光纤通信的发展(精选)

时间:2019-05-12 06:50:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《光纤通信的发展(精选)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《光纤通信的发展(精选)》。

第一篇:光纤通信的发展(精选)

光纤通信的发展

光纤通信一直是推动整个通信网络发展的基本动力之一,是现代电信网络的基础。光纤通信的诞生与发展是电信史上的一次重要革命,光纤通信技术发展所涉及的范围,无论从影响力度还是影响广度来说都已远远超越其本身,并对整个电信网和信息业产生深远的影响。它的演变和发展结果将在很大程度上决定电信网和信息业的未来大格局,也将对社会经济发展产生巨大影响。

纳米技术与光纤通信

纳米是长度单位,为10-9米,纳米技术是研究结构尺寸在1至100纳米范围内材料的性质和应用。建立在微米/纳米技术基础上的微电子机械系统(MEMS)技术目前正在得到普遍重视。在无线终端领域,对微型化、高性能和低成本的追求使大家普遍期待能将各种功能单元集成在一个单一芯片上,即实现

SOC(System On a Chip),而通信工程中大量射频技术的采用使诸如谐振器,滤波器、耦合器等片外分离单元大量存在,MEMS技术不仅可以克服这些障碍,而且表现出比传统的通信元件具有更优越的内在性能。德国科学家首次在纳米尺度上实现光能转换,这为设计微器件找到了一种潜在的能源,对实现光交换具有重要意义。

可调光学元件的一个主要技术趋势是应用MEMS技术。MEMS技术可使开发就地配置的光器件成为可能,用于光网络的MEMS动态元件包括可调的激光器和滤波器、动态增益均衡器、可变光衰减器以及光交叉连接器等。此外,MEMS技术已经在光交换应用中进入现场试验阶段,基于MEMS的光交换机已经能够传递实际的业务数据流,全光MEMS光交换机也正在步入商用阶段,继朗讯科技公司的“Lamda-Router”光MEMS交换机之后,美国Calient Networks公司的光交叉连接装置也采用了光MEMS交换机。

2.光交换是实现高速全光网的关键

光交换是指光纤传送的光信号直接进行交换。长期以来,实现高速全光网一直受交换问题的困扰。因为传统的交换技术需要将数据转换成电信号才能进行交换,然后再转换成光信号进行传输,这些光电转换设备体积过于庞大,并且价格昂贵。而光交换完全克服了这些问题。因此,光交换技术必然是未来通信网交换技术的发展方向。

未来通信网络将是全光网络平台,网络的优化、路由、保护和自愈功能在未来光通信领域越来越重要。光交换技术能够保证网络的可靠性,并能提供灵活的信号路由平台,光交换技术还可以克服纯电子交换形成的容量瓶颈,省去光电转换的笨重庞大的设备,进而大大节省建网和网络升级的成本。若采用全光网技术,将使网络的运行费用节省70%,设备费用节省90%。所以说光交换技术代表着人们对光通信技术发展的一种希望。

目前,全世界各国都正在积极研究开发全光网络产品,其中关键产品便是光变换技术的产品。目前市场上的光交换机大多数是光电和光机械的,随着光交换技术的发展和成熟,基于热学、液晶、声学、微机电技术的光交换机将会研究和开发出来,其中以将纳米技术为基础的微电子机械系统MEMS应用于光交换产品的开发更会加速光交换技术的发展。

第二篇:光纤通信发展现状

摘要:波分复用(WDM,WTBX Wavelength Division Multiplexing)、光纤接入网和全光网技术是当前发展较快的几项光纤通信技术,其中波分复用技术是在一根光纤上同时利用多个波长进行传输,发展前景很好。光纤用户接入网的发展将加速光纤到户的实现。全光网目前存在一些需要解决的技术问题,美国、日本和欧洲一些国家已建立全光网试验网。目前使用最多的G652单模光纤的缺陷限制了其进一步发展,G653色散位移光纤由于四波混频效应不适于在波分复用系统上的应用。G655非零色散位移单模光纤有较好的发展前景。用户光缆具有芯数多,采用带状结构和塑料光纤等特点。

关键词:光纤通信 波分复用 光纤接入网 全光网

一、发展较快的几项光纤通信技术

1.波分复用技术

光纤通信的多路复用技术,一开始是采用原来铜缆沿用的PCM脉冲编码调制方式,把模拟信号变换为数字信号,再应用时分多路(TDM,WTBX Time Division Multiplexing)技术组成一次群即基群2Mbit/s)、二次群(8Mbit/s)、三次群(34Mbit/s)和四次群(140Mbit/s)等,这种系列被称为准同步数字系列(PDH,WTBX Plesiochronous Digital Hierarchy)。各国现有的PDH有三种系列,互不兼容,而且没有统一的标准接口规范,各个厂家生产的设备不能互通,另外还存在上下电路困难等问题。后来改用新的同步数字系列(SDH,WTBX Sychronous Digital Hierarchy),即STM--1(155Mbit/s),STM--4(622Mbit/s)和STM--16(2.5Gbit/s)等。SDH所采用的复用技术,仍然属于TDM技术。

目前,SDH系列在国内外已大量使用,我国干线上主要使用STM--16,相当于可复用3万多个话路。高于2.5Gbit/s以至更高速率的研究工作已在我国和其他许多国家展开,其间碰到的最大问题是光纤色散的限制,而要克服这些限制在技术上、成本上都十分困难。因此,当前实际应用的大都只限于2.5Gbit/s,不超过10Gbit/s的传输速率。

近年来,WDM技术的进展,为光纤通信的发展开辟了另一个十分广阔的前景。WDM是在一根光纤上同时利用多个波长进行传输的技术。比如,目前我国开发的在一根光纤上同时传送8个波长系统,每个波长的速率可达2.5Gbit/s,即所谓8×2.5Gbit/s系统。这样,一根光纤的总速率可达20Gbit/s。若每个波长的速率为10Gbit/s,则一根光纤的总速率就可达80Gbit/s。这将大量节省光纤的数量。最近我国正在全国长途骨干光缆网上进行升级改造,也就是利用WDM 8×2.5Gbit/s光传输系统使一对光纤可同时传送24万路电话或2400套电视节目。据报道,国外已出现206个波长的WDM系统试验样机。可见WDM技术的发展前景很好。

