)电子衍射和(低能)电子衍射。依据

电子束是否穿透样品,电子衍射可分为(投射式)电子衍射与(反射式)电子衍射。

2≠0)。F7.衍射产生的充分必要条件是((衍射矢量方程或其它等效形式)加

8.透射电镜的样品可分为(直接)样品和(间接)样品。

9.单晶电子衍射花样标定的主要方法有(尝试核算法)和(标准花样对照法)。

10.扫描隧道显微镜、透射电镜、X射线光电子能谱、差热分析的英文字母缩写分别是(stm)、(tem)、(xps)、(DTA)。

11.X 射线衍射方法有、、和。

12.扫描仪的工作方式有 和 两种。

13.在 X 射线衍射物相分析中,粉末衍射卡组是由 委员会编制,称为 JCPDS 卡片,又称为 PDF 卡片。

14.电磁透镜的像差有、、和。

15.透射电子显微镜的结构分为。

16.影响差热曲线的因素有、、和。

三、判断题,表述对的在括号里打“√”,错的打“×”(共10分,每小题1分)

1.干涉指数是对晶面空间方位与晶面间距的标识。晶面间距为d110/2的晶面其干涉指数为(220)。

(√)

2.倒易矢量r*HKL的基本性质为:r*HKL垂直于正点阵中相应的(HKL)晶面,其长度r*HKL等于(HKL)之

晶面间距dHKL的2倍。(×)倒数

3.分子的转动光谱是带状光谱。(×)线状光谱

4.二次电子像的分辨率比背散射电子像的分辨率低。(×)高

5.一束X射线照射一个原子列(一维晶体),只有镜面反射方向上才有可能产生衍射。(×)

6.俄歇电子能谱不能分析固体表面的H和He。(√)

7.低能电子衍射(LEED)不适合分析绝缘固体样品的表面结构。(√)

8.d-d跃迁受配位体场强度大小的影响很大,而f-f跃迁受配位体场强度大小的影响很小。(√)

9.红外辐射与物质相互作用产生红外吸收光谱必须有分子极化率的变化。(×)

10.样品粒度和气氛对差热曲线没有影响。(×)

四、单项选择题(共10分,每小题1分。)

1.原子吸收光谱是(A)。

A、线状光谱 B、带状光谱 C、连续光谱

2.下列方法中,(A)可用于测定方解石的点阵常数。

A、X射线衍射线分析 B、红外光谱 C、原子吸收光谱 D 紫外光谱子能谱

m)的物相鉴定,可以选择(D)。3.合金钢薄膜中极小弥散颗粒(直径远小于

1A、X射线衍射线分析 B、紫外可见吸收光谱 C、差热分析 D、多功能透射电镜

4.几种高聚物组成之混合物的定性分析与定量分析,可以选择(A)。

A、红外光谱 B、俄歇电子能谱 C、扫描电镜 D、扫描隧道显微镜

5.下列(B)晶面不属于[100]晶带。

A、(001)B、(100)C、(010)D、(001)

6.某半导体的表面能带结构测定,可以选择(D)。

A、红外光谱 B、透射电镜 C、X射线光电子能谱 D 紫外光电子能谱

7.要分析钢中碳化物成分和基体中碳含量,一般应选用(A)电子探针仪,A、波谱仪型 B、能谱仪型

8.要测定聚合物的熔点,可以选择(C)。

A、红外光谱 B、紫外可见光谱 C、差热分析 D、X射线衍射

9.下列分析方法中,(A)不能分析水泥原料的化学组成。

A、红外光谱 B、X射线荧光光谱 C、等离子体发射光谱 D、原子吸收光谱

10.要分析陶瓷原料的矿物组成,优先选择(C)。

A、原子吸收光谱 B、原子荧光光谱 C、X射线衍射 D、透射电镜

11.成分和价键分析手段包括【 b 】

(a)WDS、能谱仪(EDS)和 XRD(b)WDS、EDS 和 XPS

(c)TEM、WDS 和 XPS(d)XRD、FTIR 和 Raman

12.分子结构分析手段包括【 a 】

(a)拉曼光谱(Raman)、核磁共振(NMR)和傅立叶变换红外光谱(FTIR)(b)NMR、FTIR 和 WDS

(c)SEM、TEM 和 STEM(扫描透射电镜)(d)XRD、FTIR 和 Raman

13.表面形貌分析的手段包括【 d 】

(a)X 射线衍射(XRD)和扫描电镜(SEM)(b)SEM 和透射电镜(TEM)(c)波谱仪(WDS)和 X 射线光电子谱仪(XPS)(d)扫描隧道显微镜(STM)和

SEM

14.透射电镜的两种主要功能:【 b 】

(a)表面形貌和晶体结构(b)内部组织和晶体结构

(c)表面形貌和成分价键(d)内部组织和成分价键

五、简答题(共40分,每小题8分)

答题要点:

1.简述分子能级跃迁的类型,比较紫外可见光谱与红外光谱的特点。

答:分子能级跃迁的类型主要有分子电子能级的跃迁、振动能级的跃迁和转动能级的跃迁。紫外可见光谱是基于分子外层电子能级的跃迁而产生的吸收光谱,由于电子能级间隔比较大,在产生电子能级跃迁的同时,伴随着振动和转动能级的跃迁,因此它是带状光谱,吸收谱带(峰)宽缓。而红外光谱是基于分子振动和转动能级跃迁产生的吸收光谱。一般的中红外光谱是振-转光谱,是带状光谱,而纯的转动光谱处于远红外区,是线状光谱。

