相交线与平行线经典证明题和一元一次方程行程类典型题型范文大全

时间:2019-05-12 12:14:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《相交线与平行线经典证明题和一元一次方程行程类典型题型》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《相交线与平行线经典证明题和一元一次方程行程类典型题型》。

第一篇:相交线与平行线经典证明题和一元一次方程行程类典型题型

相交线与平行线经典证明题

1.如图,AB//CD,AE平分BAD,CD与AE相交于F,CFEE。求证:AD//BC。A

D

2FBCE

02.如图所示,已知直线EF和AB,CD分别相交于K,H,且EG⊥AB,∠CHF=60,∠E=•30°,试说明

AB∥CD.E

A

C

HKB

D

3.如图,E在直线DF上,B为直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.4.如图,已知AB//CD,AE//CF,求证:BAEDCF。

B

E

CAFD

一元一次方程行程类典型题型

1.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。

2.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?

3.一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度60公里/小时,我们的速度是5公里/小时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行这部分人。出发地到目的地的距离是60公里。问:步行者在出发后经多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)

4.一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?

第二篇:平行线与相交线证明题

1七年级数学第五章相交线平行线

证明题专项

1如图,已知AB∥CD, ∠1=∠

3AB 试说明AC∥BD.231 C

D2、如图,已知∠BAF=50°,∠ACE=140°,CD⊥CE,能判断DC∥AB吗?为什

F

么? A

B

C

D

E3、如图,已知CD⊥AD,DA⊥AB,∠1=∠2。则DF与AE平行吗?为什么? C

2D

F

E

1A

B4、如图,AB∥CD,AD∥BC,∠A=3∠B.求∠A、∠B、∠C、∠D的度数.D

C5、如图,AB∥CD,直线EF交AB、CD于点G、H.如果GM平分∠BGF,HN平分∠CHE,那么,GM与HN平行吗?为什么?

A BMHF

7、已知∠ACB=600,∠ABC=500,BO、CO分别平分∠ABC、∠ACB,EF是经过点O且平行于BC的直线,求∠BOC的度数。

B图15C8、已知:AD∥BC,∠1=∠2,∠3=∠4.DE与CF平行吗?为什么?

9、已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=500求: ∠BHF的度数。

E

HB

CFD10、如图,直线AB、CD相交于点O,OA平分∠COE,∠COE:∠EOD=4:5,求∠

11、如图21,AB∥DE,∠1=∠ACB,∠CAB=2∠BAD,试说明AD∥BC.

14、如图:已知AD∥BE, ∠1=∠2, 请说明∠A=∠E的理由.DE

3AB

C15、已知如图,直线AB、CD相交于O,OE平分∠BOD,OF平分∠COB,∠2∶∠1=4∶1,求∠AOF的度数。

D如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.E1

2AB

CF16、已知:如图∠1=∠2,∠C=∠D,∠A=∠F相等吗?

FED

试说明理由

H G

27.已知DB∥FG∥EC,A是FG上一点,∠ABD= ABC

60°,∠ACE=36°,AP平分∠BAC,求:⑴∠BAC17、已知:如图2-96,DE⊥AO于E,BO⊥AO,FC⊥AB的大小;⑵∠PAG的大小 于C,∠1=∠2,求证:DO⊥AB.20,若要能使AB∥ED,∠B、∠C、∠D

应满足什么条件?

28.如图,已知∠ABC=90°,∠1=∠2,∠DCA=∠CAB,求证:(1)CD⊥CB;(2)CD•平

分∠ACE.A

D

E22.如图,AOC与BOC是邻补

C

角,OD、OE分别是AOC与BOC的平分线,试

判断OD与OE的位置关系,并说明理由.

30.如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE。

23.如图,AB∥DE,试问∠B、∠E、∠BCE有什么31.如图:直线AB、CD被EF所截,若已知AB//CD,求证:∠1 = ∠2。关系.

B

24.如图,已知∠1=∠2 求证:a∥b.⑵直线a//b,求证:12.

D F

32.已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F

=180°。

33.已知,如图11,∠BAE+∠AED=180°,∠M=∠N,试说明:∠1=∠2.34.如图,E在直线DF上,B为直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由

.35.如图,∠1=∠2,AC平分∠DAB,试说明:DC∥AB.36.如图,∠ABC=∠ADC,BF和DE分别平分∠ABC和∠ADC,∠1=∠2,试说明:DE∥FB.39.如图2-67,已知∠1=∠2,求∠3+∠4的度数.

