027不等式证明方法-数学归纳法

时间:2019-05-12 19:15:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《027不等式证明方法-数学归纳法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《027不等式证明方法-数学归纳法》。

第一篇:027不等式证明方法-数学归纳法

高二数学序号027 高二 年级班 教师 方雄飞学生

课题第二讲证明不等式的基本方法(5)数学归纳法

变式训练:(1)用数学归纳法证明:1+4+9+…+n=n(n1)(2n1)

2教学目标:

(1)知识与技能:数学归纳法不等式的原理,数学归纳法不等式的一般步骤,会用数学归纳法证明

简单的不等式.(2)过程与方法:培养学生观察分析的能力、猜想证明的能力、逻辑思维及推理的能力、,从而培

养学生的创造能力.同时注意渗透转化的数学思想.(3)情感态度价值观:培养学生认真参与、积极交流的主体意识和乐于探索、勇于创新的科学精神.教学重点: 用数学归纳法证明不等式的原理思路及步骤。16

教学难点:证明过程中步骤完整性的掌握。教学过程: 复习引入:

关于正整数n的命题(相当于多米诺骨牌),我们可以采用下面方法来证明其正确性:

10.验证n取时命题(即n=n时命题成立)(归纳奠基);20.假设当n=k+1时命题归纳递推).30.由10、20知,对于一切n≥n的自然数n命题!(结论)数学归纳法的实质是寻找一种用有限个步骤,就能处理完无限多个结论的方法。数学归纳法的应用:

例1:用数学归纳法证明:n35n(nN)能够被6整除。

例2:证明贝努利(Bernoulli)不等式:

如果x是实数,且x> 1,且x0,nN*,n≥2.求证:(1+x)n>1+nx.教学小结:

2)用数学归纳法证明:1357(1)

n

(2n1)(1)n

n(3)证明: sinnnsin(nN)

(课后作业:

1、观察下列式子:1

13,2

21

1152,2

31

1117

222

23445、求证:

1115(n2,nN)n1n23n6

则可归纳出____.2、用数学归纳法证明:135...(2n1)n2.3、用数学归纳法证明:

4、用数学归纳法证明:

427310n(3n1)n(n1)2

x2n1y2n1 能被xy整除。

(123...n)

111...1

n2n1.能力提升:用数学归纳法证明:n1且nN

*

时,111

n2

n1n

教学反思:

第二篇:证明不等式方法

不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。1比较法

比较法是证明不等式的最基本方法,具体有“作差”比较和“作商”比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)

例1已知a+b≥0,求证:a3+b3≥a2b+ab

2分析:由题目观察知用“作差”比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。

∵(a3+b3)(a2b+ab2)

=a2(a-b)-b2(a-b)

=(a-b)(a2-b2)

证明: =(a-b)2(a+b)

又∵(a-b)2≥0a+b≥0

∴(a-b)2(a+b)≥0

即a3+b3≥a2b+ab2

例2 设a、b∈R+,且a≠b,求证:aabb>abba

分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同“1”比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小

证明:由a、b的对称性,不妨解a>b>0则

aabbabba=aa-bbb-a=(ab)a-b

∵ab0,∴ab1,a-b0

∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba

练习1 已知a、b∈R+,n∈N,求证(a+b)(an+bn)≤2(an+1+bn+1)2基本不等式法

利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及变形有:

(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时,取等号)

(2)若a、b∈R+,则a+b≥ 2ab(当且仅当a=b时,取等号)

(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)

例3 若a、b∈R,|a|≤1,|b|≤1则a1-b2+b1-a2≤

1分析:通过观察可直接套用: xy≤x2+y2

2证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1

∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立

练习2:若 ab0,证明a+1(a-b)b≥

33综合法

综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。

例4,设a0,b0,a+b=1,证明:(a+1a)2+(B+1b)2≥252

证明:∵ a0,b0,a+b=1

∴ab≤14或1ab≥

4左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2

=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252

练习3:已知a、b、c为正数,n是正整数,且f(n)=1gan+bn+cn

3求证:2f(n)≤f(2n)