2.简述布拉格方程及其意义。)的相互关系,是X射线衍射产生的必要条件,是晶体结构分析的基本方程。)和波长()与反射晶面面间距(d)及入射线方位(。其意义在于布拉格方程表达了反射线空间方位(=为X射线的波长。干涉指数表示的布拉格方程为2dHKLsin为掠射角或布拉格角,,式中d为(hkl)晶面间距,n为任意整数,称反射级数,=n答:晶面指数表示的布拉格方程为2dhklsin

3.为什么说扫描电镜的分辨率和信号的种类有关?试将各种信号的分辨率高低作一比较。

二次电子像(几nm,与扫描电子束斑直径相当)答:扫描电镜的分辨率和信号的种类有关,这是因为不同信号的性质和来源不同,作用的深度和范围不同。主要信号图像分辨率的高低顺为:扫描透射电子像(与扫描电子束斑直径相当)>背散射电子像(50-200nm)> 特征X射图像(100nm-1000nm)。吸收电流像

4.要在观察断口形貌的同时,分析断口上粒状夹杂物的化学成分,选择什么仪器?简述具体的分析方

法。

答:要在观察断口形貌的同时,分析断口上粒状夹杂物的化学成分,应选用配置有波谱仪或能谱仪的扫描电镜。具体的操作分析方法是:先扫描不同放大倍数的二次电子像,观察断口的微观形貌特征,选择并圈定断口上的粒状夹杂物,然后用波谱仪或能谱仪定点分析其化学成分(确定元素的种类和含量)。

5.简述影响红外吸收谱带的主要因素。

答:红外吸收光谱峰位影响因素是多方面的。一个特定的基团或化学键只有在和周围环境完全没有力学或电学偶合的情况下,它的键力常数k值才固定不变。一切能引起k值改变的因素都会影响峰位变化。归纳起来有:诱导效应、共轭效应、键应力的影响、氢键的影响、偶合效应、物态变化的影响等。

6.透射电镜主要由几大系统构成? 各系统之间关系如何?

答:四大系统:电子光学系统,真空系统,供电控制系统,附加仪器系统。

其中电子光学系统是其核心。其他系统为辅助系统。

7.透射电镜中有哪些主要光阑? 分别安装在什么位置? 其作用如何?

答:主要有三种光阑:

①聚光镜光阑。在双聚光镜系统中,该光阑装在第二聚光镜下方。作用:限制照明孔径角。

②物镜光阑。安装在物镜后焦面。作用: 提高像衬度;减小孔径角,从而减小像差;进行暗场成像。

③选区光阑:放在物镜的像平面位置。作用: 对样品进行微区衍射分析。

8.什么是消光距离? 影响晶体消光距离的主要物性参数和外界条件是什么?

答:消光距离:由于透射波和衍射波强烈的动力学相互作用结果,使I0和Ig在晶体深度方向上发生周期性的振荡,此振荡的深度周期叫消光距离。

影响因素:晶胞体积,结构因子,Bragg角,电子波长。

第三篇:2016《材料现代分析测试方法》复习题

《近代材料测试方法》复习题

1. 材料微观结构和成分分析可以分为哪几个层次?分别可以用什么方法分析?

答:化学成分分析、晶体结构分析和显微结构分析

化学成分分析——常规方法(平均成分):湿化学法、光谱分析法

——先进方法(种类、浓度、价态、分布):X射线荧光光谱、电子探针、光电子能谱、俄歇电子能谱 晶体结构分析:X射线衍射、电子衍射

显微结构分析:光学显微镜、透射电子显微镜、扫面电子显微镜、扫面隧道显微镜、原

子力显微镜、场离子显微镜

2. X射线与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用?

答: 除贯穿部分的光束外,射线能量损失在与物质作用过程之中,基本上可以归为两大类:一部分可能变成次级或更高次的X射线,即所谓荧光X射线,同时,激发出光电子或俄歇电子。另一部分消耗在X射线的散射之中,包括相干散射和非相干散射。此外,它还能变成热量逸出。

(1)现象/现象:散射X射线(想干、非相干)、荧光X射线、透射X射线、俄歇效

应、光电子、热能

(2)①光电效应:当入射X射线光子能量等于某一阈值,可击出原子内层电子,产 生光电效应。

应用:光电效应产生光电子,是X射线光电子能谱分析的技术基础。光电效应

使原子产生空位后的退激发过程产生俄歇电子或X射线荧光辐射是 X射线激发俄歇能谱分析和X射线荧光分析方法的技术基础。

②二次特征辐射(X射线荧光辐射):当高能X射线光子击出被照射物质原子的 内层电子后,较外层电子填其空位而产生了次生特征X射线(称二次特征辐射)。

应用:X射线被物质散射时,产生两种现象:相干散射和非相干散射。相干散射

是X射线衍射分析方法的基础。

3. 电子与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用?

