8上13.5《实数的运算》教学反思(精选五篇)

时间:2019-05-12 06:26:45下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《8上13.5《实数的运算》教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《8上13.5《实数的运算》教学反思》。

第一篇:8上13.5《实数的运算》教学反思

实数的运算教学反思

在学习新内容前先复习了一下学过的有理数的运算律和运算法则,而这些运算律和运算法则在实数范围内也是同样适用的,那么学生们就可以自己得出实数的运算顺序。在讲实数的运算之前,先学了当数从有理数扩充到实数以后,有理数关于相反数、绝对值的意义同样适用于实数的内容,然后再学习实数的运算,通过具体的计算题让学生对这一运算顺序加深印象。有一点要说的是,在新教材中,实数运算这一节,很多的计算问题学生只能通过计算器来解决,而现在学生用的计算器都是科学计算器,都是比较智能的,只要把算式输入就能得到正确答案,通过对这节课的反思,我觉得首先吸引学生的注意力还是十分重要的,从集中注意力到有学习数学的兴趣,这样若长期积累,情感上必定会比较喜欢数学,这才是我们作为数学教师最乐于见到的。

当然这节课也存在着许多不足,通过反思,我觉得虽然有学生的“动”,但总体来说“动”的还是不够的,师生之间互动不够,在学生板演之后,讲评应该要适当的表扬一下,发挥一下学生的积极性。

第二篇:实数的运算教学设计

17.5 实数的运算

〖教学目标〗

(-)知识目标

1.了解有理数的运算法则在实数范围内仍然适用.2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算.3.正确运用公式.4.了解二次根式和最简二次根式的概念.(二)能力目标

1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力.2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识.(三)情感目标

通过探索规律的过程,培养学生学习的主动性,敢于探索,大胆猜想,和同学积极交流,增强学习数学的兴趣和信心。

时代在进步,科学在发展,只靠在学校积累的知识已远远不能适应时代的要求,因此在校学习期间应培养学生的能力,具备某种能力之后就能应付日新月异的新问题.其中类比的学习方法就是一种学习的能力,本节课旨在让学生通过在有理数范围内的法则,类比地学习在实数范围内的有关计算,重要的是培养

这种类比学习的能力,使得学生在以后的学习和工作中能轻松完成任务.〖教学重点〗

1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算.2.发现规律:.并能用规律进行计算.〖教学难点〗

类比的学习方法.2.发现规律的过程.〖教学方法〗 尝试法 〖教学过程〗

一、课前布置

自学:阅读课本P112~P113,试着做一做本节练习,提出在自学中发现的问题(鼓励提问).二、师生互动

(一)二次根式的理解:形如()的式子叫做二次根式 说明:1.被开方数大于0; 2.()具有非负数的特性.3.性质:一般地是a的算术平方根,于是有 ? 练习:

1.若有意义,则______ 2.(06泸州中考)要使二次根式有意义,字母x的取值必须满足的条件是()A.x≥1

B.x≤1

C.x>1

D.x<1 3.(06海淀)已知实数x,y满足,求代数式的值。4.计算:(1);(2); ? 解:1.2.A 3.解:依题意

解得

当时,4.解:(1);(2)。

(二)一起交流课本P112的“做一做”

[师生共析]在有理数范围内,可以进行加、减、乘、除和乘方运算,运算后所得到的数仍然是有理数。把数从有理数扩充到实数以后,在实数范围内不仅可以进行加、减、乘、除、乘方运算,而且正数和零可以进行开平方和开立方运算,负数可以进行开立方运算。即:正数和零的平方根是实数,任何一个实数的立方根是实数。

关于有理数的运算律和运算性质,在进行实数运算时仍然成立。1.理解积的算术平方根的性质,必须注意:

(1)被开方数的每一个因子或因式必须是非负数,没有这个条件,性质不成立.(2)这个公式的作用是化简二次根式,如果被开方数中有的因式(或因子)能开得尽方,可以利用此公式及公式=a(a≥0),将这些因式(或因子)开出来,因此化简二次根式时,一般先将被开方数进行因式分解或因子分解.(3)积的算术平方根的性质对于当因子是三个或三个以上时仍然成立.如:= ···(a≥0,b≥0,c≥0,d≥0).(4)积的算术平方根的性质反过来,就得到二次根式的乘法公式,即·=(a≥0,b≥0),运用这个公式可以进行简单的二次根式的乘法运算.2.二次根式的性质: =·(a≥0,b≥0),=(a≥0,b>0).(三)利用性质化简