4分析法

从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。

例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab

分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。

要证c-c2-ab<a<c+c2-ab

只需证-c2-ab<a-c<c2-ab

证明:即证 |a-c|<c2-ab

即证(a-c)2<c2-ab

即证 a2-2ac<-ab

∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知

∴ 不等式成立

练习4:已知a∈R且a≠1,求证:3(1+a2+a4)>(1+a+a2)

25放缩法

放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。

例6:已知a、b、c、d都是正数

求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<

2分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。

证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>

ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=

1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d

∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<

b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2

综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2

练习5:已知:a<2,求证:loga(a+1)<1

6换元法

换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。

(1)三角换元:

是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。

7、若x、y∈R+,且 x-y=1 A=(x-1y)(y+1y)。1x,求证0<A<

1证明: ∵x,y∈R+,且x-y=1,x=secθ,y=tanθ,(0<θ<xy)

∴ A=(secθ-1secθ(tanθ+1tanθ·1sec2θ

=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ

=sinθ

∵0<θ<x2,∴ 0<s2mθ <1因此0<A<1

复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤

3(2)比值换元:

对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。

例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥431

4证明:设x-1=y+12=z-23=k

于是x=k+1,y=zk-1,z=3k+

2把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2

=14(k+514)2+4314≥4314

7反证法

有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是“至少”、“唯一”或含有否定词的命题,适宜用反证法。

例9:已知p3+q3=2,求证:p+q≤

2分析:本题已知为p、q的三次,而结论中只有一次,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。

证明:解设p+q>2,那么p>2-q

∴p3>(2-q)3=8-12q+6q2-q

3将p3+q3 =2,代入得 6q2-12q+6<0

即6(q-1)2<0 由此得出矛盾∴p+q≤

2练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.求证:a>0,b>0,c>0

8数学归纳法

与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。

例10:设n∈N,且n>1,求证:(1+13)(1+15)…(1+12n-1)>2n+12

分析:观察求证式与n有关,可采用数学归纳法

证明:(1)当n=2时,左= 43,右=52

∵43>52∴不等式成立

(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12 那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①

要证①式左边>2k+32,只要证2k+12·

2k+22k+1>2k+32②

对于②〈二〉2k+2>2k+1·2k+3

〈二〉(2k+2)2>(2k+1)(2k+3)

〈二〉4k2+8k+4>4k2+8k+3

〈二〉4>3③

∵③成立 ∴②成立,即当n=k+1时,原不等式成立

由(1)(2)证明可知,对一切n≥2(n∈N),原不等式成立

练习8:已知n∈N,且n>1,求证: 1n+1+1n+2+…+12n>132

49构造法

根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。

1构造函数法

例11:证明不等式:x1-2x <x2(x≠0)

证明:设f(x)=x1-2x-x2(x≠0)

∵f(-x)

=-x1-2-x+x2x-2x2x-1+x

2=x1-2x-[1-(1-2x)]+x2=x1-2x-x+x2

=f(x)

∴f(x)的图像表示y轴对称

∵当x>0时,1-2x<0,故f(x)<0

∴当x<0时,据图像的对称性知f(x)<0

∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0)

练习9:已知a>b,2b>a+c,求证:b-b2-ab<a<b+b2-ab

2构造图形法

例12:若f(x)=1+x2,a≠b,则|f(x)-f(b)|< |a-b|

分析:由1+x2 的结构可知这是直角坐标平面上两点A(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2

