第一篇:平行线的性质__教案
《平行线的性质》教学设计
教学目标:
1、经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。
2、经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
3、在自己独立思考的基础上,积极参与小组活动对平行线的性质的讨论,敢于发表自己的看法,并从中获益。培
养学生勤于思考、勇于探索、钻研的能力。
教学重点:
平行线的三个性质以及综合运用平行线性质、判定等知识解题。
教学难点:
区分性质和判定以及怎样综合运用同位角、内错角、同旁内角的关系解题。
课前准备:多媒体课件、三角尺、直尺。
教学过程
一、导入新课
同学们,老师今天带来一道抢答题,看谁能最快、最准确的回答。请看大屏幕:平行线的判定方法有哪三种?它们是先知道什么,后知道什么?(学生抢答,教师强调)同学们回答得很好,根据同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行。反过来,如果两直线平行,同位角、内错角、同旁内角各有什么关系呢?这节课我们一起探究这个问题。
二、新知探究
1、探索发现(课件展示)
(1)用直尺和三角尺画出两条平行线 a∥b,第三条直线c和这两条直线 a、b相交,并标出所形成的八个角.
(2)用量角器测量上面八个角的大小,记录下来.从中你能发现什么?
(学生动手操作,自主探究,得出结论,合作交流,教师引导分析,巡回指导。小组代表发言,学生相互评价)
课件展示发现问题小结
2、问题验证
(一)验证过程
(1)如果两条直线平行,那么这两条平行线被第三条直线所截而成的同位角,有什么数量关系?(课件展示验证过程及结论)
结论:平行线的性质1(公理)
两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等
(2)如果两条直线平行,那么这两条平行线被第三条直线所截而成的内错角,有什么数量关系?(课件展示验证过程及结论)
平行线的性质
2两条平行线被第三条直线所截,内错角相等 简单说成:两直线平行,内错角相等。
(3)如果两条直线平行,那么这两条平行线被第三条直线所截而成的同旁内角,有什么数量关系?(课件展示验证过程及结论)
平行线的性质
3两条平行线被第三条直线所截,同旁内角互补
简单说成:两直线平行,同旁内角互补。
3、知识小结(学生小结,教师强调,课件展示)
平行线的性质:
性质1:两直线平行,同位角相等.
性质2:两直线平行,内错角相等.
性质3:两直线平行,同旁内角互补.
三、慧眼识金
平行线的“判定”与“性质”有什么不同?
(学生自主学习、同桌讨论,举手发言,相互评价,教师巡回指导,鼓励强调。课件展示)
平行线的判定是:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.而平行线的性质是两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.两个问题的条件与结果正好相反.
四、新知应用(课件展示)
例
1、如图,已知直线a∥b,∠1=500,求∠2的度数
解:∵a∥b(已知),∴∠2=∠1(两直线平行,内错角相等)。
∵∠1=500(已知),∴∠2=500(等量代换)。
例
2、如图,在四边ABCD中,AB∥CD, ∠B=600,求∠C的度数。能
否求得的∠A度数
解:∵AB∥CD(已知)
∴∠B+∠C=1800(两直线平行,同旁内角互补)
∵∠B=600(已知)
∴∠C=1200(等式的性质)。
根据题目的已知条件,无法求出∠A的度数
五、学以致用
1、请同学们运用平行线的性质编一道题.(学生独立完成,同桌交换解答,教师在同学之间巡视、帮助,学生推荐展示,师生评议)
2、教师出题考察(课件展示)
六、知识再现
通过这一节的学习,你在知识和思想上有什么收获?知道了平行线的性质
知道了平行线的判定与平行线的性质的区别.
能运用平行线的判定与性质解决实际问题
平行线的性质是我们自己通过画图、观察、思考得到的结论,因此不论什么事只要我们敢于去做,就会有所收获.]
七、布置作业
教科书第51页习题2.5 第 1,2题
第54页习题2.6 第 1,2题
教学反思:
本课向学生讲解了平行线的三个性质以及综合运用平行线性质、判定等知识解题,大部分学生理解了平行线的性质应会运用,个别学生还没掌握,应在讲解习题时着重强调。
第二篇:平行线性质教案
平行线的性质教案2 教学目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.重点、难点
重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.教学过程
一、引导学生逆向思维
现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?