[师]利用你自学的知识,说一说什么样的二次根式需要化简

[生]被开方数中能分解因数.且有些因数能开出来.这时就需要对其进行化简.[生]被开方数中含有分母,需要化简,化简后被开方数中没有了分母.如:

[师]如果被开方数中含有分母,要把分子分母同时乘以某一个数,使得分母变成一个能开出来的数,然后把分母开出来,使被开方数中没有了分母.(鼓励学生讲解教师提供的例题)如:

巩固练习:

化简:(1);(2);(3);(4);(5);(6).(四)最简二次根式

[师生共析]最简二次根式所满足的条件:

条件一,即为被开方数不含分母;条件二,即为被开方数的每一个因子或因式的指数都小于根指数.要判断一个根式是否为最简二次根式,两个条件缺一不可.(五)引导学生小结:

1.化二次根式为最简二次根式的方法:(1)如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简.(2)如果被开方数是整数或整式,先将它分解因子或因式,然后把能开得尽方的因子或因式开出来,从而将式子化简.2.二次根式的化简应注意以下问题:

(1)被开方数含有带分数,通常化成假分数.(2)被开方数是和、差的形式,应把它分解因式,化成积的形式.(3)根号内的分子或分母移到根号外时,应保留其对应的位置(即原来是分母的移到根号外后还是分母).

(4)在整个化简过程中应注意符号问题,特别是注意被开方数是非负数这个隐含条件.练习:1 下列各式中哪些是最简二次根式?哪些不是?并说明理由.(1);(2);(3);(4);

(5);(6)(x≤0);(7)

本题考查最简二次根式的定义,解题思路是根据二次根式的定义逐个判断.1.解

只有(3)、(5)、(6)是最简二次根式.理由:

(1)中的0.3不是整数,所以不是最简二次根式;

(2)中的27x=32·3x,因数含有能开得尽方的因数,所以不是最简二次根式.(3)的8a2b=(2a)2·2b,因式含有能开得尽方的因数,所以不是最简二次根式;(4)中的a2+a4=a2(1+a2),因式含有能开得尽方的因数,所以不是最简二次根式; 总结

本题的易错点是误认为,不是最简二次根式,误认为是最简二次根式.三、补充练习作业:P114习题 〖巩固练习〗

1.下列各式:,,(a<),中是二次根式的有

.2.x为何值时,下列各式在实数范围内有意义.(1);

(2);

(3).3.计算下列各式:(1)()2;

(2);

(3)(2)2.〖答案提示〗

1.分析:本题考查二次根式的定义,解题思路是根据二次根式的定义去判断.解

∵,的根指数不是2,∴

它们不是二次根式.∵

在中,被开方数-4<0,∴

不是二次根式.∵

在中的被开方数2a-1有可能小于0,∴

不是二次根式.∵

在中,被开方数4>0,∴

是二次根式.∵

在=中被开方数(a+1)2≥0,∴

是二次根式.∵

在中被开方数a2+2>0,∴

是二次根式.总结

本题的易错点是忽视二次根式中被开方数是非负数的隐含条件,注意这个隐含条件是本题的解题关键.2.解

(1)2x+3≥0,即x≥-.∴

当x≥-时,有意义.(2)1-3x≥0,即x≤.∴

当x≤时,有意义.(3)∵

x不论取何实数,总有(x-5)2≥0,∴

x为任意实数,有意义.3.分析:(1)由()2=a(a≥0)直接可得,(2)要注意应先计算,然后再求算术平方根,(3)根据积的乘方法则,这里2也要平方.解

(1)()2=15;(2)==;

(3)(2)2=22×()2=4x.总结

本题的易错点是第(3)小题的2不平方,错成(2)2=2x.八、板书设计

课题 实数的运算 二次根式

利用性质化简

例2 二次根式性质

例1

最简二次根式

课堂练习

第三篇:《实数》教学反思

《 实数 》教学反思

杨勇2011.11.28

1.本节是在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数范围.从有理数到实数,这是数的范围的一次重要扩充,对今后学习数学有重要意义.在中学阶段,多数数学问题是在实数范围内研究.例如,函数的自变量和因变量是在实数范围内讨论,平面几何、立体几何中的几何量(长度、角度、面积、体积等)都是用实数表示等.实数的知识贯穿于中学数学学习的始终,学生对于实数的运算,以后还要通过学习二次根式的运算来加深认识,因此本节的作用十分重要。