WDM技术的发展,不但大量节省光纤数目和以后扩容的工程费用,而且在长途干线上还可以大量节省掺铒光纤放大器(EDFA,Er--Doped Fiber Amplifier)的数目。因为目前掺铒光纤放大的带宽达30nm,足以使多个波长一起得到放大增益,不必每个波长配置单独的掺铒光纤放大器。当波长更多时,掺铒光纤放大器必须有更宽的平坦带宽增益。有资料介绍,把掺铒光纤放大器的平坦增益特性的波长宽度从原来的30nm加大到80nm的研究,其意义将更大。

2.光纤接入网(OAN,WTHX Optical Access Network)技术

十多年来,由于各种通信业务的迅猛发展,对通信容量的需求急剧增加,光纤干线的建设应运而起,各国先后建成全国的光缆骨干网。随后出现的问题是用户接入网仍保留着旧的铜缆网,不能适应发展需要,必须加以改造。改造的方案很多,首先考虑到的是开发利用铜缆的潜力,进一步提高其带宽来满足一定时期的需要,然后再过渡到光缆。比如,当前不少国家都在采用的线对增容系统、高比特率数字用户环路(HDSL,High—Bit--Rate Digital Subscriber Loop)、不对称数字用户环路(ADSL,Asymmetric Digital Subscriber Loop)、混合光纤与同轴电缆系统(HFC,WTBX Hybrid Fiber and coaxial Cable)等等都属于一些过渡性措施,应用广泛。

近年来,Internet的崛起大大超出人们原来的估计,目前它的年增长率已达300%,形成爆炸性的增长,并促使电信、计算机、有线电视等技术的融合,走向三网合一。三网合一意味着数据、话音、视像等各种业务都综合起来进行传送。这种综合必将大大促进在接入网中大量使用光纤,促进光纤用户接入网的发展,加速光纤到户(FTTH,Fiber to the Home)的实现。

在实现光纤到户前,首先采用交换式数字图像(SDV,WTBX Switched Digital Video)系统是一种较好的方案。数字图像系统由一个以光源光网络(PON,WTBX Passive Optical Network)为基础的数字光纤到路边(FTTC,WTBX Fiber to the Curb)系统与一个单向的混合光纤与同轴电缆有线电视系统叠加而成。数字图像系统主干传输部分采用共缆分纤的空分复用(SDM,WTBX Space Division Multiplexing)方式分别传送双向数字信号和单向模拟视像信号。上述两种信号由设置于路边的光网络单元(ONU,WTBX Optical Network Unit)分别恢复成各自的基带信号,其中语音信号经双绞线送往用户,数字和模拟视像信号经同轴电缆送往用户。光网络单元由同轴电缆负责供电。数字图像技术的优点是数字视像和模拟视像可以兼容,较好地解决光纤到路边的供电问题,能较可靠地传送电信业务,对已有的混合光纤与同轴电缆网不必加以改造。因此,采用数字图像技术作为实现光纤到户前的过渡方案是可行的。

3.全光网技术

光纤通信技术是以光纤代替电缆,以光波代替原来频率较低的电磁波发展起来的。因此,至今在光纤通信系统上仍需用大量的电信设备,甚至本来的光信号源也要变换成电信号源,然后进入光纤通信系统。在传输过程中的放大、交换及接入设备终端等基本上全是电设备。这是由于电系统比较成熟、应用比较方便所造成的。但这些电设备会带来许多限制和干扰因素,而这些因素在光的系统中原本是可以避免的。

建立全光网的设想很早就提出来了,但困难很多,最关键的技术问题是解决光信号在传输过程中的损耗和光的交换问题。80年代出现了光纤放大器以后,研究工作的进展就比较快了。目前,光的交换技术研究也有了很大的进展,其中进展较快、较实际的是基于WDM技术的全光网。

迄今比较成熟的光放大器是掺铒光纤放大器,它的带宽通常在1 530~1 560nm之间,在单模光纤上开通4,8,16个波长是比较方便的。

光路交换可以有:针对光纤在不同空间位置的空分交换方式;控制不同时延进行的时分交换方式;转换不同波长/频率的波分/频分交换方式;或综合其中两种及两种以上的综合交换方式。

近年来,美国、欧洲、日本等一些国家已先后建立全光网的现场试验。比如美国组成的多波长全光通信试验网(MONET),泛欧光纤传输迭加网(PHOTON)等,其中还用到一些光器件,如光的交叉连接器(OXC,Optical Cross Connector);波长路由器(Wavelength Router)、波长转换器(Wavelength Convertor)、插分复接/分接复用器(ADM,Add--Drop Multiplexer--Demultiplexer)等。当波分复用系统的光纤进入本局的插分复接/分接复用器后,可以让部分波长从中分出,其它波长则直通;分出的部分波长负载上的信号进入本局,而由本局引出的信号荷载于同样波长进入插分复接/分接复用器。其工作原理与电的ADM原理相仿。随着各种光器件和光交换技术的不断完善,全光网技术也将日趋成熟。

二、光纤光缆发展的一些动向

1.光纤的类型

目前,使用最多的光纤是G.652单模光纤。这种光纤的零色散波长在1 310nm附近,但这个波长的衰减大,而在1 550nm处波长的衰减最小,但是其色散系数又很大(可达20ps/(km·nm)),因此限制了这种光纤的进一步发展。

G653色散位移光纤把零色散波长移到1 550 nm附近,但由于其色散过小时,又会因非线性现象产生的新波长引起四波混频(Four--Wave Mixing Efficiency)效应使传输信号减弱,同时产生串音,这就限制了这种光纤在波分复用系统上的应用。

G655非零色散位移单模光纤的衰减小,在1 530~1 565nm间的色散系数为0.1~6.0ps/(km·nm),可以避免出现四波混频效应,而色散系数值也不大,较适合波分复用系统的发展需要,估计这种光纤有较好的发展前景。为了尽可能减少非线性效应的影响,G.655光纤正趋向于开发大面积光纤,或称为大有效面积非零色散位移单模光纤(LEAF)。