于是如下图,设A(1,a),B(1,b)则0A= 1+a2 0B=1+b2

|AB|=|a-b|又0A|-|0B<|AB|∴|f(a)-f(b)|<|a-b|

练习10:设a≥c,b≥c,c≥0,求证 c(a-c)+c(b-c)≤ab

10添项法

某些不等式的证明若能优先考虑“添项”技巧,能得到快速求解的效果。

1倍数添项

若不等式中含有奇数项的和,可通过对不等式乘以2变成偶数项的和,然后分组利用已知不等式进行放缩。

例13:已知a、b、c∈R+,那么a3+b3+c3≥3abc(当且仅当a=b=c时等号成立)证明:∵a、b、c∈R+

∴a3+b3+c3=12 [(a3+b3)+(b3+c3)+(c3+a3)]≥12 [(a2b+ab2)+(b2c+bc2)+(c2a+ca2)]=12[a(b2+c2)+b(c2+a2)+c(a2+b2)]≥12(a·2bc+b·2ca+c·2ac)=3abc

当且仅当a=b,b=c,c=a即a=b=c时,等号成立。

2平方添项

运用此法必须注意原不等号的方向

例14 :对于一切大于1的自然数n,求证:

(1+13)(1+15)…(1+12n-1> 2n+1 2)

证明:∵b > a> 0,m> 0时ba> b+ma+m

∵ [(1+13)(1+15)…(1+12n-1)]2=(43、65…2n2n-1)(43、65…2n2n-1)>(54、76…2n+12n)(43、65…2n2n-1)=2n+13> 2n+14>

∴(1+13)(1+15)…(1+12n-1)>2n+1 2)

3平均值添项

例15:在△ABC中,求证sinA+sinB+sinC≤3

32分析:∵A+B+C=π,可按A、B、C的算术平均值添项sin π

3证明:先证命题:若x>0,y<π,则sinx+siny≤2sin x+y2(当且仅当x=y时等号成立)∵0<x+y2< π,-π2< x-y2< π2sinx+siny=2sin x+y2cosx-y

2∴上式成立

反复运用这个命题,得sinA+sinB+sinC+sin π3≤2sinA+B2+2sinc+π32≤2·2sinA+B2+c+π322 =4sinπ3=332

∴sinA+sinB≠sinC≤332

练习11 在△ABC中,sin A2sinB2sinC2≤18

4利用均值不等式等号成立的条件添项

例16 :已知a、b∈R+,a≠b且a+b=1,求证a4+b4> 18

分析:若取消a≠b的限制则a=b= 12时,等号成立

证明:∵a、b∈R+∴a4+3(12)4 ≥ 44a4 [(12)4]3=12a①

同理b4+3(12)4 ≥b②

∴a4+b4≥12(a+b)-6(12)4=12-6(12)4=18③

∵a≠b ∴①②中等号不成立∴③中等号不成立∴ 原不等式成立

1.是否存在常数c,使得不等式 x2x+y+yx+2y≤c≤xx+2y+y2x+y对任意正数x,y恒成立? 错解:证明不等式x2x+y+ yx+2y≤xx+2y+y2x+y恒成立,故说明c存在。

正解:x=y得23 ≤c≤23,故猜想c= 23,下证不等式 x2x+y+ yx+2y≤23≤xx+2y+y2x+y恒成立。要证不等式xx+2y+xx+2y≤23,因为x,y是正数,即证3x(x+2y)+3y(2x+y)≤2(2 x+y)(x+2y),也即证3x2+12xy+3y2 ≤2(2x2+2y2+5xy),即2xy≤x2+y2,而此不等式恒成立,同理不等式 23≤xx+2y+y2x+y也成立,故存在c=23 使原不等式恒成立。

6.2已知x,y,z∈R+,求证:x2y2+y2z2+z2x2x+y+z ≥ xyz

错解:∵ x2y2+y2z2+z2x2≥ 3 3x2y2y2z2z2x2=3xyz3xyz 又x+y+z ≥ 3xyz ∴x2y2+y2z2+z2x2x+y+z≥ 3xyz33xyz33xyz=xyz

