第一篇:高一上册物理知识点
因为有知识,我们上了太空,我们延长了人均寿命。更因为有知识,我们超出生死,不再疑惑。下面小编给大家分享一些高一上册物理知识,希望能够帮助大家,欢迎阅读!
高一上册物理知识1
一、质点
1.质点:用来代替物体的有质量的点.2.说明:(1)质点是一个理想化模型,实际上并不存在.(2)物体可以简化成质点的情况:①物体各部分的运动情况都相同时(如平动).②物体的大小和形状对所研究问题的影响可以忽略不计的情况下(如研究地球的公转).二、参考系和坐标系
1.参考系:在描述一个物体的运动时,用来作为标准的另外的物体.说明:
(1)同一个物体,如果以不同的物体为参考系,观察结果可能不同.(2)参考系的选取是任意的,原则是以使研究物体的运动情况简单为原则;一般情况下如无说明,则以地面或相对地面静止的物体为参考系.2.坐标系:为定量研究质点的位置及变化,在参考系上建立坐标系,如质点沿直线运动,以该直线为x轴;研究平面上的运动可建立直角坐标系.三、时刻和时间
1.时刻:指的是某一瞬间,在时间轴上用—个确定的点表示.如“3s末”;和“4s初”.2.时间:是两个时刻间的一段间隔,在时间轴上用一段线段表示.四、位置、位移和路程
1.位置:质点所在空间对应的点.建立坐标系后用坐标来描述.2.位移:描述质点位置改变的物理量,是矢量,方向由初位置指向末位置,大小是从初位置到末位置的线段的长度.3.路程:物体运动轨迹的长度,是标量.五、速度与速率
1.速度:位移与发生这个位移所用时间的比值(v=),是矢量,方向与Δx的方向相同.2.瞬时速度与瞬时速率:瞬时速度指物体在某一时刻(或某一位置)的速度,方向沿轨迹的切线方向,其大小叫瞬时速率,前者是矢量,后者是标量.3.平均速度与平均速率:在变速直线运动中,物体在某段时间的位移跟发生这段位移所用时间的比值叫平均速度(v=),是矢量,方向与位移方向相同;而物体在某段时间内运动的路程与所用时间的比值叫平均速率,是标量.说明:速度都是矢量,速率都是标量;速度描述物体运动的快慢及方向,而速率只能描述物体运动的快慢;瞬时速率就是瞬时速度的大小,但平均速率不一定等于平均速度的大小,只有在单方向直线运动中,平均速率才等于平均速度的大小,即位移大小等于路程时才相等.六、加速度
1.物理意义:描述速度改变快慢及方向的物理量,是矢量.2.定义:速度的改变量跟发生这一改变所用时间的比值.3.公式:a= =
4.大小:等于单位时间内速度的改变量.5.方向:与速度改变量的方向相同.6.理解:要注意区别速度(v)、速度的改变(Δv)、速度的变化率().加速度的大小即,而加速度的方向即Δv的方向
七.速度、速度变化量及加速度有哪些区别?
速度等于位移跟时间的比值.它是位移对时间的变化率,描述物体运动的快慢和运动方向.也可以说是描述物体位置变化的快慢和位置变化的方向.速度的变化量是描述速度改变多少的,它等于物体的末速度和初速度的矢量差.它表示速度变化的大小和变化的方向,在匀加速直线运动中,速度变化的方向与初速度的方向相同;在匀减速直线运动中,速度的变化的方向与速度的方向相反.速度的变化与速度大小无必然联系.加速度是速度的变化与发生这一变化所用时间的比值.也就是速度对时间的变化率,在数值上等于单位时间内速度的变化.它描述的是速度变化的快慢和变化的方向.加速度的大小由速度变化的大小和发生这一变化所用时间的多少共同决定,与速度本身的大小以及速度变化的大小无必然联系.高一上册物理知识2
基本规律
1、匀速直线运动:s=vt(v 是恒量),位移随时间均匀增加。
2、匀变速直线运动:速度随时间均匀变化,即加速度不变;运动过程中任意相邻相等时间内的位移差相等。
公式:
vt = v0+ at
s = v0 t + 1/2at^2
vt^2= v0^2 + 2as
s =(v0 + vt)t/2
△s=s(i+1)-si=aT^2
v(1/2)=V(平均)=(vt+v0)/2
v(1/2)=√(vt^2+v0^2)/2
初速度为零时的比例关系:
1?? 第一秒、第二秒、第三秒……第 n 秒内的位移比:1:3:5:……:(2n-1)
2?? 第一秒、第二秒、第三秒……第 n 秒内的平均速度之比:1:3:5:……:(2n-1)
3?? 1T 内、2T 内、3T 内……nT 内的位移之比:1:4:9:……:n^2
4??第一个 s、第二个 s、第三个 s……第 n 个 s 的时间之比:1:(√2-1):√3-√2......:√n-√(n-1)
3、自由落体运动:初速度为零,加速度等于重力加速度 g(g 通常取 9.8m/s2)
公式:
v = gt
h = 1/2gt^24、竖直上抛运动:加速度a=-g,上升和下降通过同一点时的速度等值反向,物体从某一位置到最高点的时间与从最高点回到该点时的时间相等,即上升和下降过程有对称性。物体上升的最大高度由初速度决定。
公式:
vt=v0-gth=v0t-1/2gt^2
H高=vo^2/2g
t高=v/g5、图像:图中(1)表示匀速运动,(2)表示匀加速直线运动(3)表示匀减速直线运动(4)表示与正方向相反的匀加速直线运动(5)表示匀减速直线运动。注意:图中线的斜率表示加速度,线下面积表示位移。
高一上册物理知识3
力和物体平衡部分
1、力学中常见的三种力:重力(G)、弹力(F)、摩擦力(f)
重力:由于地球的吸引而产生,方向竖直向下,施力物体为地球,重力的反作用力作用在地球上
弹力产生条件:直接接触且有弹性形变;方向与形变方向向反,且和接触面垂直。弹力的施力物体是发生形变的物体本身。
摩擦力产生条件:有相对运动或运动趋势,物体间摩擦系数不为零,物体间有正压力;方向:与物体间相对运动或相对运动趋势方向相反。
注意:物体间摩擦力的方向可能与物体的运动方向相同。
滑动摩擦力的大小:f=μN,(μ为滑动摩擦系数,与接解面的材料和光滑程度有关),滑动摩擦力与接触面的面积大小无关。
静摩擦力的大小:其大小往往与物体的运动状态有关,与物体间的正压力无关,常根据物体的平衡或牛顿第二定律求出。其取值范围:大于等于零而小于等于最大静摩擦力(最大静摩擦力与正压力有关)
2、共点力和共点力作用下物体的平衡
1??共点力:力的作用线相交于同一点的力。
2??共点力作用下物体的平衡条件:物体所受的合外力为零。共点力作用下物体的平衡状态:静止或匀速直线运动。
3??二力平衡时:两个力等值反向;三力平衡时:三力中任意两个力的合与另外一个力等值反向,若三力不共线,则这三力一定共面共点;多力平衡时:其中任意一个力与其余所有力的合力等值反向。
3、常用解题方法:相似三角形法,封闭的矢量三角形法。具体计算中可以用正交分解法。
4、解平衡问题的一般思路:
1??先确定研究对象(可以是物体,也可以是结点;可以是单个物体,也可以是几个物体组成的系统);
2??然后对研究对象进行受力分析,画出正确的受力示意图(可按重力、弹力、摩擦力、已知力的顺序,画力的示意图时画在物体的重心上即可);