答:当电子束入射到固体样品时,入射电子和样品物质将发生强烈的相互作用,发生弹性散射和非弹性散射。伴随着散射过程,相互作用的区域中将产生多种与样品性质有关的物理信息。

(1)现象/规律:二次电子、背散射电子、吸收电子、透射电子、俄歇电子、特征X射

线

(2)获得不同的显微图像或有关试样化学成分和电子结构的谱学信息 4. 光电效应、荧光辐射、特征辐射、俄歇效应,荧光产率与俄歇电子产率。特征X射线产生机理。

光电效应:当入射X射线光子能量等于某一阈值,可击出原子内层电子,产生光电效应。荧光辐射:被打掉了内层电子的受激原子,将发生外层电子向内层跃迁的过程,同时辐射出

波长严格一定的特征X射线。这种利用X射线激发而产生的特征辐射为二次特

征辐射,也称为荧光辐射。特征辐射:

俄歇效应:原子K层电子被击出,L层电子向K层跃迁,其能量差被邻近电子或较外层电

子所吸收,使之受激发而成为自由电子。这种过程就是俄歇效应,这个自由电子

就称为俄歇电子。

荧光产率:激发态分子中通过发射荧光而回到基态的分子占全部激发态分子的分数。

俄歇电子产率:

5. 拉曼光谱分析的基本原理及应用。什么斯托克斯线和反斯托克斯线?什么是拉曼位移?(振动能级)

原理:光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。

应用:拉曼光谱对研究物质的骨架特征特别有效。红外和拉曼分析法结合,可更完整地研究分子的振动和转动能级,从而更可靠地鉴定分子结构。可以进行半导体、陶瓷等无机材料的分析。是合成高分子、生物大分子分析的重要手段。在燃烧物和大气污染物分析等方面有重要应用。有两种情况:

(1)分子处于基态振动能级,与光子碰撞后,从光子中获取能量达到较高的能级。若与此相应的跃迁能级有关的频率是ν1,那么分子从低能级跃到高能级从入射光中得到的能量为hν1,而散射光子的能量要降低到hν0-hν1,频率降低为ν0-ν1。

(2)分子处于振动的激发态上,并且在与光子相碰时可以把hν1的能量传给光子,形成一条能量为hν0+hν1和频率为ν0+ν1的谱线。

通常把低于入射光频的散射线ν0-ν1称为斯托克斯线。高于入射光频的散射线ν0+ν1称为反斯托克斯线。

6. X射线荧光光谱定性、定量分析的基本原理及应用(适用),什么是基本体吸收效应?如何消除? 定性分析: 在谱仪上配上计算机,可以直接给出试样内所有元素的名称。

1、确定某元素的存在,除要找到易识别的某一强线外,最好找出另一条强度高的线条,以免误认。

2、区分哪些射线是从试样内激发的,那哪射线是靶给出的,靶还可能有杂质,也会发出X射线。

3、当X射线照射到轻元素上时,由于康普顿效应,还会出现非相干散射。可通过相应的实验将它们识别。

定量分析:如果没有影响射线强度的因素,试样内元素发出的荧光射线的强度与该元素在试样内的原子分数成正比。但是实际上存在影响荧光X射线强度的因素,这些因素叫做基体吸收效应和增强效应。

元素A的荧光X射线强度不但与元素A的含量有关,还与试样内其他元素的种类和含量有关。当A元素的特征x射线能量高于B元素的吸收限(或相反)时,则A元素的特征X射线也可以激发B元素,于是产生两种影响,其中A元素的特征x荧光照射量率削弱的为吸收效应。吸收包括两部分:一次X射线进入试样时所受的吸收和荧光X射线从试样射出时所受的吸收。

实验校正法:外标法、内标法、散射线标准法,增量法 数学校正法:经验系数法、基本参数法

7. 波谱仪与能谱仪的展谱原理及特点。(特征X射线检测)

波谱仪:利用X射线的波长不同来展谱。1)能量分辨率高——突出的优点,分辨率为5eV 2)峰背比高:这使WDS所能检测的元素的最低浓度是EDS的1/10,大约可检测100 ppm。3)采集效率低,分析速度慢。

4)由于经晶体衍射后,X射线强度损失很大,其检测效率低。

5)波谱仪难以在低束流和低激发强度下使用,因此其空间分辨率低且难与高分辨率的电镜(冷场场发射电镜等)配合使用。能谱仪:利用X射线的能量不同来展谱。优点:

1)分析速度快:同时接收和检测所有信号,在几分钟内分析所有元素。

2)灵敏度高:收集立体角大,不用聚焦,探头可靠近试样,不经衍射,强度没有损失。可在低束流(10-11 A)条件下工作,有利于提高空间分辨率。

3)谱线重复性好:没有运动部件,稳定性好,没有聚焦要求,所以谱线峰值位置的重复性好且不存在失焦问题,适合于比较粗糙表面的分析。缺点:

1)能量分辨率低:在130 eV左右,比WDS的5eV低得多,谱线的重叠现象严重。2)峰背比低:探头直接对着样品,在强度提高的同时,背底也相应提高。EDS所能检测的元素的最低浓度是WDS的十倍,最低大约是1000 ppm。

3)工作条件要求严格:探头必须保持在液氦冷却的低温状态,即使是在不工作时也不能中断,否则导致探头功能下降甚至失效。

8. XPS的分析原理是什么?(什么效应)

光电效应:在外界光的作用下,物体(主要指固体)中的原子吸收光子的能量,使其某一层的电子摆脱其所受的束缚,在物体中运动,直到这些电子到达表面。如果能量足够、方向合适,便可离开物体的表面而逸出,成为光电子。光电子动能为:Ec =hv-EB-(-w)