2.接入网用光缆的特点

与长途干线光缆相比,用户接入网的用户平均距离比较短,传送信号的速率较低,用户分散,用户系统的成本要低,施工和维护工作要方便。因此,用户光缆的结构应具有一些特殊性。

(1)芯数多

每根光缆所需的芯数要根据用户分布情况、用户密度大小、用户的性质、城市的发展规划和光缆所处的位置而异。目前,日本首先提出要在2010年实现光纤到户,考虑的光缆芯数多达1 000~4 000芯的;其它一些发达国家,多考虑首先发展光纤到路边,所提出的用户光缆容量超过千芯的结构不多,大都在几百芯以内。

(2)带状结构

当接入网用光缆当芯数较少或用于室内配线时,多采用松套束管式或光纤带叠层嵌入松套管式;当芯数较多或用于馈线的时,则一般采用带状结构。这是由于带状光纤光缆作为大芯数光缆时,光纤的结构紧凑、集合度高且直径小,便于多芯连接。为了减少光缆的截面面积,目前光纤带的厚度都在300μm以下。

当采用骨架或U形带状结构成缆时,可采用S-Z绞,以便于在施工、维护中取出光纤带。

不少国家主张接入网用光缆采用干式光缆,即不填充油膏,而采用防潮纸作为阻水带进行包扎,以便于施工、维护工作。

(3)塑料光纤

过去由于塑料光纤的衰减太大、带宽太窄而没有考虑用于通信。近年来,通过日本、美国和欧洲一些国家的研究开发,降低了塑料光纤的的衰减、增大了带宽,使它用于短距离的接入网成为可能。

塑料光纤最主要的优点是成本低、易于加工、重量轻、可挠性好、芯径和数值孔径都比较大,耦合效率较高,对施工和维护都比较方便。

目前,塑料光纤大都用在短波长,GI结构。据报道,日本和美国研制出的塑料光纤在100m上可以达到吉比特级。目前其市场正逐步上升,年增长率约为20%,这很值得注意。

第三篇:光纤通信系统发展综述

光纤通信系统发展综述

摘要: 光纤通信技术(optical fiber communications)从光通信中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。

仅在过去5年中,光纤技术领域取得了大量突破性进展,其中包括10Gbit/s网络的构建和单根光纤上每秒太比特容量的成功演示。不久前,业内成功演示了40Gbit/s和80Gbit/s网络。这些演示进一步突出了对速度更高、容量更大的网络的需求和期望。

一、光纤通信的发展史

世界光纤通信发展史

光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。

1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。

于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特兰大到华盛顿间建立了世界第一条实用化的光纤通信线路,速率为45Mb/s,采用的是多模光纤,光源用的是发光管LED,波长是0.85微米的红外光。在上世纪70年代末,大容量的单模光纤和长寿命的半导体激光器研制成功。光纤通信系统开始显示出长距离、大容量无比的优越性。

按理论计算:就光纤通信常用波长1.3微米和1.55微米波长窗口的容量至少有25000GHz。自然会想到采用多波长的波分复用技术WDM(WavelengthDivisionMultiplex)。1996年WDM技术取得突破,贝尔实验室发展了WDM技术,美国MCI公司在1997年开通了商用的WDM线路。光纤通信系统的速率从单波长的2.5Gb/s和10Gb/s爆炸性地发展到多波长的Tb/s(1Tb/s=1000Gb/s)传输。当今实验室光系统速率已达10Tb/s,几乎是用之不尽的,所以它的前景辉煌。

中国光纤通信发展史

1973年,世界光纤通信尚未实用。邮电部武汉邮电科学研究院(当时是武汉邮电学院)就开始研究光纤通信。由于武汉邮电科学研究院采用了石英光纤、半导体激光器和编码制式通信机正确的技术路线,使我国在发展光纤通信技术上少走了不少弯路,从而使我国光纤通信在高新技术中与发达国家有较小的差距。

我国研究开发光纤通信正处于十年**时期,处于封闭状态。国外技术基本无法借鉴,纯属自己摸索,一切都要自己搞,包括光纤、光电子器件和光纤通信系统。就研制光纤来说,原料提纯、熔炼车床、拉丝机,还包括光纤的测试仪表和接续工具也全都要自己开发,困难极大。武汉邮电科学研究院,考虑到保证光纤通信最终能为经济建设所用,开展了全面研究,-1-

除研制光纤外,还开展光电子器件和光纤通信系统的研制,使我国至今具有了完整的光纤通信产业。

1978年改革开放后,光纤通信的研发工作大大加快。上海、北京、武汉和桂林都研制出光纤通信试验系统。1982年邮电部重点科研工程“八二工程”在武汉开通。该工程被称为实用化工程,要求一切是商用产品而不是试验品,要符合国际CCITT标准,要由设计院设计、工人施工,而不是科技人员施工。从此中国的光纤通信进入实用阶段。

在20世纪80年代中期,数字光纤通信的速率已达到144Mb/s,可传送1980路电话,超过同轴电缆载波。于是,光纤通信作为主流被大量采用,在传输干线上全面取电缆。经过国家“六五”、“七五”、“八五”和“九五”计划,中国已建成“八纵八横”干线网,连通全国各省区市。现在,中国已敷设光缆总长约250万公里。光纤通信已成为中国通信的主要手段。在国家科技部、计委、经委的安排下,1999年中国生产的8×2.5Gb/sWDM系统首次在青岛至大连开通,随之沈阳至大连的32×2.5Gb/sWDM光纤通信系统开通。2005年3.2Tbps超大容量的光纤通信系统在上海至杭州开通,是至今世界容量最大的实用线路。

中国已建立了一定规模的光纤通信产业。中国生产的光纤光缆、半导体光电子器件和光纤通信系统能供国内建设,并有少量出口。

有人认为,我国光纤通信主要干线已经建成,光纤通信容量达到Tbps,几乎用不完,再则2000年的IT泡沫,使光纤的价格低到每公里100元,几乎无利可图。因此不要发展光纤通信技术了。

实际上,特别是中国,省内农村有许多空白需要建设;3G移动通信网的建设也需要光纤网来支持;随着宽带业务的发展、网络需要扩容等,光纤通信仍有巨大的市场。现在每年光纤通信设备和光缆的销售量是上升的。

二、光纤通信的原理及其优点

光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息.