3??选择合理的矢量运算方法计算(如相似三角形、封闭的矢量三角形、力的正交分解等),根据题意列出方程并求出结果。
5、力的合成与分解:
1??力的合成与力的分解采用了等效替代的方法。
2??合力可以大于、小于或等于分力。
3??两个力的合力大于等于两分力之差,小于等于两分力之和。三个力的合力的取值要看其中一个力是否在另两个的合力范围内,若在则合力的最小值为零,最大值为三力之和。
4??力的合成与分解满足平行四边形法则。用作图法求两个力的合力时,以表示两个力的线段为邻边作平行四边形,过两力交点的对角线就表示合力,箭头画在顶点处。
5??已知几个力求其合力结果是唯一的,但将一个力分解时,如果没有条件限制结果往往不唯一。将力分解时有唯一值的条件是:已知两个分力的方向或已知一个分力的大小和方向。
高一上册物理知识4
基本概念
1、矢量:物理学中把有大小有方向才能确定的物理量叫做矢量。如位移、力、速度、加速度等。
2、标量:物理学中把只有大小就可以确定的物理量叫做标量。如路程、时间、质量、速率等。
3、路程:表示物体运动轨迹的长度。
4、位移:表示物体位置变化的物理量,是矢量。大小:等于物体运动始末两点间距离,方向:从起点指向末点。
注意:只有在单向直线运动中物体的位移大小才等于路程,其余情况中物体的位移大小都小于路程。
5、时刻:时间轴上的一个点。
6、时间:两时刻间的差值。
7、速度:表示物体运动快慢的物理量,运动快则速度大,慢则小。
8、速率:指速度的大小。
9、瞬时速度:物体在某一位置或某一时刻的速度,能精确描述物体运动的快慢。
10、平均速度:物体在某一段时间或位移内的速度,只能粗略地描述物体运动的快慢。求平均速度时,要说明是哪一段时间或位移内的平均速度。公式:v=s/t11、加速度:表示物体速度变化快慢的物理量,速度变化快则加速度大,慢则小。注意:加速度大小与速度、速度变化量大小无关,只取决于速度的变化率,即单位时间内速度的变化量。
公式:a =(vt-v0)/t
单位:m/s2,读作:米每二次方秒
12、质点:当物体的大小和形状在所研究的问题中作为一种次要因素时,就可以忽略物体的大小和形状,把物体当作只有质量的点,即质点。质点是一种理想化物理模型,物体能否当作质点与物体自身的大小和形状无关,且同一物体在不同的问题中有时可以当作质点,有时却不行。
提高高中物理听课的效率
1、课前预习能提高听课的针对性
预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,新的知识有所了解,以减少听课过程中的盲目性和被动性,有助于提高课堂效率。预习后把自己理解了的知识与老师的讲解进行比较、分析即可提高自己思维水平,预习还可以培养自己的自学能力
2、听课过程中要聚精会神、全神贯注,不能开小差
全神贯注就是全身心地投入课堂学习,做到耳到、眼到、心到、口到、手到。若能做到这“五到”,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。要保证听课过程中能全神贯注,不开小差。上课前必须注意课间十分钟的休息,不应做过于激烈的体育运动或激烈争论或看小说或做作业等,以免上课后还气喘嘘嘘,想入非非,而不能平静下来,甚至大脑开始休眠。所以应做好课前的物质准备和精神准备。
3、特别注意老师讲课的开头和结尾
老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要
4、作好笔记
笔记不是记录而是将上述听课中的重点,难点等作出简单扼要的记录,记下讲课的要点以及自己的感受或有创新思维的见解。以便复习,消化
5、要认真审题,理解物理情境、物理过程,注重分析问题的思路和解决问题的方法,坚持下去,就一定能举一反三,提高迁移知识和解决问题的能力。
高一上册物理知识点
第二篇:高一物理知识点归纳[模版]
质点 参考系和坐标系
时间和位移
实验:用打点计时器测速度 知识点总结
了解打点计时器的构造;会用打点计时器研究物体速度随时间变化的规律;通过分析纸带测定匀变速直线运动的加速度及其某时刻的速度;学会用图像法、列表法处理实验数据。
一、实验目的
1.练习使用打点计时器,学会用打上的点的纸带研究物体的运动。
3.测定匀变速直线运动的加速度。
二、实验原理 ⑴电磁打点计时器
① 工作电压:4~6V的交流电源 ② 打点周期:T=0.02s,f=50赫兹 ⑵电火花计时器
① 工作电压:220V的交流电源 ② 打点周期:T=0.02s,f=50赫兹
③ 打点原理:它利用火花放电在纸带上打出小孔而显示点迹的计时器,当接通220V的交流电源,按下脉冲输出开关时,计时器发出的脉冲电流经接正极的放电针、墨粉纸盘到接负极的纸盘轴,产生电火花,于是在纸带上就打下一系列的点迹。⑵由纸带判断物体做匀变速直线运动的方法0、1、2…为时间间隔相等的各计数点,s1、s2、s3、…为相邻两计数点间的距离,若△s=s2-s1=s3-s2=…=恒量,即若连续相等的时间间隔内的位移之差为恒量,则与纸带相连的物体的运动为匀变速直线运动。⑶由纸带求物体运动加速度的方法
三、实验器材
小车,细绳,钩码,一端附有定滑轮的长木板,电火花打点计时器(或打点计时器),低压交流电源,导线两根,纸带,米尺。
四、实验步骤
1.把一端附有定滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路,如图所示。
2.把一条细绳拴在小车上,细绳跨过滑轮,并在细绳的另一端挂上合适的钩码,试放手后,小车能在长木板上平稳地加速滑行一段距离,把纸带穿过打点计时器,并把它的一端固定在小车的后面。
3.把小车停在靠近打点计时器处,先接通电源,再放开小车,让小车运动,打点计时器就在纸带上打下一系列的点, 取下纸带, 换上新纸带, 重复实验三次。4.选择一条比较理想的纸带,舍掉开头的比较密集的点子, 确定好计数始点0, 标明计数点,正确使用毫米刻度尺测量两点间的距离,用逐差法求出加速度值,最后求其平均值。也可求出各计数点对应的速度, 作v-t图线 , 求得直线的斜率即为物体运动的加速度。
五、注意事项
1.纸带打完后及时断开电源。
2.小车的加速度应适当大一些,以能在纸带上长约50cm的范围内清楚地取7~8个计数点为宜。
3.应区别计时器打出的轨迹点与人为选取的计数点,通常每隔4个轨迹点选1个计数点,选取的记数点不少于6个。
4.不要分段测量各段位移,可统一量出各计数点到计数起点0之间的距离,读数时应估读到毫米的下一位。常见考法
纸带处理时高中遇到的第一个实验,非常重要,在平时的练习中、月考、期中、期末考试均会高频率出现,以致在学业水平测试和高考中也做为重点考察内容,是选择、填空题的形式出现,同学们要引起重视。误区提醒