二、实践探究
1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).2.学生测量这些角的度数,把结果填入表内.角 ∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8
度数
3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系? 图中哪些角是内错角?它们具有怎样的数量关系? 图中哪些角是同旁内角?它们具有怎样的数量关系? 在详尽分析后,让学生写出猜想.4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗? 5.师生归纳平行线的性质,教师板书.平行线具有性质: 性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.平行线的性质平行线的判定
因为a∥b, 因为∠1=∠2,所以∠1=∠2 所以a∥b.因为a∥b, 因为∠2=∠3,所以∠2=∠3, 所以a∥b.因为a∥b, 因为∠2+∠4=180°,所以∠2+∠4=180°, 所以a∥b.6.教师引导学生理清平行线的性质与平行线判定的区别.学生交流后,师生归纳:两者的条件和结论正好相反: 由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论.7.进一步研究平行线三条性质之间的关系.教师:大家能根据性质1,推出性质2成立的道理吗? 结合上图,教师启发分析:考察性质
1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程.因为a∥b,所以∠1=∠2(两直线平行,同位角相等);又∠3=∠1(对顶角相等),所以∠2=∠3.教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由.学生仿照以下说理,说出如何根据性质1得到性质3的道理.8.平行线性质应用.例(课本P23)如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°, 梯形另外两个角分别是多少度?
教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A与∠D、∠B 与∠C的位置关系如何,数量关系呢?为什么? 讲解按课本.三、巩固练习
2.补充:如图,BCD是一条直线,∠A=75°,∠1=53°,∠2=75°,求∠B的度数.本题综合应用平行线的判定和性质,教师要引导学生观察图形,考察已知角的数量关系,确定解题的思路.一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.()2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.()3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.()
二、填空题.1.如图(1),若AD∥BC,则∠______=∠_______,∠_______=∠_______,∠ABC+∠_______=180°;若DC∥AB,则∠______=∠_______,∠________=∠__________,∠ABC+∠_________=180°.(1)(2)(3)
平行线的性质教案2 2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.3.因为AB∥CD,EF∥CD,所以______∥______,理由是________.4.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下: 因为∠ECD=∠E,所以CD∥EF()又AB∥EF,所以CD∥AB().三、选择题.1.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2 的大小关系是()A.∠1=∠2 B.∠1>∠2;C.∠1<∠2 D.无法确定
2.一个人驱车前进时,两次拐弯后,按原来的相反方向前进, 这两次拐弯的角度是()A.向右拐85°,再向右拐95°;B.向右拐85°,再向左拐85°
C.向右拐85°,再向右拐85°;D.向右拐85°,再向左拐95°
四、解答题
1.如图,已知:∠1=110°,∠2=110°,∠3=70°,求∠4的度数.2.如图,已知:DE∥CB,∠1=∠2,求证:CD平分∠ECB.答案:
一、1.× 2.∨ 3.×
二、1.∠1,∠5,∠8,∠4,∠BAD;∠2,∠6,∠3,∠7,∠BCD 2.北偏东56°,两直线平行,内错角相等 3.AB、EF,两条直线都与第三条直线平行,这两条直线也互相平行 4.内错角相等,两直线平行, 两条直线都与第三条直线平行,这两条直线也互相平行
三、1.D 2.A
四、1.70° 2.因为DE∥CB,所以∠1=DCB(两直线平行,内错角相等)又∠1=∠2 所以∠2=∠DCB 即CD平分∠ECB.5.3平行线的性质(第2课时)平行线的性质(二)教学目标
1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题.重点、难点 重点:平行线性质和判定综合应用,两条平行的距离,命题等概念.难点:平行线性质和判定灵活运用.教学过程
一、复习引入
1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE是AB的延长线,AD∥BC,AB∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a⊥b,c⊥b,那么a与c的位置关系如何?为什么?