光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。光纤通信之所以发展迅猛,主要缘于它具有以下特点:

(1)通信容量大、传输距离远;一根光纤的潜在带宽可达20THz。采用这样的带宽,只需一秒钟左右,即可将人类古今中外全部文字资料传送完毕。目前400Gbit/s系统已经投入商业使用。光纤的损耗极低,在光波长为1.55μm附近,石英光纤损耗可低于0.2dB/km,这比目前任何传输媒质的损耗都低。因此,无中继传输距离可达几

十、甚至上百公里。

(2)信号串扰小、保密性能好;

(3)抗电磁干扰、传输质量佳,电通信不能解决各种电磁干扰问题,唯有光纤通信不受各种电磁干扰。

(4)光纤尺寸小、重量轻,便于敷设和运输;

(5)材料来源丰富,环境保护好,有利于节约有色金属铜。

(6)无辐射,难于窃听,因为光纤传输的光波不能跑出光纤以外。

(7)光缆适应性强,寿命长。

(8)质地脆,机械强度差。

(9)光纤的切断和接续需要一定的工具、设备和技术。

(10)分路、耦合不灵活。

(11)光纤光缆的弯曲半径不能过小(>20cm)

(12)有供电困难问题。

利用光波在光导纤维中传输信息的通信方式.由于激光具有高方向性、高相干性、高单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光-光纤通信.

光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤.采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信.中国光纤通信已进入实用阶段.

光纤通信的诞生和发展是电信史上的一次重要革命与卫星通信、移动通信并列为20世纪90年代的技术。进入21世纪后,由于因特网业务的迅速发展和音频、视频、数据、多媒体应用的增长,对大容量(超高速和超长距离)光波传输系统和网络有了更为迫切的需求。光纤通信就是利用光波作为载波来传送信息,而以光纤作为传输介质实现信息传输,达到通信目的的一种最新通信技术。

通信的发展过程是以不断提高载波频率来扩大通信容量的过程,光频作为载频已达通信载波的上限,因为光是一种频率极高的电磁波,因此用光作为载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,光通信是人们早就追求的目标,也是通信发展的必然方向。

光纤通信的应用领域是很广泛的,主要用于市话中继线,光纤通信的优点在这里可以充分发挥,逐步取代电缆,得到广泛应用。还用于长途干线通信过去主要靠电缆、微波、卫星通信,现以逐步使用光纤通信并形成了占全球优势的比特传输方法;用于全球通信网、各国的公共电信网(如我国的国家一级干线、各省二级干线和县以下的支线);它还用于高质量彩色的电视传输、工业生产现场监视和调度、交通监视控制指挥、城镇有线电视网、共用天线(CATV)系统,用于光纤局域网和其他如在飞机内、飞船内、舰艇内、矿井下、电力部门、军事及有腐蚀和有辐射等中使用。

三、近几年技术大突破

要全面发挥互联网的潜力,我们必须不断提高网络可靠性、速度和灵活性。这就要求我们构想一种非常可靠、可以灵活地支持新应用和业务而且成本低廉的网络。有一套真正的端到端

解决方案,对于构建更可靠、速度更高而且更灵活的互联网也至关重要。

此外,我们还需要智能网络,它必须提供动态的带宽管理、集成的分组和光纤联网以及通过一体化解决方案实现的协调一致的故障排除功能。将来的网络还必须提供可扩展、可实现业务的多太比特连接管理解决方案,它应该可以集合和整理(groom)波长和子波长(sub wavelength)业务并提供灵活的恢复机制来满足业务需要。

超高容量和超远距离(4000km)解决方案对于演进长途网络也很关键,而先进的DWDM系统则是城域解决方案的一个重要组成部分。可靠性不再是一个业务差分因素,它已成为一项必备要求,而光纤层保护和恢复则是它的一部分。光纤和分组层上采用的经过实践验证的功能恢复方法可以更可靠、智能地根据根本原因处理网络性能下降情况。

要在一个业务要求瞬息万变的环境中提供灵活性,模块化光纤系统是一项必备条件。从收集层到高速核心网之间,我们需要提供多样化的上高速路(OnRamp)手段,使得我们能处理不同的协议和不同的传输速率。这是收集层波分复用设备非常重要的要求。

时分复用(TDM)和密集波分复用(DWDM)技术的发展帮助我们顺利演进了网络以处理业务容量问题。这两种技术可以提高光纤吞吐量模块性,而DWDM还可以提供一种解决容量问题的方法,因为它使服务供应商可以在一根光纤上合并和发送多个光信号。这样,服务供应商便可以灵活地增加专为增加光纤容量而设计的下一代TDM技术,以便通过将时间划分为更短的时间段和增加每秒传输的比特数量来处理比特率。

然而,寻求实现2.5Gbit/s和10Gbit/s以上线路速率的服务供应商还必须满足这一要求。服务供应商们正在寻求可以支持更高光纤核心传输速率的解决方案,以便实现高性能骨干太比特容量并有效管理带宽增长,同时降低在光纤上将每比特业务传输1英里所需的成本。下一代技术的发展可以提高光纤层的容量和效率,而且还可以在一根传输线路速率为40Gbit/s的光纤上支持高达64Tbit/s的容量。这种结构可以扩展到80Gbit/s甚至更高。与DWDM网络设备协同使用时,全新的40G解决方案实现的太比特容量可以实现一种非常优化的解决方案来缓解网络核心的业务拥塞和瓶颈。

40Gbit/s平台可以提高网络的经济高效性,扩大光纤覆盖范围,同时降低对传统网络单元的需求。它在每英里上传输1比特业务的成本最低而且设计小巧,可以减少在中心局中所需的空间。一个完整的40Gbit/s平台将可以集成一个智能ASON(自动交换式光纤网络),以提供在传输层管理容量的功能,同时实现将带宽设置和多种端到端业务迅速重新路由至网络任何地方的灵活性。这有助于确保需求可以得到经济高效的满足。

光纤组件的其它进步和一体化网状体系结构的建立将为服务供应商带来更高效的解决方案。网状网的灵活性可以提高网络效率,同时降低总投资成本。网状体系结构允许进行多种灵活的网络配置,每一种配置都可以支持基于智能光纤交换机的电路设置和所请求保护级别上对不同多级别业务的路由。