要注意的就是会判断纸带的运动形式、会计算某点速度、会计算加速度,在运算的过程中注意长度单位的换算、时间间隔的求解、有效数字的说明。
例题1.在研究小车运动实验中,获得一条点迹清楚的纸带,已知打点计时器每隔0.02秒打一个计时点,该同学选择ABCDE5个记数点,对记数点进行测量的结果记录下来,单位是厘米,试求:ABCDE各点的瞬时速度(m/s),小车加速度?(m/s2),如果当时电网中交变电流的的频略是51Hz,但做实验的同学不知道,那么加速度的测量值与实际值相比偏大,偏小,不变 第一点为A,第3点为B,第5点为C,第7点为D,第9点为E AB为1.5,AC3.32,AD5.46,AE7.92
速度变化快慢的描述──加速度 误区提醒
例题1.关于速度、速度变化量、加速度的关系,下列说法中正确的是()A.物体的加速度增大时,速度也增大 B.物体的速度变化越快,加速度越大 C.物体的速度变化越大,加速度越大
D.物体的加速度不等于零时,速度大小一定变化
解析:A选项速度增大仅与速度方向与加速度方向有关,与加速度大小无关A错。BC选项由加速度的定义可知B对C错。
D选项加速度的定义式是矢量式,即使速度方向不变但大小变化依然有加速度。答案:B 点评:要理解①速度增加的原因②速度变化较大时,所用时间不确定则加速度也不能确定③加速度的定义式为矢量式。
例题2.两物体相比,一个物体的速度变化量比较大,而加速度却比较小。请问有没有符合该说法的实例。解析:举例如下:
⑷:虽然速度很大如果做匀速直线运动的话,即速度不变,所以加速度为0,所以此说法正确。⑸:速度为零,等到下个时刻速度不一定为零,所以这样子的话物体还是有加速度的,所以此说法错误。
运动快慢的描述──速度 知识点总结
重力、基本相互作用、弹力 知识点总结
考点1.力
1.概念:力是物体之间的相互作用。
2.力的性质
a)物质性:力不能脱离物体而存在。“物体”同时指施力物体和受力物体。
b)相互性:力的作用是相互的。
c)矢量性:力是矢量,即有大小,又有方向。
3.力的单位:N
4.力的分类:
⑴按力的性质分:可分为重力、弹力、摩擦力、分子力、电磁力等。
⑵按力的效果分:可分为压力、支持力、动力、阻力、向心力、回复力等。
5.力的作用效果:使物体发生形变或使物体的运动状态发生变化。
6.力的三要素:大小、方向、作用点。
⑴力的三要素决定了力的作用效果。
⑵表示力的方法:力的图示。
7.力的测量工具:测力计。
考点2.重力
1.定义:由于地球的吸引而使物体受到的力。
3.方向:竖直向下。地面上处在两极和赤道上的物体所受重力的方向指向地心,地面上其他位置的物体所受重力的方向不指向地心。
4.作用点:因为物体各个部分都受到重力作用,可认为重力作用于一点即为物体的重心。
⑴重心的位置与物体的质量分布和几何形状有关。
⑵重心不一定在物体上,可以在物体之外。
考点3.四种相互作用
自然界中存在四种基本相互作用,即引力相互作用、电磁相互作用、强相互作用和弱相互作用。引力相互作用存在于一切物体之间,地面物体所受的重力只是引力在地球表面附近的一种表现。电荷间、磁体间的相互作用,本质上是电磁相互作用的不同表现。引力相互作用于电磁相互作用均随距离增大而减小,直到宇宙的深处。强相互作用与弱相互作用均存在于原子核内,两者在距离增大时强度均急剧减小,作用范围只有原子核的大小。弱相互作用的强度只有强相互作用的10-12。
考点4.弹力
1.定义:直接接触的物体间由于发生弹性形变而产生的力,这是由于要恢复到原来的形状,对使它发生形变的物体产生的力。
2.产生条件:直接接触、弹性形变
3.弹力方向的确定:
i.压力、支持力的方向:总是垂直于接触面,指向被压或被支持的物体。
ii.绳的拉力方向:总是沿着绳,指向绳收缩的方向。
iii.杆子上的弹力的方向:可以沿着杆子的方向,也可以不沿着杆子的方向。
4.弹力大小的确定
⑴弹簧在弹性限度内,遵从胡克定律即F=kx
⑵同一根张紧的轻绳上拉力处处相等。
⑶弹力一般根据物体的运动状态,利用平衡知识或牛顿第二定律求解。误区提醒
质量均匀分布的物体(即所谓“均匀物体”)重心的位置只跟物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。这里,应特别注意“形状规则”和“均匀”(指质量分布均匀)两个条件缺一不可。例如:一个由木质半球和铅质半球粘合而成的球体,尽管有规则形状——球形,但其质量分布不均匀,其重心就不在其几何中心——球心,而是偏向铅质半球一边。
质量分布不均匀的物体,重心的位置除了跟物体的形状有关外,还跟物体内质量的分布有关。例题1.关于重力下列说法中正确的是()A.物体重力的大小总是恒定的
B.同一地点,物体重力的大小与物体的质量成正比
C.物体落向地面时,它受到的重力大小大于它静止时受到的重力大小 D.物体的重力总等于它对竖直弹簧测力计的拉力
解析:AB选项:物体重力的计算式为G=mg,物体的质量m是恒定的,但g的取值与地理位置有关,对同一地点,g的取值相同。随着物体所处地理位置纬度的升高,g的值在增大;随着高度的增加,g的值将减小,因此不能认为物体的重力是恒定的。A错B对。
C选项:由公式可以知道物体的重力仅与物体的质量与当地的重力加速度有关,与物体的运动状态无关,C错。D选项:用测力计竖直悬挂重物只有静止时,物体对测力计的拉力才等于物体的重力,D错。答案:B 点评:理解重力的关键:1.方向竖直向下2.重力的大小与物体的运动状态无关,随着高度和纬度的不同而不同。3.处于地球表面上的物体受到地球的吸引力可以分解为随地球自转所需要的向心力和重力。
摩擦力 知识点总结
知道摩擦力的产生条件;会判断摩擦力的有无并能确定摩擦力的种类及方向;理解滑动摩擦力,理解动摩擦因数μ与摩擦材料有关,与其他因素无关;会综合力学知识求解摩擦力的大小和方向问题;会对物体进行受力分析。摩擦力 1.静摩擦力
①产生:两个相互接触的物体,有相对运动趋势时产生的摩擦力。②作用效果:总是起着阻碍物体间相对运动趋势的作用。
③产生条件:a:相互接触且发射弹性形变b:有相对运动趋势c:接触面粗糙 ④大小:根据平衡条件求解或牛顿运动定律求解。⑤方向:总是与物体的相对运动趋势方向相反。2.滑动摩擦力
①产生:两个相互接触的物体,有相对运动时产生的摩擦力。②作用效果:总是起着阻碍物体间相对运动的作用。
③产生条件:a:相互接触且发射弹性形变;b:有相对运动;c:接触面粗糙.④大小:滑动摩擦力的大小与正压力成正比,即,N指正压力不一定等于物体的重力,误区提醒
受力分析、力的合成与分 知识点总结
考点1.受力分析
1.概念:把研究对象在指定的物理环境中受到的所有力都分析出来,并画出物体所受的 力的示意图,这个过程就是受力分析。
2.受力分析一般顺序:一般先分析场力(重力、电场力、磁场力);然后分析弹力,环绕物体一周,找出跟研究对象接触的物体,并逐个分析这些物体对研究对象是否有弹力作用;最后分析摩擦力,对凡有弹力作用的地方逐一进行分析
