快速提升数学成绩学习方法总结
快速提升数学成绩学习方法总结1
数学题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现数学思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。
1、知识点是一个方面,考试技巧又是另外一个方面。选择填空题比较简单,可能只有一个知识点,要确保不失分。数学计算题要认真过程很重要,不要在数值计算上犯低级错误。证明简答一定不要遗落关键步骤。实在有问题做不出来可以两边推理,可以找到关键步骤。
2、拿到一道题,试着用老师讲的知识点去解答,如果不能解出来,那么翻看答案,对于数学答案中出现的概念,公式全部回去看课本,具体做法参照第一步骤,等到这些全部弄懂,你再不看答案做一次,如果还是不能完全做出,再重复做,知道你能思路完全清晰做出来为止。
还有不知变通的问题,每道题,除了基础知识和公式外,其实还有一种解体思路在,出题变化一般也是要你变化解题思路,这也是靠积累的',比如你做一道数学三角函数的题,如果你一直做的题目都是大概那种思路,但是你突然做到一种不一样问法的,这时就需要你把这道题记下来,这些步骤都是急不来的,慢慢积累,坚持下去。
快速提升数学成绩学习方法总结2
1、很多高一学生都在抱怨,为什么努力了那么久,数学成绩还没有提升呢?在他们的眼中,努力就是按时完成作用,好好做题,但是成绩却没有提升。但是,这是因为他们没有分清“视力和视野”有什么区别。很多高一学生只跟着老师的思路,老师安排什么任务,她就做什么。没有自己的学习计划,这样是学不好数学的。
2、记好课堂笔记。不要以为记笔记是文科科目的专利,数学也是需要做笔记的'。高一学生要清楚做笔记的意义。高中课堂每节课只有45分钟,在这45分钟里并不能每个知识点都能记住和掌握的,这个时候就需要高一学生把自己没有理解的知识记下来,等到下课的时候再去研究。而且,做笔记也是一个总结整理的过程,也是再次学习的过程。
3、学好课本知识。对于高一学生来说,大部分数学知识都是来源于课本的,只有少部分是来自课外拓展。高一学生想要学好数学,就要利用好课本,把课本上的知识点都理解掌握了。平时做题的时候,也应该以课本为重,高一学生可以把数学课本上的习题都做好了,再做其他的题。
4、做题后反思。高一学生一定要明确一点,就是现在做的题不等于考试的题目。高一学生做题的目的是为了学习正在做的题目的解题思路和方法。因此,高一学生要学会把自己做的每道题都加以反思,总结自己的收获。
快速提升数学成绩学习方法总结3
观察能力
一个有较强的观察能力的学生,在观察实验时和自己做实验时,就能抓住过程和现象的特征,能够敏锐地发现一些原来设想不到的或有细微差别的现象,也能从周围的日常生活中获得很多的知识。怎样培养自己的观察能力呢?观察时必须目的明确、专心致志,抓住观察现象的特征。对实验的每一步骤,都要明确主要是探索或验证什么,把观察的注意力集中到这点上。观察还必须精细,留心有什么新的现象发生,而不是浮光掠影、视而不见。
我们还要敏于观察,对一些现象还要反复观察。在观察过程中积极思考,在实践中就能不断提高自己的观察能力。
思维能力
思维能力是各种能力的核心。思维包括分析、综合、概括、抽象、推理、想象等过程。应通过概念的形成、规律的得出、模型的建立、知识的应用等培养思维能力。因此,在学习过程中,不但要学到知识,还要学到科学的`思维方法,发展思维能力。
要提高思维能力,就要经常用比较法进行学习。首先,在学习每一个新概念时,不但听老师讲解,还要自己进行比较,找出相似的例子,加深认识。第二,学到意义相近的概念、规律时加以比较,从多角度、多方面分析其区别与联系。经常用比较法进行学习,可以学会全面分析问题,从多种事物发现它们的联系、区别和各自特征,使思维的广阔性和深刻性得到提高。
实践动手能力
学习中既要善于动脑,也要善于动手。实际操作能力主要指能够做出东西来,并且养成一系列有关智力的意志品质(如事前设计好操作步骤、能正确使用仪器和工具、注意准确和精密、及早纠正偏差或迅速改用更合理的方案等)。课堂上做好分组实验和随堂小实验,在课外积极参加各种创意实验设计和科技发明创造活动,都能使自己的实践动手能力得到很好的提高。在课堂、课外的实验和各项设计、制作活动中,都要努力和现代信息技术的应用结合起来,培养收集、处理和利用信息的能力。
创新精神和创造能力
培养自己的创造才能,首先要学会发现问题,敢于提出问题。爱因斯坦说过:“发现问题往往比解决问题更重要。”要敢于对已有的结论提出疑问,敢于抒发自己的不同意见,敢于通过自己的探索去“发现”知识。要通过课内老师指引下的研究性学习,以及课外自订题目、独立进行的研究性的探索,体验知识的发现过程,学会学习,学会思考,学会求异,学会创新。要知道,科学的发展离不开创造,要想将来在科学上有所建树,是离不开创造性思维的。今天具有创新性的学习精神,他日就能在国家的社会主义建设中,抢占科技发展高级领域中的“制高点”,进而控制一大片的开阔地带,成为攀登科技高峰的优秀人才。
高三是高考来临前最后的冲刺阶段了,很多同学都想抓住这段时间,希望可以提高自己的成绩。下面给大家分享一些关于,希望对大家有所帮助。
高三数学成绩快速提升的方法
1、知识点是一个方面,考试技巧又是另外一个方面。选择填空题比较简单,可能只有一个知识点,要确保不失分。数学计算题要认真过程很重要,不要在数值计算上犯低级错误。证明简答一定不要遗落关键步骤。实在有问题做不出来可以两边推理,可以找到关键步骤。