二、进行新课
1.例1 已知:如上图,a∥c,a⊥b,直线b与c垂直吗?为什么? 学生容易判断出直线b与c垂直.鉴于这一点,教师应引导学生思考:(1)要说明b⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗? 让学生写出说理过程,师生共同评价三种不同的说理.2.实践与探究
(1)下列各图中,已知AB∥EF,点C任意选取(在AB、EF之间,又在BF的左侧).请测量各图中∠B、∠C、∠F的度数并填入表格.∠B ∠F ∠C ∠B与∠F度数之和
图(1)图(2)通过上述实践,试猜想∠B、∠F、∠C之间的关系,写出这种关系,试加以说明.(1)(2)教师投影题目: 学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导: ①虽然AB∥EF,但是∠B与∠F不是同位角,也不是内错角或同旁内角.不能确定它们之间关系.②∠B与∠C是直线AB、CF被直线BC所截而成的内错角,但是AB与CF不平行.能不能创造条件,应用平行线性质,学生自然想到过点C作CD∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD与EF平行,你能做到这一点吗? 以上分析后,学生先推理说明, 师生交流,教师给出说理过程.作CD∥AB,因为AB∥EF,CD∥AB,所以CD∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF.(2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B1C1,B2C2……B5C5都与两条平行线的横线A1B5和A2C5垂直吗?它们的长度相等吗? ②学生实践操作,得出结论:线段B1C1,B2C2……,B5C5同时垂直于两条平行直线A1B5和A2C5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B1C1的特征:第一点线段B1C1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B1C1同时垂直这两条平行线.教师板书定义:(像线段B1C1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.教师画AB∥CD,在CD上任取一点E,作EF⊥AB,垂足为F.学生思考:EF是否垂直直线CD?垂线段EF的长度d是平行线AB、CD的距离吗? 这两个
问题学生不难回答,教师归纳: 两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变.3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行;②等式两边都加同一个数,结果仍是等式;③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断.(2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句.(3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式.师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。
第③命题中,“两个角是对顶角”是题设,“这两角相等”是结论。
三、巩固练习
1.“等式两边乘同一个数,结果仍是等式”是命题吗?它们题设和结论分别是什么? 2.命题“两条平行线被第三第直线所截,内错角相等”是正确的?命题“如果两个角互补,那么它们是邻补角”是正确吗?再举出一些命题的例子,判断它们是否正确.解答:1.是命题,题设是“等式两边乘同一个数”,结论是“结果仍是等式”.2.第一个命题正确,第二个命题错误。可举出例子说明,如两条直线平行,同旁内角互补,但这两个同旁内角不是邻补角。对于学生所举的错误命题,教师应给归纳一下,有两类:第一类是命题题设不足于确定命题结正确,如“同位角相等”,这里条件不够;第二类命题是在命题的题设下,结论不正确。
一、填空题.1.用式子表示下列句子:用∠1与∠2互为余角,又∠2与∠3互为余角,根据“同角的余角相等”,所以∠1和∠3相等_________________.2.把命题“直角都相等”改写成“如果……,那么……”形式___________.3.命题“邻补角的平分线互相垂直”的题设是_____________, 结论是____________.4.两条平行线被第三条直线所截,同旁内角的度数的比为2:7, 则这两个角分别是____________度.二、选择题.1.设a、b、c为同一平面内的三条直线,下列判断不正确的是()A.设a⊥c,b⊥c,则a⊥b B.若a∥c,b∥c,则a∥b
C.若a∥b,b⊥c,则a⊥c D.若a⊥b,b⊥c,则a⊥c
2.若两条平行线被第三条直线所截,则互补的角但非邻补角的对数有()A.6对 B.8对 C.10对 D.12对
3.如图,已知AB∥DE,∠A=135°,∠C=105°,则∠D的度数为()A.60° B.80° C.100° D.120°
4.两条直线被第三条直线所截,则一组同位角的平分线的位置关系是()A.互相平行 B.互相垂直;C.相交但不垂直 D.平行或相交
三、解答题.1.已知,如图1,∠AOB纸片沿CD折叠,若O′C∥BD,那么O′D与AC平行吗?请说明理由.2.如图,已知B、E分别是AC、DF上的点,∠1=∠2,∠C=∠D.(1)∠ABD与∠C相等吗?为什么.(2)∠A与∠F相等吗?请说明理由.3.如图,已知EAB是直线,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.4.如(图4),DE∥AB,DF∥AC,∠EDF=85°,∠BDF=63°.(1)∠A的度数;(2)∠A+∠B+∠C的度数.答案:
一、1.因为∠2+∠1=90° 又∠2+∠3=90°,所以∠1=∠3(同角的余角相等)