错因:根据不等式的性质:若a >b> 0,c >d >0,则ac bd,但 ac>bd却不一定成立 正解:x2y2+y2z2≥ 2x y2z,y2z2+z2x2≥ 2x yz2,x2y2+z2x2≥ 2x 2yz,以上三式相加,化简得:x2y2+y2z2+z2x2≥xyz(x+y+z),两边同除以x+y+z:

x2y2+y2z2+z2x2x+y+z ≥ xyz

6.3 设x+y>0,n为偶数,求证yn-1xn+xn-1yn≥

1x 1y

错证:∵yn-1xn+xn-1yn-1x-1y

=(xn-yn)(xn-1-yn-1)xnyn

n为偶数,∴ xnyn >0,又xn-yn和xn-1-yn-

1同号,∴yn-1xn+xn-1yn≥ 1x-1y

错因:在x+y>0的条件下,n为偶数时,xn-yn和xn-1-yn-1不一定同号,应分x、y同号和异号两种情况讨论。

正解:应用比较法:

yn-1xn+xn-1yn-1x-1y=(xn-yn)(xn-1-yn-1)xnyn

① 当x>0,y>0时,(xn-yn)(xn-1-yn-1)≥ 0,(xy)n >0

所以(xn-yn)(xn-1-yn-1)xnyn

≥0故:yn-1xn+xn-1yn≥ 1x-1y

② 当x,y有一个是负值时,不妨设x>0,y<0,且x+y>0,所以x>|y|

又n为偶数时,所以(xn-yn)(xn-1-yn-1)>0 又(xy)n >0,所以(xn-yn)(xn-1-yn-1)xnyn ≥0即 yn-1xn+xn-1yn≥ 1x-1y

综合①②知原不等式成立

第三篇:不等式证明若干方法

安康学院 数统系数学与应用数学 专业 11 级本科生

论文(设计)选题实习报告

11级数学与应用数学专业《科研训练2》评分表

注:综合评分60的为“及格”; <60分的为“不及格”。

第四篇:2018考研高数:不等式证明的方法

凯程考研辅导班,中国最权威的考研辅导机构

2018考研高数:不等式证明的方法

不等式证明是考研数学试卷中的中上等难度题目,下面凯程网考研频道简单讲一下不等式的几种证明方法,希望考生能够详细地去做题验证,灵活把握。

利用微分中值定理:微分中值定理在高数的证明题中是非常大的,在等式和不等式的证明中都会用到。当不等式或其适当变形中有函数值之差时,一般可考虑用拉格朗日中值定理证明。柯西中值定理是拉格朗日中值定理的一个推广,当不等式或其适当变形中有两个函数在两点的函数值之差的比值时,可考虑用柯西中值定理证明。

利用定积分中值定理:该定理是在处理含有定积分的不等式证明中经常要用到的理论,一般只要求被积函数具有连续性即可。基本思路是通过定积分中值定理消去不等式中的积分号,从而与其他项作大小的比较,进而得出证明。

除此之外,最常用的方法是左右两边相减构造辅助函数,若函数的最小值为0或为常数,则该函数就是大于零的,从而不等式得以证明。

其实看看凯程考研怎么样,最简单的一个办法,看看他们有没有成功的学生,最直观的办法是到凯程网站,上面有大量学员经验谈视频,这些都是凯程扎扎实实的辅导案例,其他机构网站几乎没有考上学生的视频,这就是凯程和其他机构的优势,凯程是扎实辅导、严格管理、规范教学取得如此优秀的成绩。

辨别凯程和其他机构谁靠谱的办法。

凯程考研辅导班,中国最权威的考研辅导机构

任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。最好的办法是直接和凯程老师详细沟通一下就清楚了。

页 共 2 页

第五篇:不等式的一些证明方法

数学系数学与应用数学专业2009级年论文(设计)

不等式的一些证明方法

[摘要]:不等式是数学中非常重要的内容,不等式的证明是学习中的重点和难点,本文除总结不等式的常规证明方法外,给出了不等式相关的证明方法在具体实例中的应用.[关键词] 不等式;证明;方法; 应用