2、拿到一道题,试着用老师讲的知识点去解答,如果不能解出来,那么翻看答案,对于数学答案中出现的概念,公式全部回去看课本,具体做法参照第一步骤,等到这些全部弄懂,你再不看答案做一次,如果还是不能完全做出,再重复做,知道你能思路完全清晰做出来为止。
3.数学题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现数学思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。
4.还有不知变通的问题,每道题,除了基础知识和公式外,其实还有一种解体思路在,出题变化一般也是要你变化解题思路,这也是靠积累的,比如你做一道数学三角函数的题,如果你一直做的题目都是大概那种思路,但是你突然做到一种不一样问法的,这时就需要你把这道题记下来,这些步骤都是急不来的,慢慢积累,坚持下去。
高三数学的复习策略
优化知识体系,提升数学思想
尽管剩下的复习时间不多,但仍要注意回归课本,当然回归课本不是死记硬背,不是像第一轮复习那样“事”无巨细,面面俱到,而是抓纲悟本,对照课本进行回忆和梳理知识。近几年高考数学试题都能在课本中找到“原型”,所以要对课本典型问题进行挖掘推广,发挥其应有的作用。
在知识专题复习中可以进一步巩固第一轮复习的成果,加强各知识模块的综合。尤其注意在知识的交叉点和结合点,进行必要的针对性专题复习。如,平面向量与三角函数,平向向量与解析几何的综合等。在方法专题复习中,以这些重点知识的综合性题目为载体,渗透对数学思想和方法的系统学习。
重视“通法”,淡化“特技”
所谓通法,就是解决问题(通常是某类问题)中具有普遍意义的方法,这种方法通常是以基础知识为依据,以基本方法为技能,它的解题思路合乎一般的思维规律,其具体操作过程能为大多数学生所掌握。
巧法,着跟于提高。巧法的灵魂在于“巧”,即在于它整体的把握问题,灵活地运用“三基”,巧妙地使用条件,是抽象、概括、发散、台情推理的产物。但做为教师必须认识到。巧法中的“关键一招”有不少不属于学习内容的主体,更有不少是一般学生不易掌握的,加知“巧”便意味着运用面相对狭窄,影响面小,所以教学中必须立足通法,兼顾巧法。因此从应试技巧看,也要重视通性通法,因为有了通性通法。虽比不上巧法特技,有时甚至较费时,但有它作“底”,考试时心里就踏实了,不妨先思考一下“巧法”,一时想不出,马上回过头来用通法解,就能稳操胜券。如果没有通法保“底”,一味追求“巧法”,很可能“巧”无结果。因为“巧法”是不容易在考场上灵机一动想出来的,没有扎实的功底。本来倒置追求巧法,反而会自乱阵脚,心慌意乱,一败涂地。
一规范课堂教学,提高复习质量
高三复习的三阶段安排已经是一个常规。第一阶段为全面复习阶段,指导思想是“既要全面系统梳理知识,不留死角,又要适当突出重点”,即“由薄到厚”;目标是“切实抓住‘三基’的教与学,在准确、熟练、规范上下工夫,能解高考中、低档题”。
第二阶段为综合提高阶段,指导思想是“巩固(即进一步巩固第一阶段的复习成果)、提高(即立足基础、重在综合、突出能力”,即“由厚到薄”,目标是“使学生的知识网络化,在台理、迅速上下工夫,提高学生的解题速度和解综合题的能力”。第三阶段为系统巩固阶段,指导思想是“回扣基础,积极应试”;目标是“查缺补漏,理顺知识,熟练解题思想方法,调整心态,提高应试能力”;变最后的模拟练习为找感觉、练灵活、训悟性。
在训练中对题型进行总结
数学学科虽然包涵了46个基本概念、公式,涵盖了18个规律和推论,可是题型终究有限,因此学生不能掉进题海中,平时做题一定要注重质量,不要盲目追求数量。在考试之前,对题型的把握还是有必要的,对相关的题型进行合理的训练也是有必要的。例如数学压轴题部分,如数列综合题、解析几何综合题等,学生在平时已对其专项训练了,那么在考试中,对这些题型的把握能力就增强了很多。学生在题型上可以这样归纳:解析几何部分:曲线的方程与性质;解析几何中的几种探究性问题;最值问题;定点、定值问题;与其它知识交汇性的问题。数列部分:求通项(一般常见的情况有6种);求和(一般常见的情况有7种);数列与不等式的综合运用(一般常见的题型有5种)。
高考中,所有相关的题型,一般都不会超出上述的范围。题型是有限的,我们在训练中如果对每种题型都熟悉了,解题思路也就熟悉了,当看到某块知识点或者某个问题时,马上就明白该题目的知识点是什么,题型是什么,有什么样的基本解题思路,得分点把握如何等,在头脑里会马上构建出解题体系。这就是训练的效果。在考前,学生们也不必再去做更多新的试卷,而应该把之前做过的试卷重新整理,对相关的题型做一次总结,再一次熟悉每种题型的解题思路,这样复习效果肯定不错。一方面,直接把平时训练的收获集中起来;另一方面,增强了自己的解题信心。这些题目可能都做过了,但就是没有总结到位或者归纳到位,那么在考前如果学生这样尝试,效率应该很高。
高三数学考试技巧大全
1、带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,关系。大题角度是个很重要的结论,然后你可以乱吹些上去,最后写出结论。
2、圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下韦达定理,列出题目要求解的表达式,就ok了
3、空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!