43.已知AB∥CD,∠1和∠A

E D F

44.如图10,已知AB∥CD,∠1 =∠2,求证:BM∥CN

ANB

DM图10

45.已知,如图11,①若∠BED =∠B +∠D,求证:AB∥CD。②若AB∥CD,求证:∠BED =∠B +∠D

BA

E

DC

图1

147.如图8,直线AB、CD相交于点O,OE⊥AB,∠BOD = 75,求∠EOD的度数 E

D

图8

C

48.已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH,求∠KOH的度数.

49.如图,∠2=3∠1,且∠1+∠3=90,试说明:AB∥

CD.56.如图④,在四边形ABCD中,已知AB∥CD,∠B=60°,你能求出哪些角的度数?为什么?你能求出∠A的度数吗?

50.51.57.如图⑤,在四边形ABCD中,已知∠B=60°.∠C=120°,由这些条件你能判断哪两条直线平行?说说你的理由。

58.如图⑦,∠1=∠2,能判断AB∥DF吗?为什么? 若不能判断AB∥DF,你认为还需要再添加的一个条件是什么呢?写出这个条件,并说明你的理由。

53.如图,已知:∠A=∠1,∠C=∠2,求证:AB∥

CD.59.如图⑧,BC∥DE,小颖用量角器分别画出∠ABC、∠ADE的角平分线BG、DH,想一想,小颖所画的这两条射线BG和DH会平行吗?为什么?(请你先用量角器画出这两条角平分线)

58、如图,把长方形纸片ABCD沿EF折叠,若∠EFG=50º,(1)找出图中也是50º的角;

(2)说明∠FGM=2∠EFG=100º的理由.图

1DE59、如图,E点为DF上的点,B为AC

1=∠2,∠C=∠D,那么DF∥AC,请完成它成立的理由

62.是小明设计的智力拼图玩具.现在小明遇到了下面两个问题,请你帮助解决.(1),.为D=32°ACD=60°保证AB//DE,A应等于多少度?

(2)若GP//HQ,G、F、H之间有什么样的关系?

AB

E

DN

C

63.如图4所示,直线AB、CD被直线EF所截.(1)若1=80°,2=100°,由此你可以判定AB和CD平行吗?为什么?(2)若2=100°,3=100°,由此你可以判定AB和CD平行吗?

F

A

第三篇:相交线与平行线证明题

相交线与平行线证明题

1.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE

2.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。

3.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。

4.已知:如图,求证:EC∥DF.,且

.5.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由.

B

6.如图,已知AB//CD,B40,CN是BCE的平分线,

D 图10

B

C

A

CMCN,求BCM的度数。

N

M

C

D

E

7.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.

E

A

C

F

图Q

B P D

8.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。

求证:GH∥MN。

9.如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,求证:CD∥BE。

10.如图,已知:∠A=∠1,∠C=∠2。求证:求证:AB∥CD。

11.如图,AB//CD,AE平分BAD,CD与AE相交于F,CFEE。求证:

AD//BC

A

B

C

E

第四篇:相交线平行线证明题

相交线平行线证明题

由于分成了2部分那么肯定E在正方形的边上,不然就没分成2部分拉,哈哈。

如果AE是直线,那么不用想拉,呵呵,直接E点就是C点了。

由于可以是曲线,所以才有了其他不同的选择,因为用线围图形的时候,相等面积时候,圆所需要的线最少,知道吧。

不过这里不需要求出来最小是多少,所以不管它是不是圆弧拉,但我们可以得到它与正方形边上的交点肯定没达到C,第一种情况:E在CB或者CD上,显然正方形对称只考虑一种就可以了,不妨设它在CB上,先不管AE是什么样的曲线,我们连接AE,肯定的知道AE是比线段AE长,(两点之间线段最断嘛)。

因为三角形ABE当中AE是斜边,所以很容易得到:

曲线AE>线段AE>AB=2

第二:E在AB或者AD上的情况,同样只考虑在AB上,也不管AE是什么东东,哈哈。

在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,曲线AE=曲线AF+曲线EF>线段AF+线段EF

三角形AEF中,AF+EF>AB,不用说了吧。三角形两边和大于第三边。

所以

曲线AE>AB=2

其实,有需要的时候,我们可以把AE的最小值算出来的,在这里我就不罗嗦拉

证明:因为∠1与∠3互补

所以DE//BC

所以∠1=∠4(两直线平行,同位角相等)

所以∠2=∠4(对顶角相等)

所以∠1=∠2(等量代换)

(电脑打不出“因为”,“所以:,在写证明过程中,将因为和所以改成三个点的样子)

第二:E在AB或者AD上的情况,同样只考虑在AB上,也不管AE是什么东东,哈哈。

在AE曲线上任意取一点F,不与AE重复就是,连接AF,EF。肯定的,曲线AE=曲线AF+曲线EF>线段AF+线段EF

三角形AEF中,AF+EF>AB,不用说了吧。三角形两边和大于第三边。

所以

曲线AE>AB=2

其实,有需要的时候,我们可以把AE的最小值算出来的,在这里我就不罗嗦拉

证明:因为∠1与∠3互补

所以DE//BC

所以∠1=∠4(两直线平行,同位角相等)

所以∠2=∠4(对顶角相等)

所以∠1=∠2(等量代换)

(电脑打不出”因为“,”所以:,在写证明过程中,将因为和所以改成三个点的样子)

第五篇:《相交线与平行线》证明题专项训练A

《相交线与平行线》证明题专项训练A 第一组---简简单单

1.如图,∠1=∠A,试问∠2与∠B相等吗?为什么? 2.如图,已知OA⊥OB,∠1与∠2互补,求证:OC⊥OD.3.如图,直线ml,nl,∠1=∠2,求证:∠3=∠4.4.如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37º,求∠D的度数.第二组---相信自己

5.如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.6.如图,BD平分∠ABC,•DF•∥AB,•DE•∥BC,•求∠1•与∠2•的大小关系. 7.如图,已知∠BAP与∠APD互补,∠1=∠2,求证:∠3=∠4.8.如图,已知∠ABC+∠ACB=110°,BO、CO分别是∠ABC和∠ACB的平分线,EF过点O与BC平行,求∠BOC的度数.第三组-----善于思考

9.如图,已知: DE∥AB,DF∥AC,试说明∠FDE=∠A.10.如图,AB∥CD,∠NCM=90°,∠NCB=30°,CM平分∠BCE,求∠B的度数.11.如图,AB∥CD,HP平分∠DHF,若∠AGH=80°,求∠DHP的度数.12.如图,AC⊥AB,EF⊥BC,AD⊥BC,∠1=∠2,试问AC⊥DG吗?请写出推理过程.第四组---转弯抹角

13.如图,M、N、T和A、B、C分别在同一直线上,且∠1=∠3,∠P=∠T,求证:∠M=∠R.14.如图,已知∠1=∠2, ∠B=∠C,你能得出∠A=∠D的结论吗?

15.如图,CD⊥AB于D,FE⊥AB于E,且∠1=∠2,•∠3=80°.求∠BCA的度数 16.如图,AD⊥BC,FG⊥BC,且∠1=∠2,求证:∠BDE=∠C.4 第五组------感受乐趣

17.如图,把一张平行四边形纸片ABCD沿BD对折,使C点落在E处,若∠DBC=15°,求∠BOD的度数.18.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′ 的位置.若∠EFB=65°,求∠AED′的度数.19.如图,把矩形ABCD沿EF对折后使两部分重合,若150°,则∠BEF的度数是多少? 20.一个长方形ABCD沿PQ对折,A点落到A′位置,若∠A′QB=120°,求∠DPA′的度数.第六组-----寻找规律

21.如图,AB∥CD,EM、FN分别平分∠PEB、∠PFN,求证:EM∥FN.22.如图,AB∥CD,EM、FN分别平分∠AEF、∠DFE,求证:EM∥FN.23.如图,AB∥CD,∠BAC的平分线和∠ACD的平分线交于点E,求证:AE⊥CE. 24.如图,OC为平角AOB内的一条射线,OE、OB分别平分∠AOC、∠BOC,求证:OE⊥OF.6 第七组------添加辅助线

25.如图,l1//l2,∠1=120°,∠2=100°,则∠3的度数是多少? 26.如图,AB∥CD,150°,2110°,则∠3度数是多少?