不等式在数学中占重要地位,由于其本身的完美性及证明的困难性,使不等式成为各类考试中的热点试题,证明不等式的途径是对原不等式作代数变形,在初等数学中常用的方法有放缩法、代换法、归纳法、反证法等等.因而涉及不等式的问题很广泛而且处理方法很灵活,故本文对不等式的证明方法进行一些探讨总结.一、中学中有关不等式的证明方法 1.1中学课本中的四种证明方法 1.1.1理清不等式的证明方法

(1)比较法:证明不等式的基本方法,适应面宽.①相减比较法—欲证AB,则证AB0.②相除比较法—欲证A>B(A>0,B>0),则证>1.(2)综合法:利用平均不等式、二次方程根的判别式、二项式定理、数列求和等等。此方法灵活性大,需反复练习.(3)分析法:当综合法较困难或行不通时,可考虑此法,但不宜到处乱用.第1页(共13页)

AB

数学系数学与应用数学专业2009级年论文(设计)(4)数学归纳法:凡与自然数n有关的不等式,可考虑此法,但有时使用起来比较困难,应与前面几种方法配合应用.1.1.2选择典型范例,探求解题途径

例1.1.1 求证 12x42x3x2

分析 用相减比较法证明AB0.一般应将AB变形为[f(x)]

2、(f(x)g(x),其中f(x),g(x)同号),或变形为多个因子的[f(x)]2[g(x)]

2、乘积、平方式.本题可化为两个完全平方式的和或化为一个完全平方式与一个正因式的积.证: 2x42x3x212x3(x1)(x1)(x1)

(x1)(2x3x1)(x1)(2x32xx1)

132(x1)2[(x)2]

442x42x3x210

当xR时,即 12x42x3x2

例1.1.2 证明 n(n1)n1....(n1).分析 题中含n,但此题用数学归纳法不易证明,通过变形后可采用平均不等式来证.11111(11)(1)(1)23n2n nn34n12n>n23.4...n1=nn1(再变形)=2323nn11111n1....(11)(1)....(1)23n2n

证:

nnn11n12131n第2页(共13页)

数学系数学与应用数学专业2009级年论文(设计)

2 1n34n1....23nn234....n1nn1

n23n131n所以 n(n1)n1....

例1.1.3 求证:

1112+

11+„+>n(n1,n为自然数)2n 分析 与自然数有关的问题,可考虑用数学归纳法.设nK时成立,需证nK1时也成立,需证明K+K+

1>K1,可采用“凑项”的方法: K1KK11KK1K11=>==K1

K1K1K1K1111221222,右边2,所以, 2 证:(1)当n2时,左边左边右边.(2)假设nK时, 1111+

11+„+>K成立,则当nK1时, 2K+

1111+„++ K+

K12K1KKK11K1 =>

KK1K1K1K1K1

综上所述: 1.2关于不等式证明的常规方法(1)利用特殊值证明不等式

11+

11+„+>n 2n特殊性存在于一般规律之中,并通过特例表现出来.如果把这种辩证思想用于解题之中,就可开阔解题思路.第3页(共13页)

数学系数学与应用数学专业2009级年论文(设计)例1.2.1 已知ab,b0,ab1.求证(a+)(b+)≥

121a1b25.412112211125只需证明当ab时,(a+)(b+)≥.故可设ax

ab2411b x,(|x|且x0)22证:考虑a与b都去特殊值,既当ab时有(2)(2)=4则

a21b21(a21)(b21)(ab1)2111(a+)(b+)=== abababab33(x2)21(x2)2125=4>4=.114x244故原不等式得证.(2)利用分子有理化证明不等式

分母有理化是初中数学教材中重要知识,它有着广泛的应用,而分子有理化也隐含于各种习题之中,它不但有各种广泛的作用,而且在证明不等式中有它的独特作用.例1.2.2[1] 求证13-12<12-11.证:利用分子有理化易得:13-12=1312>12+11 1131211312,12-11=