多重路由功能允许经济高效的业务设置,而且可以通过缩短恢复时间提高网络的整体可靠性。灵活的带宽管理还使服务供应商可以在必要时租用不同波长。另外,可调谐的发射机将为光纤核心带来更大的灵活性,并通过在所有波长上使用相同激光器来降低库存成本。

四、光通信器件的介绍

光通信器件是光通信的关键部分,对光通信的发展起到了制约的作用,直接影响到整个光纤通信系统设备的技术水平和市场竞争力。随着密集波分复用系统、光传送网和光纤接入网的发展,对器件的质量要求越来越高,并且不断向交换、无线通信、光互连和传感器等领域扩展。

光纤通信器件分为有源器件、无源器件,其中有源器件包括激光器及组件、光纤放大器(以掺铒光纤放大器为主)、发送器、接收器等;无源器件可分为波分复用器、光开关、连接器、衰减器、准直器 隔离器等。

随着目前全光网络、太比特速率以及密集波分复用技术等光纤通信新技术的涌现,由光电集成和光子集成组成的光纤通信器件在整个光纤通信系统中所起的作用越来越重要,用量大增,其占据光纤通信市场份额迅速上升。在2000年,有源器件在整个光通信市场份额占40%,无源器件占9%。同时,光纤通信技术能否持续发展,很大程度取决于器件水平。可以说光纤通信进步的基础在于光器件。

五、光通信材料的介绍

一般而言,新材料的研制开发大多来源于新兴器件技术的需求,对于光纤(Optical Fiber)材料也有类似情形,玻璃作为传输介质的研制探索已有近一个世纪的历史,目的主要在于改善宽频带(Broadband)的长途通信(Teleconmunication),使得借助玻璃纤维传输的光信号优于通过金属电线传导的电信号.

早期的电话是通过电线传输的直流信号,它的强度(音量大小)由碳话筒(Car-fon Microphone)产生的电阻变化而调制.随着真空管(Vacuum Tube)的出现,声信号通过交流载波器(Carrier)而调幅,并建立起间隔为4000Hz的十二个交流载波器组成的频率体系(Frequency Hierarchy).越高的载波频率允许越大的信息承载容量.由于金属电线的阻抗随频率增高而变大,该系统在高于IMHk频率就不能使用.这种限制在二战后被克服,采用单边带微波无线电(Single Sideband MicrowaveRadio)明显地增大了单个传输通道的带宽容量,它们早先通过塔杆而后使用卫星进行传送.后来,可用的频带限制了其增长,人们的汪意力转向波导(Waveguide)以及同轴电缆(Coaxial Cable)的研制开发。

不久同轴电缆就用在大容量的中继主干线路(Trunk Line),但因高损耗而在间距

一、两公里就需放大处理.寻求更有效的系统导致了毫米波导的开发.相比起同轴系统传输600对声音信号,每个波导可提供多达238,000对声音回路.但是,波导系统的复杂性和调节的紧密性使得系统非常昂贵,光通信设想早已被注意,原因在于 10 12 Hz频率的光可提供几乎无限的带宽.然而,主要的障碍在于获得透明的传输介质.最早的实验利用空气来传输,但因雾。烟、雨等干扰而未能实用化.然后,尝试用铝管中的压缩空气来传输,纯净的空气透光性好,不过用于补偿光束发散的透镜会导致高的反射损耗.一种巧妙发明的气体透镜,可对称地加热管中的气体引起密度因而折射率(Refractiv Index)的梯度变化,从而起到聚焦作用,这种通过加热金属管的传输系统同样不大经济.

采用头发丝细的玻璃纤维可以代替气体作为传输质.这种圆柱形纤维中高折射率的内芯,被低折射率的包覆层围绕,从而使光线芯子与包覆层的界面发生全反射,并且无反射损耗地传输.由这种光学特性可以预计,光纤能在比金属波导低的生产和安装成本下达测望的适应性能.若低于lppm的过渡金属杂质,则透明石英光纤能达到小于20 dB/km的损耗.

六、光纤通信的发展前景

FTTH(光纤到家庭)是光纤通信进一步发展的方向,它被公认为理想的宽带接入网。目前,所谓宽带业务,大多是500kbps的影视节目。运营商为了充分利用铜线资源,采用ADSL技术就可提供,这使FTTH成为接入网主流的时间有所推迟。不久的将来,在HDTV普及的情况下,ADSL不能满足要求,而先进的ADSL2+也许可满足1chHDTV/户。如果4chHDTV/户采用FTTH比较合理。在双向业务广泛应用的情况下,上下行不对称的ADSL难以对应。目前,发达国家FTTH建设普遍开展,日本、韩国和美国比较发达,采用各种无源光网PON和以太网技术。中国的运营商和房地产开发商已对FTTH进行了试点。近来出现了所谓的网络电视(IPTV),电信运营商提出IPTV的初衷是考虑到有计算机的人少而有电视机的人多。提出的IPTV是采用专用的机顶盒连接电视机可直接浏览电信网的内容,而不要计算机。IPTV具有常规电视并兼有点播和时移电视的功能,可能会取代常规电视。由于IPTV的发展,影响光纤接入网和FTTH的构建。另外,也产生电信运营商和广播运营商的利益冲突。尽管有限制发牌照政策以保护广播运营商,但大势所趋,不可阻挡。实际上,许多广播运营商也开始改造其广播网为数字双向,也具备了发展IPTV的功能。广播运营商和电信运营商的界限开始有些模糊。

七、总结:

光纤通信系统可以传输数字信号,也可以传输模拟信号。用户要传输的信息多种多样,一般有话音、图像、数据或多媒体信息。光纤通信系统,包括发射、接收和作为广义信道的基本光纤传输系统。在任何一种通信网络中,光纤是核心和关键。现代通信系统的发展日新月异,新技术、新产品的不断出现,它迅速改善和提高了人们的生活水平