2.如果两个角是直角,那么这两个角相等
3.两个角是邻补角,这两个角的平分线互相垂直 4.40°,140°
二、1.D 2.B 3.D 4.D
三、1.平行
因为O′C∥BD
所以∠2=∠3(两直线平行,内错角相等)
又∠1=∠2,∠3=∠4
所以∠1=∠4
所以AC∥O′D(内错角相等,两直线平行)
2.(1)相等.因为∠1=∠2,所以BD∥CE(内错角相等,两直线平行)
所以∠ABD=∠C(两直线平行,同位角相等)
(2)相等 因为∠ABD= ∠C 又∠D=∠C
所以∠D=∠ABD
所以DF∥AC(内错角相等,两直线平行)
所以∠A=∠F(两直线平行,内错角相等)
3.∠B=∠C 因为AD∥BC
所以∠B=∠EAD(两直线平行, 同位角相等), ∠C=∠CAD(两直线平行,内错角相等)
又∠EAD=∠CAD(角平分线定义)所以∠B=∠
第三篇:平行线性质
平行线性质
平行线的性质
1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
4.在同一平面内的两线平行并且不在一条直线上的直线。
有关平行线:
1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
如:AB平行于CD,写作AB∥CD
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
3.平行公理的推论(平行的传递性):
平行同一直线的两直线平行。
∵a∥c,c∥b
∴a∥b
平行线的判定:
1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
基本规律
1.平行线的性质和判定中的条件和结论恰好相反。
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。
平行线的性质
1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
4.在同一平面内的两线平行并且不在一条直线上的直线。
有关平行线:
1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
如:AB平行于CD,写作AB∥CD
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
3.平行公理的推论(平行的传递性):
平行同一直线的两直线平行。
∵a∥c,c∥b
∴a∥b
平行线的判定:
1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
基本规律
1.平行线的性质和判定中的条件和结论恰好相反。
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。
第四篇:平行线性质
《平行线的性质》教学设计
作者: 来源: 时间:2009-5-18 10:19:16 阅读47次 【大 中 小】
一、教学目标
1、知识与技能目标:经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、能力目标:经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。
3、情感态度目标:在自己独立思考的基础上,积极参与小组活动对平行线的性质的讨论,敢于发表自己的看法,并从中获益。
4、品质素养目标:培养学生勤于思考、勇于探索、钻研的品质。
为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,我制作了多媒体课件,运用多媒体辅助教学,变静为动,融声、形、色为一体为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。
二、教学重点和难点
重点:平行线的三个性质以及综合运用平行线性质、判定等知识解题。
难点:区分性质和判定以及怎样综合运用同位角、内错角、同旁内角的关系解题。
三、教材分析
平行线是最简单、最基本的几何图形,在生活中随处可见,它不仅是研究其他图形的基础,而且在实际中也有着广泛的应用。因此,探索和掌握好它的有关知识,对学生更好的认识世界、发展空间观念和推理能力都是非常重要的。
教材设置了一个通过探索平行线性质的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。为学生今后的学习打下了基础。
因此,无论在知识技能上,还是在学生能力的培养及感情教育等方面,这节课都起着十分重要的作用。
四、学生情况分析
考虑本校处在城乡结合部,大部分学生的基础比较差,缺乏自学能力,动手能力比较差,所以,这个学期应该重视学生学习兴趣和态度的培养、重视学生的自主探索和合作交流以及新意识的培养。利用七年级学生都有好胜、好强的特点,扭转学数学难、数学枯燥的这种局面。形成一种勤动手、勤动脑,勤探索和肯合作交流的良好气氛
五、课前准备
课前准备:多媒体课件、三角尺、直尺。
六、教学过程
问题与情境
师生互动
设计意图
活动1 你身边的问题
问题: 如图,工人在修一条高速公路时在前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯是左拐300,那么第二个弯应朝什么方向。才能不改变原来的方向。
学生观察,小组讨论,交流问题并发表见解, 教师进一步引导学生分析,引导学生将这个问题如何转化成数学问题。
本次活动应关注的问题是:
1、不改变方向,在数学中理解应是什么,2、在这个问题中包含了什么问题
3、如何将它转化为数学问题。
通过实例,让学生从具体的实例中发现数学问题,进而寻求解决问题的方法,使学生懂得数学来源于现实,服务于现实生活,同时也调动了学生的积极性,提高了学生的兴起, 活动2: 探究平行线的性质
问题:
1、上节课学习了用一把直尺和一块三角板可以画两条平行线,想一想在这个过程中三角尺取到什么作用,你能不能用两把直尺画出两条平行线,如果不能,为什么?