11211, <

11211

即 13-12<12-11.(3)应用四种“平均”之间的关系证明不等式

四种“平均”之间的关系,既调和平均数H(a)≤几何平均数G(a)≤

第4页(共13页)

数学系数学与应用数学专业2009级年论文(设计)算数平均数A(a)≤平方平均数Q(a).写得再详细些就是:若a1,a2,a3,an都是正实数,则:

111aa121≤na1a2an≤

a1a2ann≤

a21a2ann22

an(注:这一串不等式在不等式证明中起着举足轻重的作用.)例1.2.3 已知ab,求证a+证:a+

1≥3(ab)b111=(ab)+b +≥3×3(ab)b3

(ab)b(ab)b(ab)b(4)充分利用一些重要结论,使解题简捷

①对实数a,b,c,d有

a2b2≥2ababba;a2b2c2abbcca;a2b2c2d2abbccdda.②若a,b同号,则≥2;

若a,b,c均为正数,则≥3.a2b2ab2 ③若是正数,则≥≥ab≥(当且仅当ab时等号

1122abbaabbacbac成立)

a2b2c2abc3 若a,b,c是正数,则≥3abc≥

11133abc(当且仅当abc时等号成立)

例1.2.4 若a,b,c0,且abc1,求证 9

第5页(共13页)

1a1b1c

数学系数学与应用数学专业2009级年论文(设计)分析 证法较多,但由abc1与之间的联系,考虑算术平均与调和平均的关系式简便.证:由算术平均数和调和平均的关系可知

abc3 1113abc1a1b1c所以 abc99, 又abc1得 1

111111abcabc1a1b1c即 9.(5)利用式的对称性证明不等式

形如xy,a2b2c2的式子中任意两个量交换位置后结果仍不变,这就是“式”对称,可以用对称关系来解决一些不等式的证明.例1.2.5 设a,b,c,d是正数,且满足abcd1,求证 4a14b14c14d16

证:由4a1944a12942a13 注意到对称有:

94(abcd)1317(4a14b14c14d1)

422即 4a14b14c14d16 故原命题得证.(6)用“双十字法”证明不等式

例1.2.6 已知x,y0并且xy1 求证:

x23xy2y22xy32x221xy11y24x21y2

证:因 x23xy2y22xy3(x2y)(xy)2xy3

第6页(共13页)

数学系数学与应用数学专业2009级年论文(设计)=(x2y3)(xy1)0 类似的,2x221xy11y24x21y2(2xy2)(x11y1)0 故结论成立.(7)用恒等变形推导

例1.2.7[2] 求证:对于任意角度,都有58cos4cos2cos3≥0

证:58cos4cos2cos3

=58cos4(2cos21)(4cos33cos)

=15cos8cos24cos3(1cos)(4cos24cos1)=(1cos)(2cos1)20

(8)分解为几个不等式的和或积

例1.2.8[2] 已知a,b,c是不全相等的正数,求证:

a(b2c2)b(c2a2)c(a2b2)6abc

证: b2c22bc,a0,a(b2c2)2abc

2222b(ca)2abc,c(ab)2abc.同理

a,b,c不全相等,所以上述三式中,等号不能同时成立.把三式相加

a(b2c2)b(c2a2)c(a2b2)6abc

(注:这里把不等式的各项分别考虑,然后利用不等式的性质和推论,证得所求不等式.)