9. XPS的应用及特点,XPS中的化学位移有什么用?

分析表面化学元素的组成、化学态及其分布,特别是原子的价态、表面原子的电子密度、能级结构。

最大特点是可以获得丰富的化学信息,它对样品的损伤是最轻微的,定量也是最好的。它的缺点是由于X射线不易聚焦,因而照射面积大,不适于微区分析。

(1)可以分析除H和He以外的所有元素,可以直接得到电子能级结构的信息。(2)它提供有关化学键方面的信息,即直接测量价层电子及内层电子轨道能级,而相邻元素的同种能级的谱线相隔较远,互相干扰少,元素定性的标志性强。

(3)是一种无损分析。

(4)是一种高灵敏超微量表面分析技术。分析所需试样约10-8g即可,绝对灵敏度高达10-18g,样品分析深度约2 nm。

由于原子处于不同的化学环境里而引起的结合能位移称为化学位移。化学位移的量值与价电子所处氧化态的程度和数目有关。氧化态愈高,则化学位移愈大。

10. 紫外光电子能谱原理及应用。(激发什么电子?)

紫外光电子能谱仪与X射线光电子能谱仪非常相似,只需把激发源变换一下即可。真空紫外光源只能激发样品中原子、分子的外层价电子或固体的价带电子。测量固体表面价电子和价带分布、气体分子与固体表面的吸附、以及化合物的化学键、研究振动结构。

11. 俄歇电子能谱分析的原理、应用及特点。(俄歇电子与什么有关?)

原理:俄歇效应。俄歇电子的能量与参与俄歇过程的三个能级能量有关。能量是特定的,与入射X射线波长无关,仅与产生俄歇效应的物质的元素种类有关。应用:可以做物体表面的化学分析、表面吸附分析、断面的成分分析。1)材料表面偏析、表面杂质分布、晶界元素分析; 2)金属、半导体、复合材料等界面研究; 3)薄膜、多层膜生长机理的研究;

4)表面化学过程(如腐蚀、钝化、催化、晶间腐蚀、氢脆、氧化等)研究; 5)集成电路掺杂的三维微区分析; 6)固体表面吸附、清洁度、沾染物鉴定等。特点:

1)作为固体表面分析法,其信息深度取决于俄歇电子逸出深度(电子平均自由程)。对于能量为50eV-2keV范围内的俄歇电子,逸出深度为0.4-2nm,深度分辨率约为l nm,,横向分辨率取决于入射束斑大小。

2)可分析除H、He以外的各种元素。

3)对于轻元素C、O、N、S、P等有较高的分析灵敏度。4)可进行成分的深度剖析或薄膜及界面分析。

12. 扫描隧道显微镜基本原理及特点、工作模式。(量子隧道效应,如何扫描?恒高、恒电流工作模式,隧道谱应用)

基本原理:尖锐金属探针在样品表面扫描,利用针尖-样品间纳米间隙的量子隧道效应引起隧道电流与间隙大小呈指数关系,获得原子级样品表面形貌特征图象。

量子隧道效应:当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。金属探针安置在三个相互垂直的压电陶瓷(Px、Py、Pz)架上,当在压电陶瓷器件上施加一定电压时,由于压电陶瓷器件产生变形,便可驱动针尖在样品表面实现三维扫描;

隧道谱应用:可对样品表面显微图像作逐点分析,以获得表面原子的电子结构(电子态)等信息。在样品表面选一定点,并固定针尖与样品间的距离,连续改变偏压值从负几V~正几V,同时测量隧道电流,便可获得隧道电流随偏压的变化曲线,即扫描隧道谱。特点:

1)STM结构简单。

2)其实验可在多种环境中进行:如大气、超高真空或液体(包括在绝缘液体和电解液中)。3)工作温度范围较宽,可在mK到1100K范围内变化。这是目前任何一种显微技术都不能同时做到的。

4)分辨率高,扫描隧道显微镜在水平和垂直分辨率可以分别达到0.1nm和0.01nm。因此可直接观察到材料表面的单个原子和原子在材料表面上的三维结构图像。

5)在观测材料表面结构的同时,可得到材料表面的扫描隧道谱(STS),从而可以研究材料表面化学结构和电子状态。

6)不能探测深层信息,无法直接观察绝缘体。工作模式:

恒电流模式:扫描时,在偏压不变的情况下,始终保持隧道电流恒定。适于观察表面起伏较大的样品。

恒高模式:始终控制针尖在样品表面某一水平高度上扫描,随样品表面高低起伏,隧道电流不断变化。适于观察表面起伏不大的样品。

13. 原子力显微镜工作原理、成像模式及应用。(微小力测量如何实现?纳米量级力学性能测量)

原理:利用微小探针与待测物之间交互作用力,来呈现待测物表面的物理特性。成像模式:

应用:已成为表面科学研究的重要手段。(1)几十到几百纳米尺度的结构特征研究(2)原子分辨率下的结构特征研究(3)在液体环境下成像对材料进行研究

(4)测量、分析表面纳米级力学性能(吸附力、弹性、塑性、硬度、粘着力、摩擦力等):通过测量微悬臂自由端在针尖接近和离开样品过程中的变形(偏转),对应一系列针尖不同位置和微悬臂形变量作图而得到力曲线。当针尖被压入表面时,那点曲线斜率可以决定材料的弹性模量,从力曲线上也能很好的反映出所测样品的弹性、塑性等性质。(5)实现对样品表面纳米加工与改性