3.受力分析的重要依据:①寻找对它的施力物体;②寻找产生的原因; ③寻找是否改变物体的运动状态(即是否产生加速度)或改变物体的形状 考点2.力的合成与分解 1.合力与分力
⑴
定义:如果一个力产生的效果与几个力产生的效果相同,那这个力就叫做这几个力的合力,那几个力就叫做这一个力的分力。⑵ 合力与分力的关系是等效替代关系。
2.力的合成与分解:求已知几个力的合力叫做力的合成,求一个力的分力叫做力的分解。考点3.平行四边形定则、三角形定则
1.求解方法:求两个互成角度的共点力F1,F2的合力,可以用表示F1,F2的有向线段为邻边作平行四边形,它的对角线的长度就为合力的大小,对角线的方向就为合力的方向。
常见考法
受力分析是高中物理的基础,它贯穿于力学、电磁学等各部分.正确地对研究对象进行受力分析是解决问题的关键.若受力分析出错,则“满盘皆输”.受力分析单独考查的也有,但更多的是结合其他知识解决综合性问题.平衡类问题不仅仅涉及力学内容,在电磁学中常涉及带电粒子在电场、磁场或复合场中的平衡,通电导体棒在磁场中平衡,但分析平衡问题的基本思路是一样的.1.分析平衡问题的基本思路(1)明确平衡状态(加速度为零);(2)巧选研究对象(整体法和隔离法);(3)受力分析(规范画出受力示意图);(4)建立平衡方程(灵活运用力的合成法、正交分解法、矢量三角形法及数学解析法);(5)求解或讨论(解的结果及物理意义).2.求解平衡问题的常用规律
(1)相似三角形法:通过力三角形与几何三角形相似求未知力.对解斜三角形的情况更显性.(2)拉密原理:三个共点力平衡时,每个力与另外两个力夹角的正弦之比均相等,这个结论叫拉密原理.表达式为:F1/sin α=F2/sin β=F3/sin γ(其中α为F2与F3的夹角,β为F1与F3的夹角,γ为F1与F2的夹角).(3)三力汇交原理:物体在同一个平面内三个力作用下处于平衡状态时,若这三个力不平行,则这三个力必共点,这就是三力汇交原理.(4)矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接恰好构成一个封闭的三角形,即这三个力的合力必为零,由此求得未知力.误区提醒
1.受力分析时,有些力的大小和方向不能准确确定下来,必须根据物体受到的能够确定的几个力的情况和物体的运动状态判断出未确定的力的情况,要确保受力分析时不漏力、不添力、不错力.2.对于分析出的物体受到的每一个力都应找出其施力物体,不能无中生有,例如,物体做离心运动时,有可能会错把“离心力”当作物体受的力.3.合力和分力不能重复考虑,“性质力”与“效果力”不能重复考虑.例题1.一个物体同时受到三个力作用,其大小分别是4N、5N、8N,则其合力大小可以是 [
] A.0N B.10N C.15N D.20N 答案:ABC 解析:这种题目的处理方法:先找任意两个力的合力的范围,再与第三个力合成。
4N和5N的合力范围在1N到9N之间,再和8N合成,最大的力便是9+8=17N,最小的力看能不能取到零,当然1N到9N之间可以取到8N,若此8N且与第三个力8N相反方向的话,那么这三个力的合力就为0N。所以三个力的合力的范围在0N到17N之间。所以此题选ABC。
例题2.木板B放在水平地面上,在木板B上放一重1200N的A物体,物体A与木板B间,木板与地间的摩擦因数均为0.2,木板B重力不计,当水平拉力F将木板B匀速拉出,绳与水平方向成30°时,问绳的拉力T多大?水平拉力多少? 解析:对A受力分析,建立直角坐标系。如下图:
实验二:验证力的平行四 知识点总结
一、实验目的
验证互成角度的两个力合成的平行四边形定则。
二、实验原理
如果使F1、F2的共同作用效果与另一个力F/的作用效果相同(使橡皮条在某一方向伸长一定的长度),看F1、F2用平行四边形定则求出的合力F与这一个力F/是否在实验误差允许范围内大小相等、方向相同,如果在实验误差允许范围内,就验证了力的平行四边形定则。
三、实验器材
木板一块,白纸,图钉若干,橡皮条一段,细绳套(两个),弹簧秤两个,三角板,刻度尺,量角器,铅笔。
四、实验步骤
1.用图钉把一张白纸钉在水平桌面上的方木板上。
2.用图钉把橡皮条的一端固定在板上的A点,用两条细绳套结在橡皮条的另一端。
3.用两个弹簧秤分别钩住两个细绳套,互成角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O(如图所示)。
4.用铅笔描下结点O的位置和两条细绳套的方向,并记录弹簧秤的读数。在白纸上按比例作出两个弹簧秤的拉力F1和F2的图示,利用刻度尺和三角板根椐平行四边形定则求出合力F。
5.只用一个弹簧秤,通过细绳套把橡皮条的结点拉到与前面相同的位置O,记下弹簧秤的读数和细绳的方向.按同样的比例用刻度尺从O点起做出这个弹簧秤的拉力F''的图示。6.比较F''与用平行四边形定则求得的合力F,在实验误差允许的范围内是否相等。
五、注意事项
1.用弹簧秤测拉力时,应使拉力沿弹簧秤的轴线方向,橡皮条、弹簧秤和细绳套应位于与纸面平行的同一平面内。
2.同一次实验中,橡皮条拉长后的结点位置O必须保持不变。3.使用弹簧测力时,拉力适当大一些。
4.画力的图示时应该选择适当的标度。尽量使图画的大些,同一次实验中标度应该相同,要严格按力的图示要求和几何作图法作出平行四边形,求出合力。常见考法
每次实验保证结点位置保持不变,是为了使合力的作用效果与两个分力共同作用的效果相同,这是物理学中等效替换的思想方法.由于力不仅有大小,还有方向,若两次橡皮条的伸长长度相同但结点位置不同,说明两次效果不同,不满足合力与分力的关系,不能验证平行四边形定则.误区提醒
由弹簧测力计测量合力时必须使橡皮筋伸直,所以与AO共线的合力表示由单个测力计测量得到的实际合力F′,不共线的合力表示由作图法得到的合力F.例题1.在“验证力的平行四边形定则”的实验情况如图甲所示,其中A为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳。图乙是在白纸上根据实验结果画出的图。
①图乙中的F与F′两力中,方向一定沿AO方向的是。②本实验采用的科学方法是()A.理想实验法 B.等效替代法 C.控制变量法 D.建立物理模型法
解析:在“验证力的平行四边形定则”的实验中用一根弹簧秤拉时肯定沿AO方向,若不是这说明实验操作错误,而根据平行四边形定则画出来的合力应该说肯定有误差。答案:F′,B 点评:要求会分析实验误差产生的原因。牛顿第二定律 知识点总结 误区提醒
超重与失重 常见考法
这部分知识往往结合牛顿第二定律进行考查,分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度.此类问题应注意两种模型的建立。