例1.2.9 设是锐角,求证:(111)(1)5.sincos 证: 是锐角,0sin1,0cos1,0sin21, 这时 1121,1,2.sincossin2第7页(共13页)

数学系数学与应用数学专业2009级年论文(设计)(111112)(1)15.sincossincossin2(9)利用极限证明不等式

例1.2.10[2]证明:当x2(1+2)时,有

(2x1)2(2x3)3(2x5)....xx3

证: 在x0的情况下讨论,令

f(x)(2x1)(2x3)3(2x5)....x,g(x)x3

则 f(x)x(x1)(2x1),6x(x1)(2x1)f(x)16于是 lim limxg(x)x3x3按极限的定义,对于,取2(12)当|x|2(12)有

f(x)11 , g(x)3414即 0f(x)71 从而f(x)g(x),故结论成立.12g(x)12(10)利用平分法证明不等式

例1.2.11 若x0,i1,2,3,且xi1,则

i1311127 2221x11x21x310 证:因为12111911x时有,所以,且当 x1ii22331xi1xi101119273 222101x11x21x310故

1.3关于不等式证明的非常规方法(1)换元法

这种方法多用于条件不等式的证明,换元法主要有三角代换和均值代

第8页(共13页)

数学系数学与应用数学专业2009级年论文(设计)换两种.三角代换时已知条件特征明显.在结构上必须和三角公式相似.例1.3.1 已知x2y21,求证:| x2+2xy-y2|≤2.证:令xrcos,yrsin

则 | x2+2xy-y2|=|r2(cos22sincossin2| =r2|cos2sin2| = r2|2sin(2450)|≤12×1=2

例1.3.2[4]设a,b,cR 且abc1,求证:a2b2c2≥.证:a=+α,b=+β,c=+γ, 因为abc1,所以 0

于是有a2b2c2=+()+(222)≥.(2)反证法

先假设所要证明的不等式不成立,即要证的不等式的反面成立,然后从这个假设出发进行正确的推理,最终推出与已知条件或已知真命题相矛盾的结论,从而断定假设错误,进而确定要证明的不等式成立.例1.3.3[5]求证:由小于1的三个正数a,b,c所组成的三个积(1-a)b,(1-b)c,(1-c)a,不能同时大于

证:(反证法)假设(1-a)b,(1-b)c,(1-c)a都大于

则有(1-a)b(1-b)c(1-c)a>

2***31314141 ① 641aa1但由01-a)a≤条件,即有,0(1-a)a≤.24同理有0(1-b)b≤,0(1-c)c≤.即(1-a)b(1-b)c(1-c)a≤② 64

1414第9页(共13页)

数学系数学与应用数学专业2009级年论文(设计)①与②产生矛盾,从而原命题成立.(3)构造法

在证明不等式时,有时通过构造某种模型、函数、恒等式、向量、对偶式等,完成不等式的证明.例1.3.4 求证 证: 设A=1212342n11.2n2n132n1242n,B=,352n142n12342n12n由于,,,,因此AB,23452n2n113242n1242n2n1)()A, 2n352n12n12n1所以A2AB(故 (4)判别式法

12342n11 2n2n1适用于含有两个或两个以上字母不等式,而另一边是关于某字母的二次式时,这时可考虑用判别式法.例1.3.5[6]x2x113求证:≤2≤.x122x2x1 证: 设f(x)y2,则(1y)x2x1y0,所以xR,x1当y1时,Δ=b24ac≥0,即14(1y)2≥0,所以 |y1|≤,即≤y≤.又当y1时,方程的解x0,x2x113故 ≤2≤.x122121232(5)放缩法

第10页(共13页)

数学系数学与应用数学专业2009级年论文(设计)为了证明不等式的需要,有时需舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性达到目的.例1.3.6[5]设a,b为不相等的两个正数,且a3-b3=a2b2.求证1ab.证: 由题设得a3-b3=a2b2a2abb2ab, 于是(ab)2 a2abb2ab,则(ab)1,又(ab)24ab,(ab)2 而(ab)a2abbababab

422243即(ab)2ab,所以(ab), 综上所述, 1ab(6)向量法

向量这部分知识由于独有的形与数兼备的特点,使得向量成了数形结合的桥梁,在方法和理论上是解决其他一些问题的有利工具.对于某些不等式的证明,若借助向量的数量积的性质,可使某些不等式较易得到证明.例1.3.7 求证:求证1≤ 1x2x≤2

9.三、小结

证明不等式的途径是对原不等式作代数变形,在初等数学中常用的第11页(共13页)