14. 什么是离子探针?离子探针的特点及应用。

离子探针微区分析仪,简称离子探针。

离子探针的原理是利用细小的高能(能量为1~20keV)离子束照射在样品表面,激发出正、负离子(二次离子);利用质谱仪对这些离子进行分析,测量离子的质荷比(m/e)和强度,确定固体表面所含元素的种类及其含量。特点:

1)可作同位素分析。

2)可对几个原子层深度的极薄表层进行成分分析。利用离子束溅射逐层剥离,得到三维的成分信息。

3)一次离子束斑直径缩小至微米量级时,可拍摄特定二次离子的扫描图像。并可探测极微量元素(50ppm)。

4)可高灵敏度地分析包括氢、锂在内的轻元素,特别是可分析氢。

15. 场离子显微镜的成像原理(台阶边缘的原子)。

1)隧道效应:若气体原子的外层电子能态符合样品中原子的空能级能态,该电子将有较高的几率通过“隧道效应”而穿过表面位垒进入样品,从而使成像气体原子变为正离子——场致电离。

2)导体表面电场与其曲率成正比:E≈U/5r,相同的电压加上相同的导体,曲率越大,也就是越尖,导体上的电荷越密集,产生的电场越强。

3)场离化原理:当成像气体进入容器后,受到自身动能的驱使会有一部分达到阳极附近,在极高的电位梯度作用下气体原子发生极化,使中性原子的正、负电荷中心分离而成为一个电偶极子。

16. DTA的基本原理,DTA在材料研究中有什么用处?(定量?比热?)

基本原理:当试样发生任何物理或化学变化时,所释放或吸收的热量使样品温度高于或低于参比物的温度,从而相应地在差热曲线上得到放热或吸热峰; 应用:

1)如果试样在升温过程中热容有变化,则基线ΔTa就要移动,因此从DTA曲线便可知比热发生急剧变化的温度,这个方法被用于测定玻璃化转变温度; 2)合金状态变化的临界点及固态相变点都可用差热分析法测定; 3)可以定量分析玻璃和陶瓷相态结构的变化; 4)被广泛地用于包括非晶在内的固体相变动力学研究; 5)可以用于研究凝胶材料烧结进程;

17. DSC的基本原理及应用。(纵坐标是什么?)

差示扫描量热法(DSC)基本原理:根据测量方法的不同,有两种DSC法,即功率补偿式差示量热法和热流式差示量热法。功率补偿式差示量热法:

1)试样和参比物具有独立的加热器和传感器,仪器由两条控制电路进行监控,一条控制温度,使样品和参比物在预定的速率下升温或降温;另一条用于补偿样品和参比物之间所产生的温差,通过功率补偿电路使样品与参比物的温度保持相同;

2)功率补偿放大器自动调节补偿加热丝的电流,使试样与参比物的温度始终维持相同; 3)只要记录试样放热速度随T(或t)的变化,就可获得DSC曲线。纵坐标代表试样放热或吸热的速度,横坐标是温度T(或时间t)。

应用:1)样品焓变的测定;2)样品比热的测定;3)研究合金的有序-无序转变

18. 影响DTA和DSC曲线形态的因素主要有哪些?(加热速度,样品比热,气氛)

影响DTA(差热分析)曲线形态的因素:实验条件、仪器因素、试样因素等; 实验条件:

① 升温速率:程序升温速率主要影响DTA曲线的峰位和峰形,升温速率越大,峰位越向高温方向迁移以及峰形越陡;

②不同性质的气氛如氧化性、还原性和惰性气氛对DTA曲线的影响很大,有些场合可能会得到截然不同的结果;

③ 参比物:参比物与样品在用量、装填、密度、粒度、比热及热传导等方面应尽可能相近,否则可能出现基线偏移、弯曲,甚至造成缓慢变化的假峰。

影响DSC(量热分析)曲线形态的因素:实验条件、仪器因素、试样因素等; 实验条件:

① 升温速率:一般升温速率越大,峰温越高、峰形越大和越尖锐,而基线漂移大,因而一般采用10℃/min;

② 气氛对DSC定量分析中峰温和热焓值的影响是很大的。

③ 参比物:参比物的影响与DTA相同。

19. 热重分析应用?

1)主要研究在空气中或惰性气体中材料的热稳定性、热分解作用和氧化降解等化学变化; 2)还广泛用于研究涉及质量变化的所有物理过程,如测定水分、挥发物和残渣,吸附、吸收和解吸,气化速度和气化热,升华速度和升华热;

3)可以研究固相反应,缩聚聚合物的固化程度,有填料的聚合物或共混物的组成; 4)以及利用特征热谱图作鉴定等。

20. 什么是穆斯堡尔效应?穆斯堡尔谱的应用。(横坐标?低温?)

无反冲核γ射线发射和共振吸收现象称为穆斯堡尔效应:若要产生穆斯堡尔效应,反冲能量ER最好趋向于零;大多数核只有在低温下才能有明显的穆斯堡尔效应; 应用:

1)可用于测定矿石、合金和废物中的总含铁量和总含锡量; 2)可用于研究碳钢淬火组织、淬火钢的回火、固溶体分解;

3)可以用于判断各种磁性化合物结构的有效手段(可用于测定反铁磁性的奈尔点、居里点和其它各种类型的磁转变临界点;也可用于测定易磁化轴,研究磁性材料中的非磁性相);4)可用于研究包括红血蛋白、肌红蛋白、氧化酶、过氧化酶、铁氧还原蛋白和细胞色素等范围极广的含铁蛋白质的结构和反应机理研究。

21. 产生衍射的必要条件(布拉格方程)及充分条件。(衍射角由什么决定?几何关系)

必要条件: 1)满足布拉格方程 2dsinn

2)能够被晶体衍射的X射线的波长必须小于或等于参加反射的衍射面中最大面间距的二倍;

2d

充分条件:

1)衍射角:由晶胞形状和大小确定

22. 影响衍射强度的因素。

1)晶胞中原子的种类、数量和位置; 2)晶体结构、晶粒大小、晶粒数目; 3)试样对X射线的吸收; 4)衍射晶面的数目; 5)衍射线的位置; 6)温度因子;

23. 物相定性分析、定量分析的原理。(强度与什么有关?正比含量吗?如何校正基体吸收系数变化对强度的影响?)