2、自己阅读课本的21页“探究”部分,并把空填好。
用电脑展示在画平行线时三角尺在其中取到的作用。
学生通过学习测量比较得到这些角中上下两个角的关系, 关注的问题是:
1、注意性质具有一般性。不能简单从几个特殊的例子,就断定它就具有某种性质,而需要一个从特殊到一般的推导过程。
2、理清两条直线平行,同位角相等,内错角也相等,同旁内角互补之间的关系。
通过动手测量提高学生的动手操作能力,并培养学生从特殊需要到一般的推理能力,使其从感性上升到理性认识。
活动3: 运用与推理
问题: 你能根据性质1,说出性质2,性质3成立的理由吗?如图, 因为a∥b.所以∠1=∠2(_______)又∠3=∠_____,(对顶角相等)所以∠2=∠3, 类似地,对于性质3,你能说出道理吗? 想一想:这节课开始的那个问题应该如何解决? 学生回答,再由同学补充。老师纠正。
教师引导学生观察因为所以之间的关系。
能过学生做和说,培养学生的一定的表达能力和逻辑推理能力。
活动4 巩固与提高
问题1:如图直线a,b被直线c所截 ,1、如果a∥b ,∠1=60?那么∠2,∠3,∠4为多少度。为什么?
2、如果∠1=60?∠3=120?直线a、b有什么关系?为什么? 问题2:∠1=100?∠5=100?∠2=60?那么∠
4、∠3为多少度? 解:因为∠1=100?∠5=100?BR> 所以∠1=∠____()所以 _____∥_______(), 又因为 ∠2 =60?()所以 ∠4=∠______=______()又因为 ∠4与∠3________()所以 ∠3=180?_____=______?BR> 问题3:填一填
如图,已知:∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC ∠BCD=180?(1)因为∠1=∠ABC, 所以 AD∥_____()(2)因为 ∠3=∠5 所以 AB∥_____()(3)因为∠2=∠4 所以 ______∥______()(4)因为∠1=∠ADC 所以______∥______()(5)因为∠ABC ∠BCD=180 所以 _______∥______()问题4,学与用: 某市为建设社会主义新农村,村村通煤气,市政工作人员已经在道路的两侧铺设了两条平行的燃气管道,如果公路一侧铺设的角度为100?为了便于连接,那么另一侧应以什么角度铺设?为什么? 小结: 布置作业
课本25页的第1、2、3题
由学生独立完成,老师指导,引导学生注意这些之间的关系。
应关注的问题是:
1、平行线的性质和判定的不同。
2、几何推理证明的要领。
3、正确分清推理中因为和所以所表达的意义
通过具体问题,使学生更进一步理解和认识平行线的性质和判定的区别和联系。进一步认识角与角之间的关系,进一步锻炼学生几何证明题的逻辑推理能力
第五篇:平行线性质
孔子教育文化辅导学校
5.3平行线的性质
【知识点】
平行线具有性质:
性质1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。
判断一件事情的语句叫做命题。
【典型例题】
1、如图,已知a∥b,c、d都是a、b的截线,∠1=80°,∠5=70°,∠
2、∠
3、∠4各是多少度?为什么? c
a
b12345d
(2)已知:AB∥EF,∠F=78°时,∠
3、∠4各等于多少度?为什么?