27.如图,已知直线a∥b,在C、D之间有一点M,如果点M在C、D之间运动,问∠

1、∠

2、∠3之间有怎样的关系?这种关系是否发生变化?

28.如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E= 140º,求∠BFD的度数。第八组-----角度利用

29.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,求证:AB∥EF.30.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.31.如图,EF⊥GF于F.∠AEF=150°,∠DGF=60°,判断AB和CD的位置关系,说明理由. 32.如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.33.如下图,AB∥CD,分别探索下面四个图形中∠P与∠A、∠C的关系.第九组----典型考题

34.如下图,已知AB∥CD,试再添上一个条件,使∠1=∠2成立(•要求给出两个答案),选一个答案进行证明.35.如图,已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°,求证:DA⊥AB.36.如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,求BF与AC的位置关系,说明理由. 37.如图,∠1与∠3互余, ∠2与∠3的余角互补, ∠4 =110°,求∠3的度数.第十组------突破极限

38.如下图,已知AE//BD,∠1=130o,∠2=30o,求∠C的度数 .

39.如图,∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE//BC 40.如图,AB∥CD,∠ABF=2∠ABE,∠CDF=2∠CDE,求∠E∶∠F的值.3341.如图,∠XOY=900,点A、B分别在射线OX、OY上移动,BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于C点,试问∠ACB的大小是否发生变化。如果保持不变,请给出证明,如果随点A、B移动发生变化,请求出变化的范围.

下载相交线与平行线经典证明题和一元一次方程行程类典型题型范文大全word格式文档
下载相交线与平行线经典证明题和一元一次方程行程类典型题型范文大全.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    相交线与平行线证明题(填空) 打印

    第二章 相交线与平行线证明填空 1.如图①,∵∠ = ∠ ∴AD∥BC。 (写出一个正确的就可以) 2.如图,已知直线AB、CD被EF所截,且∠EOB+∠DPF=180°.求证:AB∥CD. 解法一:∵∠EOB+∠BOP=180......

    平行线与相交线证明题专项(最终五篇)

    证明题专练二、两组平行线的证明题【找出连接两组平行线的角】1.已知:如图,CD平分∠ACB,AC∥DE,∠DCE=∠FEB,求证:EF平分∠DEB.1、如图已知,AB∥CD.AF,CF分别是EAB、ECD的角平分线,F......

    相交线与平行线证明题专项练习1

    相交线与平行线证明题专项练习如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明. 如图,若AB∥CD,猜想∠A、∠E、∠......

    平行线与相交线几何证明题专项训练

    平行线与相交线几何证明题专项训练1、(1)∵∠1=∠A(已知),∴∥,;(2)∵∠3=∠4(已知),∴∥,(3)∵∠2=∠5(已知),∴∥,;(4)∵∠ADC+∠C=180º(已知),∴∥,. 2,如图,(1)∵∠ABD=∠BDC(已知),∴∥,;(2)∵∠DBC=∠ADB(已......

    相交线与平行线证明题专项练习1

    相交线与平行线证明题专项练习如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明.如图,AB∥CD,∠BEF=85°,求∠ABE+∠EF......

    七年级数学下册《相交线与平行线》证明题

    七年级数学下册《相交线与平行线》测试题一、选择题:(每题2.5分,共35分)1.下列所示的四个图形中,1和2是同位角的是 ...112221③②①A. ②③B. ①②③C. ①②④D. ①④ ④B342D2.如右图......

    【原创】平行线与相交线必背20个证明题(最终定稿)

    平行线与相交线必背20道证明题 一、平行线之间的基本图1、如图已知,AB∥CD.AF,CF分别是EAB、 ECD的角平分线,F是两条角平分线的交点; E F B1求证:FAEC. 2D2、已知AB//CD,此时A、A......

    相交线与平行线的综合证明题训练(精选5篇)

    相交线与平行线的综合证明题训练班级:姓名:一、 填空1、 完成下列推理过程:如图,已知∠A=∠F,∠C=∠D。试说明DB∥EC。 A 证明:∵∠A=∠F∴AC∥DF∴∠E 又∵∠C=∠D∴∠1=∠C ∴BD......