物相定性分析:每种结晶物质都有其特定的结构参数,包括点阵类型、单胞大小、单胞中原子(离子或分子)的数目及其位置等等,而这些参数在X射线衍射花样中均有所反映;某种物质的多晶体衍射线条的数目、位置以及强度,是该种物质的特征,因而可以成为鉴别物相的标志。

物相定量分析原理:各相衍射线的强度,随该相含量的增加而提高;由于试样对X射线的吸收,使得“强度”并不正比于“含量”,而须加以修正。

1)采用单线条法(外标法):混合样中j相某线与纯j相同一根线强度之比,等于j相的重量百分数;

2)采用内标法:将一种标准物掺入待测样中作为内标,并事先绘制定标曲线。3)采用K值法及参比强度法:它与传统的内标法相比,不用绘制定标曲线;

4)采用直接对比法:不向样品中加入任何物质而直接利用样品中各相的强度比值实现物相定量的方法。

24. 晶粒大小与X射线衍射线条宽度的关系。

K

Bcos德拜-谢乐公式: DD为晶粒垂直于晶面方向的平均厚度、B为实测样品衍射峰半高宽度、θ为衍射角、γ为X射线波长

晶粒的细化能够引起X射线衍射线条的宽化; 25. 内应力的分类及在衍射图谱上的反映。

第一类:在物体较大范围(宏观体积)内存在并平衡的内应力,此类应力的释放,会使物体的宏观体积或形状发生变化。第一类内应力又称“宏观应力”或“残余应力”。宏观应力使衍射线条位移。

第二类:在数个晶粒范围内存在并平衡的内应力,一般能使衍射线条变宽,但有时亦会引起线条位移。

第三类:在若干个原子范围内存在并平衡的内应力,如各种晶体缺陷(空位、间隙原子、位错等)周围的应力场、点阵畸变等,此类应力的存在使衍射强度降低。

26. 扫描电镜二次电子像与背散射电子像。(应用及特点)

1.二次电子像(SEI):

1)特点:图像分辨率比较高;二次电子信号强度与原子序数没有明确的关系,仅对微区刻面相对于入射电子束的角度十分敏感;二次电子能量较低,其运动轨迹极易受电场和磁场的作用从而发生改变,不易形成阴影;二次电子信号特别适用于显示形貌衬度,用于断口检测和各种材料表面形貌特征观察;SE本身对原子序数不敏感,但其产额随(BSE产额)增大而略有上升;SE能反映出表面薄层中的成分变化;通常的SE像就是形貌衬度像

应用:SE研究样品表面形貌最有用的工具;SE也可以对磁性材料和半导体材料进行相关的研究

2.背散射电子像(BSEI):

1)特点:样品表面平均原子序数大的微区,背散射电子强度较高,而吸收电子强度较低,形成成分衬度;样品表面不同的倾斜角会引起BSE数量的不同,样品表面的形貌对其也有一定的影响;倾角一定,高度突变,背散射电子发射的数量也会改变;背散射电子能量高,离开样品后沿直线轨迹运动;样品表面各个微区相对于探测器的方位不同,使收集到的背散射电子数目不同;检测到的信号强度远低于二次电子,粗糙表面的原子序数衬度往往被形貌衬度所掩盖。

应用:背散射电子像衬度应用最广泛的是成分衬度像,与SE形貌像(或BSE形貌相)相配合,可以方便地获得元素和成分不同的组成相分布状态。

27. 扫描电镜图像衬度(形貌衬度、原子序数衬度)。(产额)

1)表面形貌衬度;电子束在试样上扫描时任何两点的形貌差别表现为信号强度的差别,从而在图像中显示形貌衬度。SE形貌衬度像的一大特点是极富立体感。原理:利用对试样表面形貌变化敏感的物理信号作为显像管的调制信号,可以得到形貌衬度图像。

应用:二次电子和背散射电子信号强度是试样表面倾角的函数,均可用形成样品表面形貌衬度。

SE的产额随样品各部位倾斜角θ(电子束入射角)的不同而变化

2)原子序数衬度:原子序数衬度是试样表面物质原子序数(化学成分)差别而形成的衬度。原理:利用对试样表面原子序数(或化学成分)变化敏感的物理信号作为显像管的调制信号,可以得到原子序数衬度图像。

应用:背散射电子像、吸收电子像的衬度都含有原子序数衬度,而特征X射线像的衬度就是原子序数衬度。

28. 什么是电子探针?电子探针的原理、特点及工作方式。(检测的信号)

电子探针X射线显微分析仪是一种微区成分分析的仪器。检测的信号是特征X射线。利用电子束照射在样品表面,激发出正、负离子(二次离子),用X射线分析器进行分析。特征X射线的波长(能量)——确定待测元素;特征X射线强度——确定元素的含量。