1.中学物理中的“线”和“绳”是理想化模型,具有以下几个特性:
(1)轻:其质量和重力均可视为等于零,且一根绳(或线)中各点的张力大小相等,其方向总是沿着绳子且背离受力物体的方向。
(2)不可伸长:即无论绳子受力多大,绳子的长度不变,由此特点可知,绳子中的张力可以突变。
刚性杆、绳(线)或接触面都可以认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要形变恢复时间,一般题目中所给杆、细线和接触面在不加特殊说明时,均可按此模型来处理。
2.中学物理中的“弹簧”和“橡皮绳”也是理想化模型,具有以下几个特性:
(1)轻:其质量和重力均可视为等于零,同一弹簧两端及其中间各点的弹力大小相等。
(2)弹簧既能承受拉力,也能承受压力;橡皮绳只能承受拉力,不能承受压力。
(3)由于弹簧和橡皮绳受力时,要恢复形变需要一段时间,所以弹簧和橡皮绳中的力不能突变。误区提醒
物体处于超重状态还是失重状态取决于加速度的方向,与速度的大小和方向没有关系,下表列出了加速度方向与物体所处状态的关系.例题1.某人在地面上用弹簧秤称得体重为490N。他将弹簧秤移至电梯内称其体重,至时间段内,弹簧秤的示数如图所示,电梯运行的v-t图可能是(取电梯向上运动的方向为正)
解析:由图可知,在t0-t1时间内,弹簧秤的示数小于实际重量,则处于失重状态,此时具有向下的加速度,在t1-t2阶段弹簧秤示数等于实际重量,则既不超重也不失重,在t2-t3阶段,弹簧秤示数大于实际重量,则处于超重状态,具有向上的加速度,若电梯向下运动,则t0-t1时间内向下加速,t1-t2阶段匀速运动,t2-t3阶段减速下降,A正确;BD不能实现人进入电梯由静止开始运动,C项t0-t1内超重,不符合题意。答案:A
点评:
(1)正确识图、用图理解好物理情景。
(2)对超重、失重的理解:超重并不是说重力增加了,失重并不是说重力减小了,完全失重也不是说重力完全消失了。在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生变化。在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等。
实验三:探究a与F、m的关系 知识点总结
【导学目标】
1.通过实验研究加速度与力、加速度与质量的关系。
2.掌握实验数据处理的方法,能根据图像写出加速度与力、质量的关系式。
【实验原理】
1.如图所示装置,保持小车质量M不变,改变小桶内砂的质量m,从而改变细线对小车的牵引力F(当m< 2.保持小桶和砂的质量不变,在小车上加减砝码,改变小车的质量M,测出小车的对应加速度a,由多组a、M数据作出加速度和质量倒数的关系a-M-1图线,探究加速度与质量的关系。 【实验器材】 小车,砝码,小桶,砂,细线,附有定滑轮的长木板,垫块,打点计时器,低压交流电源,导线两根,纸带,托盘天平及砝码,米尺。 【实验步骤】 1.用调整好的天平测出小车和小桶的质量M和m,把数据记录下来。 2.按如图装置把实验器材安装好,只是不把挂小桶用的细线系在小车上,即不给小车加牵引力。 3.平衡摩擦力:在长木板的不带定滑轮的一端下面垫上垫块,反复移动垫块的位置,直至小车在斜面上运动时可以保持匀速直线运动状态(可以从纸带上打的点是否均匀来判断)。 4.在小车上加放砝码,小桶里放入适量的砂,把砝码和砂的质量M'和m'记录下来。把细线系在小车上并绕过滑轮悬挂小桶,接通电源,放开小车,打点计时器在纸带上打下一系列点,取下纸带,在纸带上写上编号。 5.保持小车的质量不变,改变砂的质量(要用天平称量),按步骤4再做5次实验。 6.算出每条纸带对应的加速度的值。 7.用纵坐标表示加速度a,横坐标表示作用力F,即砂和桶的总重力(m+m')g,根据实验结果在坐标平面上描出相应的点,作图线。探究加速度与外力的关系 8.保持砂和小桶的质量不变,在小车上加放砝码,重复上面的实验,并做好记录,求出相应的加速度,用纵坐标表示加速度a,横坐标表示小车和车内砝码总质量的倒数1/(M+M’),在坐标平面上根据实验结果描出相应的点并作图线。探究加速度与质量的关系。常见考法 这个实验即可以考查控制变量法这种科学实验方法、又可以考查验证牛顿第二定律,还可以考查纸带的处理,所以此实验在阶段性考试或者模拟考试、高考中所占的地位非常重要,同学们应该引起足够的重视。误区提醒 1.一定要做好平衡摩擦力的工作,也就是调出一个合适的斜面,使小车的重力沿着斜面方向的分力正好平衡小车受的摩擦阻力.在平衡摩擦力时,不要把悬挂小盘的细线系在小车上,即不要给小车加任何牵引力,并要让小车拖着打点的纸带运动.2.实验步骤2、3不需要重复,即整个实验平衡了摩擦力后,不管以后是改变小盘和砝码的总质量还是改变小车和砝码的总质量,都不需要重新平衡摩擦力.3.每条纸带必须在满足小车与车上所加砝码的总质量远大于小盘和砝码的总质量的条件下打出.只有如此,小盘和砝码的总重力才可视为小车受到的拉力.4.改变拉力和小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通电源,再放开小车,且应在小车到达滑轮前按住小车.5.作图象时,要使尽可能多的点分布在所作直线上,不在直线上的点应尽可能对称分布在所作直线两侧.6.作图时两轴标度比例要选择适当,各量须采用国际单位.这样作图线时,坐标点间距不至于过密,误差会小些.7.为提高测量精度(1)应舍掉纸带上开头比较密集的点,在后边便于测量的地方找一个起点.(2)可以把每打五次点的时间作为时间单位,即从开始点起,每五个点标出一个计数点,而相邻计数点间的时间间隔为T=0.1 s.例题1.如图为“用DIS(位移传感器、数据采集器、计算机)研究加速度和力的关系”的实验装置。 ⑴在该实验中必须采用控制变量法,应保持___________不变,用钩码所受的重力作为___________,用DIS测小车的加速度。 ⑵改变所挂钩码的数量,多次重复测量。在某次实验中根据测得的多组数据可画出a-F关系图线(如图所示)。 ①分析此图线的OA段可得出的实验结论是_________________________________。②(单选题)此图线的AB段明显偏离直线,造成此误差的主要原因是 A.小车与轨道之间存在摩擦 B.导轨保持了水平状态 C.所挂钩码的总质量太大 D.所用小车的质量太大 答案:(1)小车的总质量,小车所受外力 (2)①在质量不变的条件下,加速度与外力成正比②C 点评:知晓研究思路、会分析实验误差产生的原因。 高一物理知识点复习手册 必修2第五章 曲线运动 知识点1.曲线运动 知识点导学: ⑴ 曲线运动的轨迹是一条曲线 ⑵ 曲线运动速度的方向 ① 质点在某一点(或某一时刻)的速度方向是沿曲线的这一点的切线方向。 ② 曲线运动的速度方向时刻改变。