2.在本节课中为了突出重点,突破难点,我将教学分层次进行,先从从一个探究活动开始,活动中要求学生把几个具体的有理数写成小数的形式,并分析这些小数的共同特征,从而得出任何一个有理数都可以写成有限小数和无限循环小数的形式.把有理数与有限小数和无限循环小数统一起来以后,指出在前两节学过的很多数的平方根和立方根都是无限不循环小数,它们不同于有限小数和无限循环小数,也就是一类不同于有理数的数,由此给出无理数的概念.无限不循环小数的概念在前面两节已经出现,通过强调无限不循环小数与有限小数和无限循环小数的区别,以使学生更好地理解有理数和无理数是两类不同的数.帮助学生建立有意义的知识联结,顺应认知结构中的原有体系,以逐步探究的思路实现对问题的深层次理解,增强思维的深刻性。

3.在探究有理数规律的过程中,使学生在探究时,经历了观察、实验、归纳、总结以及由具体到抽象、由特殊到一般的学习过程,体会到了研究问题、解决问题的方法,加深了对无理数的理解。在处理这段教材时,没有刻意地增加难度,而是立足教材,紧紧围绕课本,尊重教材,挖掘教材,从情境设计—例题选择—课堂引申都是以教材内容为载体,充分开发教材的功能。循序渐进地引导学生去学习新知,使学生能准确地把握学习重点,突破学习难点。

4.本节课通过学生的主动智力参与,动手实践、自主探索与合作交流等活动,使学生在教师的主导作用下,实现对实数概念的自我建构。特别是在数轴上表示无理数,以探究题卡的形式让学生自主完成,充分体现了自主探究教学法。

5.教师在培养学生学习兴趣,激发良好学习动机中承担一定的责任。恰当地提出问题和恰当地运用课堂互动策略十分重要。在课堂的准备与指导阶段充分了解学生,进行有效提问,为学生提供及时适当的反馈,运用课堂竞争、合作策略来促进良性课堂互动,实现教学目标。

但本节课存在许多不足,对于学生对无理数概念的理解估计不足,而且课堂气氛相当沉闷,教学效果不是很好。在今后的教学中自己在备学生时应着重考虑学生可能出现的这样或那样的情况,在教学手段和教学方法上应力求做到更新,以吸引学生的注意力,达到最佳效果。

总之,自己在教学中需要学习和改正的地方还很多很多,我将继续不断探索,不断研究,虚心求教,尽快提高自己的教育教学能力。

第四篇:实数《平方根》教学反思

昨天上了平方根(3)的一节课,本节课的主要内容是让学生理解平方根的含义,并能熟练地用语言和公式这两种不同的方法表示出来,掌握平方根的符号表示,能正确区分平方根与算术平方根,知道两种符号的含义。并熟练求一个数的平方根。

回顾自己的课堂,觉得又优点又有缺点。做的比较好的是备课比较充分,设计严谨,注意了细节的处理。教案的设计贴近学生,所以课堂气氛活跃,学生的积极性被充分调动起来。练习题的设计比较恰当。还有一点就是评价学生时注意使用亲切的语言,让学生勤学、乐学。

当然这堂课我觉得有以下几点做得不够好:

1.忽视平方根表示的规范化

由于我忽视了在课堂上的平方根表示的示范,使得有不少学生能够知道一个数的平方根,但是符号表示不规范。

2.没有对概念进行总结

在实际操作时,由于临近下课,时间较仓促,所以无论是学生的总结还是教师的总结都显得比较贫乏,没有抓住实质。在今后的总结中,应注意引导学生从知识方面,数学思想方法等不同方面进行有效的小结,而不要只流于形式。

3.学生的练习不够

学生对概念的理解只停留在死记硬背,机械模仿的阶段,后果就像一座没有合格框架结构的摩天大厦一样,早晚会因为经不住考验而倒塌。所以,今后在课堂上要多给学生练习巩固的时间,多提供一些类型不同的题目,使学生在练习中慢慢强化对概念的理解。