参考文献: 光纤通信 刘增基 周洋溢西安电子科技大学出版社

光纤光学刘明德中国科学出版社

光纤通信系统欣婉仪北京邮电大学出版社

第四篇:光纤通信的应用和未来发展

光纤通信技术的应用及发展趋势

【摘要】

在互联网技术高速发展以及通信需求不断增长的今天,对通信行业提出的服务要求也越来越高,其中光纤通信技术在我国已经经历了超过30年的研究以及应用历程,该通信技术的诞生以及发展属于电信行业的一次革命性发展,这种通信技术能够优化信息传输质量,同时减少可能出现的串扰问题,可以获得非常理想的实用效果。现阶段,光纤通信技术的应用范围越来越广泛,从电信通信行业逐渐推广应用到电视传输、军事、工业生产过程中的现场监视、电力以及交通监控和有线电视网等领域。本文主要对光纤通信技术的实际应用和未来发展趋势进行探讨,提出笔者的思考和建议,仅供参考。

【关键词】光纤通信技术;应用发展趋势

光纤通信技术应用方面主要有:将光波当做信息载体实现传播功能;将光纤当做延续传播介质。现阶段,在信息通信来说,光纤通信属于第四代通信方式。具有的特点主要为:质量轻、传播速度快、损耗不大以及体积小,同时其传输频带非常宽,能够有效抵抗大多数电磁干扰。其所具有的这些优势使光纤通信慢慢变成了社会主流。现在,我国大多数通信领域都架设有光纤,同时相关业务依然在继续拓展,得到了越来越多生产以及服务领域的认可。深入了解以及研究这种通信技术的具体应用,可以促进我国信息化的发展。

1光纤通信技术

所谓光纤通信,就是光导纤维通信,通过光导纤维来有效传输信号,从而达到信息传递目的的通信方式,我们可以将这种光纤通信当做以光导纤维为媒介的一种光通信方法[1]。其中光纤主要组成部分有:涂层、纤芯以及包层,而内芯通常只有几十微米或者是几微米,其直径比发丝还小;包层就是中间层,利用纤芯以及包层具体折射率的差异,让光信号可以在纤芯里面进行全反射,即传输光信号;其中涂层主要就是为了提升光纤所具有的韧性,从而保护光纤不受损害。光纤通信系统里面的光线并不是只有一根,而是由大量光纤一起聚集成的光缆,这种由大量光纤构成的光缆之所以可以在单位时间里面传送庞大的信息,主要是因为这种光缆的光波频率非常高,并且光纤传输频带非常宽,所以其传输容量相对较大。这种光纤通信技术所具有的优点包括:体积比较小,重量非常轻,采用的金属材料非常少,具有较强抗电磁干扰性能以及抗辐射性能,具有非常好的保密性,可以防窃听、频带比较宽以及抗干扰性能很好,价格比较便宜等,同时其所采用的光线材料来源非常丰富,能够减少很多有色金属的应用,直径非常小,也不重。2光纤通信技术的具体应用 2.1在通信方面的应用

现阶段,在通信领域里面,光纤通信技术利用光导纤维当做传播介质的这种光纤通信起着非常重要的作用。特别是在城域通信、本地通信以及国际通信等通信行业中,光纤通信技术得到了非常广泛的应用[2]。同时,光纤通信技术正在不断扩展,变成了通信领域里面非常关键的一项技术,有效促进了整个通信行业的进一步发展。

2.2电力通信方面的应用

目前,现代化社会所具有的主要标准包括电气化,在所有生活能源中,电力所占比例已经大于70%,在我国现代化发展程度不断提升以及经济迅猛发展的条件下,国家电网需要承受的负荷也在不断增加[3]。电力系统传统远程通信结合人工调节的通信方式已经脱离了现代化社会的具体发展需求,引进并且有效使用电气自动化技术的前提之一就是对电力系统里面的通信网络进行不断的完善。安全稳定以及高效的通信网络能够保证在智能系统协助下的这种电气自动化设备投入正常运行,所以,光纤通信技术是非常理想的一个选择。现阶段,我国大部分电力系统里面的主干线以及各区域里面的接入网络均采用了光纤通信,这种通信技术不仅能够有效提升电网所具有的稳定性以及可靠性,同时也能够减少大量资金成本,降低额外花费。

2.3在传媒行业的具体应用

对传媒行业来说,其主要包含有无线信号接受终端、广播以及电视等,而输出产品大部分都是声音以及图像,所以其对信号稳定性以及传播速度方面的要求非常高[4]。而光纤通信技术就同时具有非常强的抗干扰性、稳定性以及高效性,能够确保电视信号以及电波信号在远距离传播过程中不发生损耗,以此来确保画面质量以及声音品质。现阶段,很多大型媒体单位均开始投资建设采用了光纤技术的相应信号发布设备,从而保证给社会带来品质非常高的音频以及视频。

2.4在互联网中的具体应用

最具有代表性的是光纤通信以及互联网的嫁接,由于其本身所具有的特性,使得用户上网速度提升了很多,同时因为其传播形式主要是光信号,不会产生很多损耗,因此在转化数字信号的时候就更加清晰,弥补了传统通信方式这方面的不足。此外,光纤通信用在居民家庭,能够提升上网速度以及有效促进我国互联网的发展,其中主要包含有物流、电子商务以及网上银行等。网上用户通过电脑就能够快速进行下单以及支付,同时利用网络可以快速跟踪产品具体物流情况。

2.5在军事方面的具体应用 对于现代化战争以及国防事业来说,先进军事装备所具有的信息化程度也逐渐在提升,世界各国都在深入研究信息战争[5]。对于保密措施,因为光纤通信能够降低信号泄漏率,很难被窃听,并且能够提升其所具有的可靠性以及稳定性,因此,现阶段其在世界各国军事方面的应用非常广。此外,光纤传输具有非常大的容量,能够满足各种要求。

3光纤通信技术的发展趋势

尽管光纤通信技术已经越来越实用化,同时可以有效满足现代社会各方面的需要,可是依然没有将光纤通信所拥有的全部潜力充分发挥出来,目前只应用了其全部潜力的大约1‰[6]。在现今光纤通信技术不断趋于完善以及电信市场慢慢改革的条件下,相关人员应该深入研究以及应用光纤通信在不同方向的发展,结合数字化和具体网络化要求,对通信网络建设进行进一步改善,现阶段,光纤通信技术未来发展趋势为:

3.1通信信道容量持续增大,实现超大容量

实际应用光纤通信技术的时候,各项技术和各种使用设备已经出现了明显转变,特别对于系统核心技术。现阶段,采用了光纤通信技术的那种l0Gbps系统开始装备庞大的网络系统,这一系统对光缆产生的极化模色散非常敏感,从而可以显著提高光纤通信信息传输效果。然而现今光纤电缆以及10Gbps系统依然有很多互相不匹配的地方,如果进一步优化上述内容,就能够提高光纤通信传输速度和信息容量。同时,最近几年有效应用了一种波分复用技术,其可以显著提升光纤通信传输速度和信息容量,在以后的通信传输系统里面的应用前景非常具广阔。

3.2光孤子通信

进行超大容量传输的时候,这种孤子传输技术能够显著改善色散给容量和信息传输距离带来的影响,可以从根本上对信息传输质量进行有效的改善,这对通信建设来说有着非常重要的意义。孤子传输技术里面的孤子具有非常强的抗干扰性,可以对极化模色散产生抑制作用,同时能够通过光纤非线性来平衡色散,加大无中继具体传输距离。尽管孤子技术依然有很多技术难题需要攻克,可是在人们的努力下,孤子技术一定在以后的大容量、长距离以及高速全光通信里面,尤其是在未来海底光通信系统里面,有着非常大的发展空间。

3.3实现全光网络

可以说,全光网属于光纤通信的未来。这种全光网络通过光节点代替原来的电节点,并且节点间也均为全光化,需要传送的信息通过光的形式实现传输以及交换,而交换机处理具体用户信息的时候,不再依据比特,是按照其波长来选择路由。现阶段,该课题受到了广泛的关注,尽管依然处于发展初期,可是已经明确知道了全光网的巨大发展前景。克服电光瓶颈是未来光通信有效发展的一种必然选择,同时也属于未来信息网络的一个核心。

4结束语

对于光纤通信技术来说,其主要通过光导纤维进行信息传递,实际应用中应用的是大量光纤维构成的光缆,组成一种光纤通信系统。这种光纤通信技术的优点非常多,使得其在社会各个领域的应用越来越广泛。光纤通信技术以后的发展方向主要是:超大容量、高速以及低价。在光纤通信发展过程中,应该不断投入科技人才,勇于创新,进行不断的突破,让光纤通信技术不断为社会的有效发展做出贡献,这样才能迎来全光网时代。

参考文献

[1]李岩.探讨光纤通信技术的应用及未来发展趋势[J].城市建设理论研究,2014(15):48~49.[2]王维平,赵旭.光纤通信技术的发展及趋势[J].河南科技,2013(17):2.[3]王晓波.论光纤通信技术的发展及应用[J].电子制作,2015(10):162.[4]白建春.光纤通信技术的发展及其应用[J].中国新技术新产品,2010(3):34.[5]徐昊.浅议我国光纤通信技术的应用与发展趋势[J].消费电子,2014(4):107,109.[6]林龙.光纤通信技术的重要特点及未来发展趋势[J].科技创业家,2014(6):213.作者:陈学锋 单位:国网福建省电力有限公司信息通信分公司

第五篇:光纤通信技术的发展及展望

通信原理论文

通信技术的新宠—光纤通信技术

班级:信息101 学号:201027012 姓名:张化迪

通信技术的新宠—光纤通信技术

摘要:

光纤通信技术就是以光波作为消息载体,以光导纤维作为传输媒介的一种通信技术。光纤通信的历史虽然不长,但其发展速度和规模却十分惊人。光纤通信以其宽带、大容量、低损耗、中继距离长、抗电磁干扰、体积小、重量轻、便于运输和敷设等一系列优点,成为当代信息传输的最主要的一种技术手段。

关键词:

通信技术、光纤通信、光通信历史、光纤通信发展趋势

正文:

一、光通信的发展历史:

1.古老的光通信技术: 光无处不在,在人类发展的早期,人类已经开始使用光传递信息,举例来说:打手势是一种目视形式的光通信,在黑暗中不能进行。白天太阳充当这个传输系统的光源,太阳辐射携带发送者的信息传送给接收者,手的动作调制光波,人的眼睛充当检测器;3000多年前就有的烽火台以及直到目前仍然使用的信号灯、旗语等都可以看作是原始形式的光通信。

这类古代的光通信方式有显著的缺点,一是它们能够传输的容量极其有限。二是其所利用的自然光为非相干光,方向性不好,不易调制和传输;第三点是这种通信技术以空气作为传输介质,损耗会很大,无法实现远距离传输,又易受天气影响,通信极不稳定可靠。

2.现代光通信技术发展简述:

要发展光通信,最重要的问题就是要寻找适用于光通信的光源和传输介质。(1)光源

1960年,美国的梅曼(T.H.Maiman)发明了红宝石激光器,它可以产生单色相干光,使高速信息的光调制成为可能。

1970年,美国贝尔实验室研制出在室温下连续工作的砷化镓铝半导体激光器,为光纤通信找到了一种可实用化的光源器件。后来逐渐发展到性能更好、寿命更长的异质结条型激光器和现在的分布反馈式单纵模式激光器以及多量子阱激光器。

在研究光通信光源的同时,人们进行了多种光波导的研究,其中包括光导纤维。

(2)传输介质 1966年,美籍华人高锟发表了关于传输介质新概念的论文,指出了利用光纤进行信息传输的可能性和技术途径,奠定了光纤通信的基础。

1970年,美国康宁公司研制出成功损耗仅为20dB/km的石英光纤。从而明确了光通信的发展目标。1974年美国贝尔实验室制造出了损耗为1db/km的光纤,到1990年损耗降到了1.1dB/km。

至此制约光纤通信的两个关键问题,光源和传输媒介问题都得到了解决。光纤通信的普及和推广获得了高速发展的基本条件。

二、探讨光纤通信的可应用性

光纤通信技术近年来迅速发展,已经成为当代信息传输的最主要的技术手段,这些与其自身的特性是分不开的。

光纤是光导纤维的简称,光纤通信是以光波作为消息载体,以光导纤维作为传输媒介的一种通信技术。光纤通信以其宽带、大容量、低损耗、中继距离长、抗电磁干扰、体积小、重量轻、便于运输等一系列有点,在信息传输的多种方式中脱颖而出。