速度是描述运动的一个重要的物理量,既有大小,又有方向,假如在运动过程中只有速度大小的改变,而物体的速度方向不变,则物体只能做直线运动,因此,若物体做曲线运动,表明物体的速度方向时刻在变化。 ⑶ 是变速运动,必有加速度 既然曲线运动是变速运动,那么由a=Δv/Δt可得做曲线运动的物体一定具有加速度。 ⑷ 合外力一定不为零(必受到外力作用) 曲线运动既然是一种变速运动,有加速度,由牛顿第二定律可知,也一定受到合外力的作用。 ⑸物体作曲线运动的条件:当物体所受的合力的方向与它的速度方向在同一直线时,物体做直线运动;当物体所受合力的方向与它的速度方向不在同一直线上时,物体就做曲线运动。 (6)匀变速运动: 加速度(大小和方向)不变的运动。 也可以说是:合外力不变的运动。 (7)曲线运动的合力、轨迹、速度之间的关系 ①轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。 ②合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。 ①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。 ②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。 ③当合力方向与速度方向垂直时,物体的速率不变。(举例:匀速圆周运动) 练习1:关于曲线运动,下列说法中正确的是 (B) A.变速运动—定是曲线运动 B.曲线运动—定是变速运动 C.速率不变的曲线运动是匀速运动 D.曲线运动也可以是速度不变的运动 练习2:一个做匀速直线运动的物体,突然受到一个与运动方向不在同一直线上的恒力作用时,物体运动为 (B) A.继续做直线运动 B.一定做曲线运动 C.可能做直线运动,也可能做曲线运动 D.运动的形式不能确定 知识点2.质点在平面内的运动 知识点导学: ⑴合运动与分运动 定义:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动。那几个运动叫做这个实际运动的分运动. 特征:①等时性:合运动所需时间和对应的每个分运动时间相等 ②独立性:一个物体可以同时参与几个不同的分运动,各个分运动独立进行,互不影响。 ③等效性:各分运动的规律迭加起来与合运动规律有完全相同的效果 ⑵运动的合成与分解 定义:从已知的分运动来求合运动,叫做运动的合成,求一个已知运动的分运动,叫运动的分解,运动的合成与分解包括位移、速度和加速度的合成,意义:运动的合成与分解是解决复杂运动的一种基本方法,它的目的在于将复杂的运动化为简单的运动,将曲线运动化为直线运动,这样就可以应用已经掌握的简单运动或直线运动的规律来研究一些复杂的曲线运动,运动的合成或分解是认识和解决复杂运动问题的方法和手段。 方法:运动的合成和分解遵循平行四边形定则,如果各分运动都在同一直线上,我们可以选取沿该直线的某一方向作为正方向,与正方向相同的矢量取正值,与正方向相反的矢量取负值,这时就可以把矢量运算简化为代数运算。如果各分运动互成角度,那就要作平行四边形,运用作图法、解直角三角形等方法求解。 练习3:关于运动的合成与分解,以下说法不正确的是(C) A.由两个分运动求合运动,合运动是唯一确定的B.由合运动分解为两个分运动,可以有不同的分解方法 C.物体做曲线运动时,才能将这个运动分解为两个分运动 D.任何形式的运动,都可以用几个分运动代替 练习4:飞机以恒定的速度俯冲飞行,已知方向与水平面夹角为30°,水平分速度的大小为200km/h,求: ⑴飞机的飞行速度; ⑵飞机在1min内下降的高度。 练习5:河宽300m,水流速度为3m/s,小船在静水中的速度为5m/s,问 ⑴以最短时间渡河,时间为多少?可达对岸的什么位置?60s,180m ⑵以最短航程渡河,船头应向何处?渡河时间又为多少?向着上游与河岸成a=tan4/3 75s 练习6:一艘小船在200m宽的河中横渡到对岸,已知水流速度是3m/s,小船在静水中的速度是5m/s,求:(1)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大? (2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多长? 船渡河时间:主要看小船垂直于河岸的分速度,如果小船垂直于河岸没有分速度,则不能渡河。 (此时=0°,即船头的方向应该垂直于河岸) 解:(1)结论:欲使船渡河时间最短,船头的方向应该垂直于河岸。渡河的最短时间为: 合速度为: 合位移为: 或者 (2)分析: 怎样渡河:船头与河岸成向上游航行。 最短位移为: 合速度为: 对应的时间为: 练习7:一艘小船在200m宽的河中横渡到对岸,已知水流速度是5m/s,小船在静水中的速度是4m/s,求:(1)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大? (2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多长? 解:(1)结论:欲使船渡河时间最短,船头的方向应该垂直于河岸。 渡河的最短时间为: 合速度为: 合位移为: 或者 (2)方法:以水速的末端点为圆心,以船速的大小为半径做圆,过水速的初端点做圆的切线,切线即为所求合速度方向。 如左图所示:AC即为所求的合速度方向。 相关结论: 知识点3.抛体运动 知识点导学: 1.关于抛体运动 ⑴ 定义:物体以一定的初速度抛出,且只在重力作用下的运动。 ⑵ 运动性质: ① 竖直上抛和竖直下抛运动是直线运动;平抛、斜抛是曲线运动,其轨迹是抛物线; ② 抛体运动的加速度是重力加速度,抛体运动是匀变速运动; ③ 抛体运动是一种理想化运动:地球表面附近,重力的大小和方向认为不变,不考虑空气阻力,且抛出速度远小于宇宙速度。 ⑶ 处理方法:是将其分解为两个简单的直线运动 最常用的分解方法是:水平方向上匀速直线运动;竖直方向上自由落体运动或竖直上抛、竖直下抛运动。 2.平抛运动的规律 平抛运动可以看成是水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。 ⑴ 平抛运动的轨迹 是一条抛物线。 ⑵ 位移公式 水平位移x=v0t,竖直位移y=gt2/2 ⑶ 速度公式 水平速度为vx=v0,竖直速度为vy=gt 3.速度: 合速度: 方向: 位移 合位移: 方向: 时间由: 得 (由下落的高度y决定) 平抛运动竖直方向做自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。 速度与水平方向夹角的正切值为位移与水平方向夹角正切值的2倍。 平抛物体任意时刻瞬时速度方向的反向延长线与初速度方向延长线的交点到抛出点的距离都等于水平位移的一半。