第四篇:材料现代分析测试方法总结-辽宁科技大学金材10-1

⑴相干散射:

当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。⑵非相干散射:

当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。⑶荧光辐射

一个具有足够能量的χ射线光子从原子内部打出一个K电子,当外层电子来填充K空位时,将向外辐射K系χ射线,这种由χ射线光子激发原子所发生的辐射过程,称荧光辐射。或二次荧光。⑷吸收限:

指χ射线通过物质时光子的能量大于或等于使物质原子激发的能量,如入射光子的能量必须等于或大于将K电子从无穷远移至K层时所作的功W,称此时的光子波长λ称为K系的吸收限。

⑸俄歇效应:

当原子中K层的一个电子被打出后,它就处于K激发状态,其能量为Ek。如果一个L层电子来填充这个空位,K电离就变成了L电离,其能由Ek变成El,此时将释Ek-El的能量,可能产生荧光χ射线,也可能给予L层的电子,使其脱离原子产生二次电离。即K层的一个空位被L层的两个空位所替代,这种现象称俄歇效应。

5.特征X射线与荧光X射线的产生机理有何异同?某物质的K系荧光X射线波长是否等于它的K系特征X射线波长? 答:特征X射线与荧光X射线都是由激发态原子中的高能级电子向低能级跃迁时,多余能量以X射线的形式放出而形成的。不同的是:高能电子轰击使原子处于激发态,高能级电子回迁释放的是特征X射线;以 X射线轰击,使原子处于激发态,高能级电子回迁释放的是荧光X射线。某物质的K系特征X射线与其K系荧光X射线具有相同波长。6.Ⅹ射线具有波粒二象性,其微粒性和波动性分别表现在哪些现象中?

答:波动性主要表现为以一定的频率和波长在空间传播,反映了物质运动的连续性;微粒性主要表现为以光子形式辐射和吸收时具有一定的质量,能量和动量,反映了物质运动的分立性。

第五篇:刘云飞谈方法——搭配使用不同资料才能达到最佳效果(司法考试 学习方法)

刘云飞论方法——搭配使用不同资料才能达到最佳效果

在昨天的YY语音里面,很多学生提问,不知道看什么书,怎么看书,之前的帖子帖子我只介绍了各种教材的优劣,似乎知道这些不足以应付备考,从考试的角度来说,搭配使用教材是最科学明智的。

第一、从一个初学者的角度,你要知道买哪些书,有三类教材是必须买的,教材、真题、法条,我看过很多备考经验,非常具有误导性,比如有的基础很好的考生声称“只做两遍真题就过了”动辄还考400分,这种经验就是一贴毒药,你要是相信了肯定就是无可救药了,对于如何甄别过关经验,我有一篇帖子《如何选择最合适自己的学习经验》已经讲述的非常全面。所以首先你要相信我,不要随便就相信某些人的过关经验,既然你是基础薄弱的考生,三类资料就必须同时具备。

第二、有的考生说,“三大本太贵了,我就用2011年(或者2009年)的行不行呀?”,肯定不行,为什么不行呢?因为2012年的三大本相对于2010年的有新增的内容,而且这种新增内容是致命的,什么意思,新增必考呀,这些必考的考点你没看到,你说你比别人少了多少分,你凭什么说是“必考”呢?你想想,司法部每年出一个大纲,每年大纲里面有新增的、修改的、删除的,他为什么要新增呢,是为了出题的需要,为什么要修改呢?也是为了出题的需要,为什么删除呢?是它觉得出题没有意义了,于是删掉。所以你在选择教材的时候千万别吝惜这一点钱,否则很有可能会浪费一年时光,2012年的教材应该在4、5月才出,前面这段时间不能不看书,这段时间就看2010年的教材,变了没关系,变了你再对比着看。

第三、教材应该怎么搭配,教材可以搭配三大本和专题讲座,这两套书各有千秋,三大本全面但是重点不突出,专题讲座重点突出但是不全面,但是这个不意味着你要两本书都全面的掌握,不是的,要注意看书的主次,在不同阶段,不同学科主次不同,刑法和第一卷内容以三大本为主,专题讲座补充,民法、行政法以专题讲座为主,三大本补充,同时注意,诉讼法也是以三大本为主,但是以法条为补充,这是考察形式决定的,一般来说培训机构是不会推荐考生看三大本,这是基于商业需要,你们都去研究三大本了,就没人买我的书了,所以考生心里要像明镜似的。

第四、法条怎么选择,法条选择重点法条,不要选择不分重点的法条汇编,这是因为重点法条的效率更高,司法考试涵盖的法条范围是15000条,但是其中常考只有2000多个,你时间那么紧张,哪里有时间拿来浪费呢,一定要把好钢用在刀刃上。法条有很多种,指南针的法条条例较为清楚,但是笔者并不是指南针的托,所以还请考生多看几家再下决定。

第五、真题看什么,其实市场上的真题都是大同小异的,真题能有什么区别呢,每年就那一套,答案也是一样的,主要是真题解析,真题解析司法部每年出一本,一般在当年司法考试成绩公布后出来,司法部只出当年真题解析,比如2010年12月出版的真题解析只有2010年真题,为什么不对历年的真题进行解析呢?因为法条在不断更新,解析历年真题就是用去年的内存条跑今年的新游戏,容易产生争议,所以司法部的真题解析是每年一本,其他版本的真题解析都是编写人自己编写的,不能代表司法部的观点,很容易产生问题,目前张能宝的真题解析是名气最大的,可以选择,但是仅仅看这个还不够,建议把历年真题全