所以在教学过程中学生常见的几种错误主要有:

1.在求数a的平方根时,学生往往会用连等的式子来表示

2.错在符号乱用,添加或缺少正负号,导致等式无法成立

在以后的教学过程中要通过练习发现学生存在的问题,并对一些典型的错题进行分析讲解,通过练习规范学生的解题格式,提高学生解决实际问题的能力。本节课的内容不是很多,但这是学好平方根的关键,为后面学习立方根及运用平方根进行基本运算和解决实际问题打下基础,也是一个关键。在本节课的教学过程中还存在一些小的问题,如个别题目对学生而言难度稍大了一点,不利于学生思考、解决问题,在以后的教学过程中会注意这些问题,确保每节课每个学生都能听懂。

第五篇:实数2教学反思

本节课的教学目标是知道相反数、绝对值的概念可推广到实数范围内;知道在实数范围内,可进行加、减、乘、除(除数不为0)、乘方、开方(开平方时被开方数为非负数)等运算,而且有理数的运算法则和性质同样适用。

本节课的教学设计中注重从学生已有的知识经验出发,如学生在有理数章节中已经学习了知道相反数、绝对值的概念,回忆有理数范围内相反数、绝对值的意义,体会在实数范围内这些概念依旧成立,在比较的过程中让学生体会一个很重要的数学思想:转化思想。学生在类比有理数中求相反数和绝对值进行计算的意识和能力,对学生所出现的错误要了解其原因并加以纠正。问题3先复习七年级上已经学习过的有理数范围内的运算律,然后提出一个富有启发性且具有探索意义的问题“我们如何知道运算律在实数范围内是否适用?”然后通过问题4的体验,培养学生的合情推理能力和计算能力。由于有了有理数的运算性质作基础,学生在掌握求实数的相反数、绝对值并不困难,但求的值有一些困难,关键是要判断与2的大小,要能判断是正数还是负数,问题5进一步让学生明白了在有理数范围可以进行的运算,在实数范围内一样适用。最后的综合训练题也有一些困难。在今后教学中还要注意加强训练,提高综合解题能力。

下载8上13.5《实数的运算》教学反思(精选五篇)word格式文档
下载8上13.5《实数的运算》教学反思(精选五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    实数的教学反思

    实数的教学反思从合作学习中得到,研究什么是实数,整数?小数?首先可以利用底数越大平方越大的方法确定它不是整数,用同样的方法进一步研究它的小数部分。在研究的过程中,我们可以猜......

    实数1教学反思

    《实数》 单元反思 吴加国 这节课,我认为有以下几方面是值得肯定的。 一、建立融洽的师生关系是发挥学生主体作用的基础。 良好的师生关系是激发学生学习兴趣、在教学过程中,......

    实数全章教学反思

    算术平方根教学反思 周练 算术平方根在教材中所处的位置是七年级下册第六章实数的第一节,学生对数的认识要从有理数扩大到实数的范围,而本课是无理数的前提,是学生实数的衔接与......

    八年级数学《实数》教学反思

    《实数》教学反思 一节数学课不但要把该节的内容让学生能够接受,更重要的是启发学生去思考,引导学生从抽象的理论到实践的过程,对于方法的探索采用从特殊到一般的思想: 1.体现......

    运算教学反思

    运算教学反思 运算教学反思1 这节课是学生首次接触到有关角的运算问题,几何入门教学很关键,学生在答题时,往往延续小学一贯的作风,只有数据的运算过程,而对角的名称却忽略不写,只......

    运算教学反思

    四则运算教学反思 四则运算教学反思1 作为老师四则运算教学反思,什么样的学生都会遇到,你的问题是“怎么教都教不会”,这里就要根据学生的具体情况进行具体分析了。四则运算教......

    运算教学反思

    运算教学反思范文 1 最近一段时间,我们六年级的数学学习进入到了综合复习的阶段。在这个阶段,学生最容易感到无趣,但实际是,通过课堂的40分钟的复习,仍会有不少的同学不能把要复......

    运算教学反思

    四则运算教学反思 四则运算教学反思1 练习二的习题基本没有问题。解决问题时,强调指出第一步先求什么?第8题可以让学生读题先估算,再笔算。3*140大于400所以植树多。第10题借助......