1a1b1c

数学系数学与应用数学专业2009级年论文(设计)方法大致有放缩法、代换法、归纳法、反证法等等.然而涉及不等式的问题很广泛而且处理方法很灵活,仅在中学教科书上就有很多方法,但还不足以充分开拓人们的思维,为此,我们要进一步探究不等式的证明方法,并给出了在实例中的应用.参考文献

[1] 段明达.不等式证明的若干方法[J].教学月刊(中学版),2007(6).[2] 彭军.不等式证明的方法探索[J].襄樊职业技术学院学报,2007(4).[3] 周兴建.不等式证明的若干方法[J].中国科教创新导刊,2007(26).[4] 郭煜,张帆不等式证明的常见方法[J].高等函授学报(自然科学版),2007(4).[5] 王保国.不等式证明的六种非常规方法[J].数学爱好者(高二版),2007(7).[6] 赵向会.浅谈不等式的证明方法[J].张家口职业技术学院学报,2007(1).[7] 豆俊梅.高等数学中几类不等式的证明[J].中国科技信息,2007(18).[8] 刘玉琏,傅佩仁.数学分析讲义[M].北京:高等教育出版

第12页(共13页)

数学系数学与应用数学专业2009级年论文(设计)社,1988,P201-211.[9] 牛红玲.高等数学中证明不等式的几种方法[J].承德民族师专学报,2006(2).[10] 王喜春.不等式证明常用的技巧[J].数学教学研究,1995(2).第13页(共13页)

下载027不等式证明方法-数学归纳法word格式文档
下载027不等式证明方法-数学归纳法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    不等式的证明方法

    几个简单的证明方法一、比较法:ab等价于ab0;而ab0等价于ab1.即a与b的比较转化为与0或1的比较.使用比较发时,关键是要作适当的变形,如因式分解、拆项、加减项、通分等,这是第一章......

    证明不等式方法探析

    §1 不等式的定义用不等号将两个解析式连结起来所成的式子。在一个式子中的数的关系,不全是等号,含sinx1,ex>0 ,2x<3,5x5不等符号的式子,那它就是一个不等式.例如2x+2y2xy,等。根据......

    不等式证明的若干方法

    不等式证明的若干方法 摘要:无论是在初等数学还是在高等数学中,不等式证明都是其中一块非常重要的内容.本文主要总结了高等数学中不等式的几种证明方法,高等数学中不等式证明......

    不等式证明方法(二)(大全)

    不等式证明方法(二) 一、知识回顾 1、反证法:从否定结论出发,经过逻辑推理,导出矛盾,从而肯定原结论的正确; 2、放缩法:欲证AB,可通过适当放大或缩小,借助一个或多个中间量使得,常用的......

    高中数学不等式证明常用方法(★)

    本科生毕业设计(论文中学证明不等式的常用方法 所在学院:数学与信息技术学院专 业: 数学与应用数学姓 名: 张俊学 号: 1010510020 指导教师: 曹卫东 完成日期: 2014......

    sos方法证明不等式

    数学竞赛讲座SOS方法证明不等式(sum of squares)SABSabcSbcaScab0性质一:若Sa,Sb,Sc0,则SABSabcSbcaScab0. 222222性质二:若a,b,c,Sa,Sb,Sc且满足(1)SaSb,SbSc,ScSa0,(2)若abc或abc,则S......

    不等式的证明方法(推荐五篇)

    高考数学证明不等式的方法 ①利用函数的方法证明不等式成立。 步骤一:首先把不等式转化关于某变量x的函数,并且求出x的定义域。 步骤二:证明该变量x的函数在其定义域的单调关系......

    不等式证明的几种方法

    不等式证明的几种方法刘丹华余姚市第五职业技术学校摘要: 不等式的证明可以采用不同的方法,每种方法具有一定的适用性,并有一定的规律可循。通过对不等式证明方法和例子的分析......