部下载,然后再三大本上一一找出答案,历年真题有多少呢?2002-2011年有11套真题(08年有两套),3000多道真题,每天你做100题,要做1个月才能做完,而且真题做一遍不够,至少要做2遍,这样岂不是要2个月,不是的,因为你在做真题的时候,是突飞猛进的学习知识,第二遍肯定不用1个月,顶多10天就能完成,这样意味着,你在7月中旬的时候,无论学到什么程度都要立即开始做真题了,有的考生到了7月20号说:“我三国法还没看完,我要看完之后再开始做真题”,你要是有这种想法就错误了,在7、8月,真题远比看书重要,这个时候无论是学到什么程度了,都应该停下来做真题了,不能再拖延了。

有了这几类教材是不是一定能够通过呢?还不一定,有了书不代表这些知识都被你掌握了,你也不是孙悟空,把书吃进肚子里就什么都知道了,所以在复习的时候必须把教材吃透,当然这是个很抽象的概念,什么叫吃透呢?我有个学员,叫海燕,大三的学生,5月买了一套崭新的三大本,9月参加司法考试的时候,三大本已经翻得稀烂,就好像从垃圾堆捡回来的破书一样,这就是吃透了,要知道她只看了3个月哦,不是看了3年,3个月能够把厚厚的三大本翻烂,说明她看书的功底,最后考了多少分呢?405分。当然每个人的经验不一样,你可以不借鉴,但是掌握书本里的知识对于司法考试肯定是至关重要的。

再从看书的顺序来说,首先看什么,然后看什么,3、4月是打基础的阶段,这个时候不适合做题,只能看书,看什么内容呢,看刑法和民法,如果你选定看民法,就看专题讲座,有同学看到专题讲座就头疼,这么厚一本书,我看到何年能看完,注意进度,每小时看10页,一天看5个小时就能看50页,专题讲座一共500页,10天可以看完,如果看刑法就看三大本吧,三大本里面对总则的讲解非常的全面,但是分则没有具体阐述罪名之间的区别和联系,这一点可以利用专题讲座补足,所以学习刑法的时间略长一些,估计12天左右能够看完第一轮,也就是说你复习民法和刑法最低得要22天,那么意味着你从今天(2月10日)开始看书,3月2日之前要完成民法和刑法的学习,有的人说,我每天晚上8点才回家,哪来的5个小时看书呀,注意我没有包括周末的时间哦,只要你周末不加班你周末两天就必须坚持每天看8个小时以上,还有考生说:“我周末也要加班呀,怎么办呢”,没办法了,凉拌,很抱歉的告诉你,你属于最终不过的三种人之一,在职没时间备考的不过,荒废7、8月的不过,心理压力太大的不过,你都没时间看书还想过司考,那司法考试还有含金量么。

谈到这里,顺便说说时间的问题,知道自己看什么书,要花多长时间呢?最保险的角度来说,至少3月中旬以前要看完民法和刑法,看完之后干什么呢?当然是行政法和诉讼法,用一个月时间看完,这时候大纲出来了,新教材也会在一个星期内发售,买一套吧,看一遍新教材,注意,这个时候是对比着看,效率要高很多,不可能再花一个月看完了,2天看完民法、2天看完刑法,因为你只看新增和修改的内容嘛,不知道怎么办?没事,到时候我会总结一套新增考点汇编的,不多,一个小册子,但是和泄题没什么区别,哈哈,然后开始复习其他十个实体法,包括三国法呀,商经法呀,这些法律没有理解的难度,看书要注意速度,有学员说:“不怕你笑话,我看了就忘,记不住怎么办”,这不是笑话,你要能记住那才成笑话了,因为你这个时候只看书不做题就不可能有深入的记忆效果,真正要记住要等到7、8两个月真题训练的时候再开始,做两轮真题就记住了,我这几句话你现在看了将来复习的时候还要看看,为什么?因为5、6两个月是心理压力形成的阶段,如果你觉得压力过大,看一下我的帖子,压力骤降,就轻松多了。

基本的教材和复习顺序就是这样,其实我从来就认为,学习没有太多的秘诀,只要是有含金量的考试,哪个不是要你作出牺牲,有考生说:“我参加培训班只想听听课就能过”,这种想法说明你对司法考试几乎是一无所知,也有考生说:“我现在不想准备,过年玩的太累了,要休息”,等你休息好了,估计司法考试也不用准备了,我见过一个考生,40多岁了,专门把工作辞了,他还有一个4岁的孩子,几乎就是老婆养家,这么大的压力是为什么,就是为了一次通过司考,迫于这种压力,从1月起,他每天早上7点就出门,去中山大学图书馆看书,看到晚上10点,一有时间就来请教我行政法的问题,我几乎是不厌其烦,但是我想当尊重他,当你没有过司考的时候,你想想你有没有付出这么多努力,你有没有这么大的压力,胡攀老师说过,司考无非就是两种人,为了生存,为了尊严,每个人都是这样,不管你拿1000还是1W,只要你要考司考,都是必须付出努力的,这需要抉择。

下载南京工业大学 材料现代测试方法 刘云飞 李晓云 现代材料分析方法试题55则范文word格式文档
下载南京工业大学 材料现代测试方法 刘云飞 李晓云 现代材料分析方法试题55则范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