光纤通信系统主要由电端机、光端机、光中继器和光缆组成。

1.电发送端机

如果信源是数字信号,电发送端机即成为信源;如果信源是模拟信号,电发送端机把其转换为电数字信号。2.光发送端机

光发送端机主要由光源、驱动电路和控制电路组成。电发送端机给出的电数字脉冲信号经过线路编码形成适合于光纤通信的码型。驱动电路用该码型对光源发出的光波进行调制,并将调制后的光信号耦合到光纤纤芯上去传输,完成电/光转换。3.中继器

中继器起到放大信号功率、延长通信距离的作用。4.光端接收机 光端接收机主要由光检测器、前置放大器、主放大器、均衡器、时钟提取电路、取样判决器以及自动控制增益电路组成。其功能是将光纤传输过来的微弱光信号,经光检测器转变为电信号,然后再经放大电路放大到足够大的电平,送到电接收端机。5.电接收端机

电接收端机接收判决器输出的再生码元数据流,并还原为信宿可接收的形式。

三、光纤通信的特点

光纤通信获得如此巨大的发展和广泛的应用是与其自身所具有的许多特点密切相关的。

1.传输损耗小,中继距离长。

在长途光纤通信系统中,通常大约每2km需要一个光纤熔接点,每个熔接点的损耗不超过0.2db。光纤的这种低损耗特点支持长距离无中继传输。并可大大减少系统的维护费用。

2.传输频带宽,通信容量大。

用于光纤通信的近红外区段的光波波长为800~2000nm之间,具有非常宽的传输频带。

3.抗电磁干扰,保密效果好。

光纤的非金属制造材料决定了它是一种电磁绝缘体,因此高压、雷电、磁暴都不能对它产生影响。其次,光波的频率很高,而各种外界电磁干扰信号的频率相对来说较低,很难对它产生干扰。光信号一旦逸出就会衰减消失,具有极强的保密效果。

4.体积小、重量轻、便于运输和敷设

光纤制成的光缆直径一般为十几毫米,比金属制作的电缆线径细、重量轻,在长途运输或敷设的时候空间利用率高。

5.原材料丰富、有利于环保

制造光纤的主要原料石英在地球上储量十分丰富,而制造电缆的铜、铝等有色金属材料储量有限且造价昂贵。光纤还具有耐高温、化学稳定性好、抗腐蚀能力强,不怕潮湿、可在有害气体下工作的优点。

但是,光纤传输媒介有其自身的不足,光纤质地脆弱易断,需要适当增加保护层保护;光缆铺设时弯曲半径不宜太小,否则会产生弯曲损耗;切断和连接光纤时需要高精度溶解技术和器具,接续点存在着接续损耗;光信号的分路耦合也不是很方便。但这些不足在现在都一一被人类克服。从长远来看,光纤通信技术完全会成为通信技术领域的新宠儿。

四、光纤通信的前景

(1)向超高速系统的发展。光纤通信系统的传输速率在过去20多年来一直在持续增加,未来的光纤高速系统的出现不仅会增加业务传输容量,也会为各种各样的新业务,特别是宽带业务和多媒体提供了实现的可能。

(2)向超大容量波分复用系统的演进。如果将多个发送波长适当错开的光源信号同时在一极光纤上传送,则可大大增加光纤的信息传输容量,满足波分复用的基本思路。

(3)新一代的光纤。近几年来随着IP业务量的爆炸式增长,传统的单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。

(4)光接入网。过去几年间,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都已更新了好几代。另一方面,现存的接入网仍然是被双绞线铜线主宰的(90%以上)、原始落后的模拟系统。两者在技术上的巨大反差说明接入网已确实成为制约全网进一步发展的瓶颈。唯一能够根本上彻底解决这一瓶颈问题的长远技术手段是光接入网。

五、结束语

总的说来,任何一项技术的发展都是要与人类生活相适应的。目前社会,很多产品都在向小型化、集成化方向发展,光纤通信领域的设备也不例外,而其技术则在向越来越有利于人类的方向发展,这些技术、设备的进步都是在我们的研究中不断进步的,并且我国的光纤通信技术的建设还需要我们进一步的学习和研究发展。

【参考文献】:

[1] 樊昌信 曹丽娜编著 《通信原理》

[2] 崔健双主编 《现代通信技术概论》 [3] 穆道生主编 《现代光纤通信系统》

下载光纤通信的发展(精选)word格式文档
下载光纤通信的发展(精选).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    光纤通信技术的发展及趋势

    关键词:光纤通信技术 发展历史 现状 发展趋势摘要:本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进......

    光纤通信

    1、 什么是光纤色散?光纤色散主要有几种类型?其对光纤通信系统有何影响?由于光纤中所传信号的不同频率成分, 或信号能量的各种模式成分, 在传输过程中,因群速度不同互相散开,引起传......

    光纤通信

    光纤通信系统包括实现点对点通信的全部设施,主要偶传输系统,用户终端,接入设备和交换设备四个部分组成。 光纤传输系统 一般有光发射机,光传输线路,光接收机等功能部分的组成 电......

    光纤通信

    光纤通信课堂题目1. SDH有一套标准化的信息结构等级,称为同步传送模块STM-N。 2. 准同步数字体系的帧结构中,如果没有足够的运行和维护。 3. SDH中STM-1的速率是 4. SDH中STM-......

    光纤通信

    第五章: 1.光纤通信是以光波为载波、光导纤维(简称光纤)为传输媒质的一种通信方式。 光纤通信的特点:① 传输频带宽,通信容量大。② 传输损耗低,中继距离长。 ③ 抗电磁干扰。④......

    光纤通信

    光纤通信 1966年英籍华人博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。1977年美国在芝加哥......

    光纤通信

    光纤通讯即使光纤比金属线对小得多,而且硅石(在光纤中最广泛应用的材料)资源比起铜来说是极大的丰富,但生产光纤拉丝棒的成本比制造金属电线高的成本好几倍。此外,研究表明在一段......

    光纤通信

    常规单模光纤0色散波长为 1310nm 石英光纤最小损耗波长为 1550nm 光纤通信常用的波长为 1550nm 1310nm 850nm 光线色散有 模式色散 材料色散 波导色散 后两者统称色度色散......