A
E12BCD34F3、如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行,第一次拐的角
∠B是142°,第二次拐的角∠C是多少度?为什么?
C4、如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,你能算出
∠EAD、∠DAC、∠C的度数吗?
EB
AD
BC
5、如图,AB∥A′B′,BC∥B′C′,BC交A′B′于点D,∠B与∠B′有什么关系?为什么?
A
A′
BD C
C′B′
【模拟试题】
一、选择题
(1)两直线被第三条直线所截,则()
A、同位角相等B、内错角相等 C、同旁内角互补D、以上都不对
(2)如果一个角的两边分别平行于另一个角的两边,则这两个角()
(第1页,共4页)
A、相等B、互补C、相等或互补D、这两个角无数量关系(3)如图,下列判断不正确的是()A、∵∠1=∠2∴ ∠ 3= ∠ 4B、∵∠2=∠5 ∴ ∠ 6= ∠ 7
C、∵∠ 5+ ∠ 8=1800 ∴ ∠1=∠2D、∵∠ 3+ ∠ 4=1800 ∴ ∠1=∠2
4.如图a所示,AB∥CD,则与∠1相等的角(∠1除外)共有()
A.5个B.4个C.3个D.2个
AC
B
D
A
ACEDFB
D
(a)(b)(c)
5.如图b所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,•那么∠BDC等于()A.78°B.90°C.88°D.92°
6.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直线平行;
④垂直于同一直线的两直线平行,其中是平行线的性质的是()A.①B.②和③C.④D.①和④
7.若两条平行线被第三条直线所截,则一组同位角的平分线互相()A.垂直B.平行C.重合D.相交
8.如图c所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°9.如图d所示,AB∥CD,则∠A+∠E+∠F+∠C等于()
A.180°B.360°C.540°D.720°
D
EF
B
F
E
G
(d)(e)
10.如图e所示,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(∠1除外)共有()•A.6个B.5个C.4个D.3个
二、填空
1.如图1,已知∠1 = 100°,AB∥CD,则∠2 =,∠3 =,∠4 =. 2.如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE =.C F 1 BB ED DF
B C A B D
图1 图2(第2页,共4页)图图
33.如图3所示
(1)若EF∥AC,则∠A +∠= 180°,∠F + ∠= 180°().(2)若∠2 =∠,则AE∥BF.(3)若∠A +∠= 180°,则AE∥BF. 4.如图4,AB∥CD,∠2 = 2∠1,则∠2 =.
5.如图5,AB∥CD,EG⊥AB于G,∠1 = 50°,则∠E =.
E C
l
1AF 2 B F G
l2D
F D C C A G
图7 图8 图6图
56.如图6,直线l1∥l2,AB⊥l1于O,BC与l2交于E,∠1 = 43°,则∠2 =. 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB互余的角有. 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有个.
三、解答下列各题
9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.A CF
D
图9 10.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.
E
B C
图10
11.如图11,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)
BE
C D
12.如图12,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1 +∠2 = 90°.图 1
1求证:(1)AB∥CD;(2)∠2 +∠3 = 90°.
B A
D C F
四、探索发现:
(第3页,共4页)
图1
2如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明.AP
B
A
PC
D
B
AC
PBD
AC
P
BD
(1)(2)(3)(4)
五、中考题与竞赛题:
1.(2002.河南)如图a所示,已知AB∥CD,直线EF分别交AB,CD于E,F,EG•平分∠BEF,若∠1=72°,则∠2=_______.AC
E
B
A
D
E
BD
C
(a)(b)
2.(2002.哈尔滨)如图b所示,已知直线AB,CD被直线EF所截,若∠1=∠2,•则∠AEF+∠CFE=________.(第4页,共4页)