(A是OB的中点)。 练习6:关于平抛物体的运动,下列说法中正确的是 (C) A.平抛物体运动的速度和加速度都随时间的增加而增大 B.平抛物体的运动是变加速运动 C.做平抛运动的物体仅受到重力的作用,所以加速度保持不变 D.做平抛运动的物体水平方向的速度逐渐增大 练习7:在一次“飞车过黄河”的表演中,汽车在空中飞经最高点后在对岸着地,已知汽车从最高点至着地点经历的时间约0.8s,两点间的水平距离约为30m,忽略空气阻力,则汽车在最高点时速度约为___37.5m/s,最高点与着地点的高度差为 3.2 m(取g=10m/s2)。 练习8:研究平抛物体的运动,在安装实验装置的过程中,斜槽末端的切线必须是水平的,这样做的目的是(B) A.保证小球飞出时,速度既不太大,也不太小 B.保证小球飞出时,初速度水平 C.保证小球在空中运动的时间每次都相等 D.保证小球运动的轨道是一条抛物线 知识点4.圆周运动 知识点导学: ⑴匀速圆周运动 匀速圆周运动是曲线运动,各点线速度方向沿切线方向,但大小不变;加速度方向始终指向圆心,大小也不变,但它是变速运动,是变加速运动 ⑵线速度、角速度和周期 ①线速度v:描述运动的快慢,v=S/t,S为t内通过的弧长,单位为m/s ②角速度ω:描述转动快慢,ω=θ/t,单位是rad/s ③周期T:完成一次完整圆周运动的时间 ④三者关系:v=rω,ω=2π/T ⑶.线速度:质点通过的圆弧长跟所用时间的比值。 单位:米/秒,m/s 角速度:质点所在的半径转过的角度跟所用时间的比值。 单位:弧度/秒,rad/s 周期:物体做匀速圆周运动一周所用的时间。 单位:秒,s 频率:单位时间内完成圆周运动的圈数。 单位:赫兹,Hz 转速:单位时间内转过的圈数。 单位:转/秒,r/s (条件是转速n的单位必须为转/秒) 向心加速度: 向心力: ⑷三种转动方式 绳模型 练习9:对于做匀速圆周运动的物体,下列说法正确的是(BD) A.相等的时间里通过的路程相等 B.相等的时间里通过的弧长相等 C.相等的时间里发生的位移相同 D.相等的时间里转过的角度相等 练习10:质点做匀速圆周运动时,下列说法正确的是(BC) A.线速度越大,周期一定越小 B.角速度越大,周期一定越小 C.转速越大,周期一定越小 D.圆周半径越小,周期一定越小 练习11:如图所示的皮带传动装置,主动轮O1上两轮的半径分别为3r和r,从动轮O2的半径为2r,A、B、C分别为轮缘上的三点,设皮带不打滑,求: ⑴ A、B、C三点的角速度之比ωA∶ωB∶ωC= 2∶2∶1; ⑵ A、B、C三点的线速度大小之比vA∶vB∶vC= 3∶1∶1。 知识点5.向心加速度和向心力 知识点导学: ⑴向心加速度 方向:总是沿着半径指向圆心,在匀速圆周运动中,向心加速度大小不变 大小:an=v2/r=rω2 ⑵向心力 ①向心力是使物体产生向心加速度的力,方向与向心加速度方向相同,大小由牛顿第二定律可得:Fn=mv2/r=mrω2 ②向心力是根据力的作用效果命名,不是一种特殊的力,可以是弹力、摩擦力或几个力的合成,对于匀速圆周运动的向心力即为物体所受到的合外力 练习12:关于匀速圆周运动,下列说法正确的是(B) A.匀速圆周运动是匀变速运动 B.匀速圆周运动是变速运动 C.匀速圆周运动是匀加速运动 D.只在恒力作用下的物体,有可能作圆周运动 练习13:狗拉雪橇在水平冰面上沿着圆弧形的道路匀速行驶,下图为四个关于雪橇受到的牵引力F和摩擦力F1的示意图(O为圆心),其中正确的是(C) 知识点6.生活中的圆周运动 知识点导学: ⑴火车转弯 火车在平直轨道上匀速行驶时,所受的合力等于0,那么当火车转弯时,我们说它做圆周运动,那么是什么力提供火车的向心力呢?是由轮缘和外轨的挤压产生的外轨对轮缘的弹力提供向心力,由于火车质量很大,故轮缘和外轨间的相互作用力很大,易损害铁轨。所以,实际的弯道处的情况,如图: ①外轨略高于内轨。 ②此时火车的支持力FN的方向不再是竖直的,而是斜向弯道的内侧。 ③此时支持力与重力的合力提供火车转弯所需的向心力。 ④转弯处要选择内外轨适当的高度差,使转弯时所需的向心力完全由重力G和支持力FN来提供→这样外轨就不受轮缘的挤压了。 ⑵汽车过拱桥和航天器中的失重问题 如图,若汽车在拱桥上以速度v前进,桥面的圆弧半径为R,求汽车过桥的最高点时对桥面的压力? ①选汽车为研究对象 ②对汽车进行受力分析:受到重力和桥对车的支持力 ③上述两个力的合力提供向心力、且向心力方向向下 ④建立关系式:; 又因支持力与压力是一对作用力与反作用力,所以 通过与上例的类比,可以了解航天器中的失重的原因,并由 可以解出,当时座舱对航天员的支持力F支=0,航天员处于失重状态。 ⑶离心运动 做圆周运动的物体,它的线速度方向就在圆周的切线上,物体之所以没有飞出去,是因为它受到的合外力提供了它所需的向心力。当向心力突然消失时,物体就沿切线飞出去;当向心力不足时,物体虽不会沿切线飞出去,也会逐渐远离圆心,即: ①定义:做圆周运动的物体,在所受合外力突然消失或者不足以提供圆周运动所需要的向心力的情况下,将远离圆心运动出去,这种运动叫做离心运动。如图: ②应用:离心干燥器、无缝钢管的生产、离心水泵。 ⑷竖直平面的圆周运动 1.“绳模型”如上图所示,小球在竖直平面内做圆周运动过最高点情况。 (注意:绳对小球只能产生拉力) (1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用 mg = = (2)小球能过最高点条件: v ≥ (当v >时,绳对球产生拉力,轨道对球产生压力) (3)不能过最高点条件: v (实际上球还没有到最高点时,就脱离了轨道) 2.“杆模型”,小球在竖直平面内做圆周运动过最高点情况 (注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。) (1)小球能过最高点的临界条件:v=0,F=mg (F为支持力) (2)当0 (3)当v=时,F=0 (4)当v>时,F随v增大而增大,且F>0(F为拉力) 练习15:在下列情况中,汽车对凸形桥顶部的压力最小的是(D) A.以较小的速度驶过半径较大的桥; B.以较小的速度驶过半径较小的桥; C.以较大的速度驶过半径较大的桥: D.以较大的速度驶过半径较小的桥. 练习16:关于离心现象下列说法正确的是(C) A.当物体所受的离心力大于向心力时,产生离心现象 B.做匀速圆周运动的物体,当它所受的一切力都突然消失时它将做背离圆心的圆周运动 C.做匀速圆周运动的物体,当它所受的一切力都突然消失时它将沿切线做直线运动 D.做匀速圆周运动的物体,当它所受的一切力都突然消失时它将做曲运动 必修2第六章 万有引力与航天 知识点1.行星的运动 知识点导学: ⑴开普勒第一定律:所有的行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳是在这些椭圆的一个焦点上。 ⑵开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积. ⑶开普勒第三定律:所有行星的椭圆轨道的半长轴的三次方与公转周期的二次方的比值都相等。 (K值只与中心天体的质量有关) ⑷第一定律画椭圆,第二定律限面积,周期半径归第三,天上从此再不乱。 练习1:古代人们把天体的运动看得都很神圣,认为天体的运动必然是完美、和谐的___匀速圆周运动_____运动,后来__开普勒_仔细研究了第谷的观测资料,经过4年的刻苦计算,最后终于发现:所有的行星绕太阳运动的轨道都是椭圆,太阳处在_椭圆的一个焦点位置上,所有行星轨道的半长轴的三次方跟公转周期的二次方________的比值都相等。 练习2:关于行星绕太阳运动的下列说法中正确的是(D) A.所有行星都在同一椭圆轨道上绕太阳运动 B.行星绕太阳运动时,太阳位于行星轨道的中心处 C.离太阳越近的行星运动周期越长 D.所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等 知识点2.太阳与行星间的引力 知识点导学: 太阳与行星间的引力F=GMm/r2,方向沿着二者的连线。G是一个比例系数,与太阳、行星都没有关系。 练习3:下列关于行星对太阳的引力的说法中正确的是(A) A.行星对太阳的引力与太阳对行星的引力是同一性质的力 B.行星对太阳的引力与太阳的质量成正比,与行星的质量无关 C.太阳对行星的引力大于行星对太阳的引力 D.行星对太阳的引力大小与太阳的质量成正比,与行星距太阳的距离成反比 练习4:苹果落向地球,而不是地球向上运动碰到苹果,发生这个现象的原因是(C) A.由于苹果质量小,对地球的引力小,而地球质量大,对苹果引力大造成的B.由于地球对苹果有引力,而苹果对地球没有引力造成的C.苹果与地球间的相互作用力是相等的,由于地球质量极大,不可能产生明显加速度 D.以上说法都不对 知识点3.万有引力定律 知识点导学: ⑴内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。 ⑵公式:如果用m1和m2表示两个物体的质量,用r表示它们的距离,那么万有引力定律可以用下面的公式来表示F=Gm1m2/r2。 ①对于相距很远因而可以看作质点的物体,公式中的r 就是指两个质点间的距离; ②对均匀的球体,可以看成是质量集中于球心上的质点,这是一种等效的简化处理方法。 ⑶1798年,英国物理学家卡文迪许,第一次在实验室里比较准确地测出了万有引力常量,G的数值为6.67×10-11Nm2/kg2。 练习5:对于万有引力定律的数学表达式:F=Gm1m2/r2,下列说法正确的是(C) A.公式中G为引力常数,是人为规定的B.r趋近于零时,万有引力趋近于无穷大 C.m1、m2受到的万有引力总是大小相等的,与m1、m2是否相等无关 D.m1、m2受到的万有引力总是大小相等方向相反,是一对平衡力 练习6:关于引力常量G,下列说法正确的是(AC) A.在国际单位制中,G在数值上等于两个质量都为1kg的物体相距1m时的相互作用力 B.牛顿发现万有引力定律时,给出了引力常量的值 C.引力常量G的测出,证明了万有引力的存在D.G是一个没有单位的比例常数,它的数值是人为规定的练习7:火星的半径是地球半径的一半,火星的质量约为地球质量的1/9;那么地球表面50 kg的物体受到地球的吸引力约是火星表面同质量的物体受到火星吸引力的2.25 倍. 知识点4.万有引力理论的成就 知识点导学: ⑴在地球表面,不考虑(忽略)地球自转的影响,物体的重力近似等于重力 mg=GMm/R2,可得地球质量M=gR2/G。 ⑵建立模型求中心天体质量 围绕天体做圆周运动的向心力为中心天体对围绕天体的万有引力,通过围绕天体的运动半径和周期求中心天体的质量。 ⑶海王星是在______年____月____日发现的,发现过程是:发现________的实际运动轨道与______________的轨道总有一些偏差,根据观察到的偏差数据和万有引力定律计算出______________,并预测可能出现的时刻和位置;在预测的时间去观察预测的位置。 海王星与冥王星发现的重要意义在___________________________________。 (4)万有引力定律: 1赤道上万有引力: (是两个不同的物理量,) 2两极上的万有引力: 忽略地球自转,地球上的物体受到的重力等于万有引力。 (黄金代换) 距离地球表面高为h的重力加速度: 练习8:下面说法正确的是(AD) A.海王星是人们依据万有引力定律计算出轨道而发现的B.天王星是人们依据万有引力定律计算出轨道而发现的C.天王星的运动轨道偏离根据万有引力定律计算出来的轨道,其原因是由于天王星受到轨道外面其他行星的引力作用 D.冥王星是人们依据万有引力定律计算出轨道而发现的练习9:若已知行星绕太阳公转的半径为r,公转的周期为T,万有引力常量为G,则由此可求出(B) A.行星的质量 B.太阳的质量 C.行星的密度 D.太阳的密度 知识点5.宇宙航行 知识点导学: ⑴第一宇宙速度 7.9km/s,这是物体在地面附近绕地球做匀速圆周运动所必须具有的速度,叫第一宇宙速度。 ⑵第二宇宙速度 在地面附近发射飞行器,如果发射速度满足7.9km/s<v<11.2km/s,它将以椭圆轨道绕地球运行,当v>11.2km/s时,卫星就会克服地球引力,永远离开地球。把11.2km/s叫做第二宇宙速度。 ⑶第三宇宙速度 达第二宇宙速度的物体还受到太阳的引力,在地面附近发射一个物体,若发射速度等于或大于16.7km/s,物体就会挣脱太阳的引力,飞到太阳系以外。把16.7km/s叫做第三宇宙速度。 (4)卫星绕地球做匀速圆周运动:万有引力提供向心力 (轨道处的向心加速度a等于轨道处的重力加速度) 中心天体质量的计算: 方法1: (已知R和g) 方法2: (已知卫星的V与r) 方法3: (已知卫星的与r) 方法4: (已知卫星的周期T与r) 方法5:已知 (已知卫星的V与T) 方法6:已知 (已知卫星的V与,相当于已知V与T) 地球密度计算: 球的体积公式: 近地卫星 (r=R) 发射速度:采用多级火箭发射卫星时,卫星脱离最后一级火箭时的速度。 运行速度:是指卫星在进入运行轨道后绕地球做匀速圆周运动时的线速度.当卫星“贴着” 地面运行时,运行速度等于第一宇宙速度。 练习10:人造地球卫星绕地球做匀速圆周运动,其速度是下列的(B) A.一定等于7.9km/s B.等于或小于7.9km/s C.一定大于7.9km/s D.介于7.9~11.2km/s之间 练习11:人造卫星以地心为圆心,做匀速圆周运动,下列说法正确的是(B) A.半径越大,速度越小,周期越小 B.半径越大,速度越小,周期越大 C.所有卫星的速度均是相同的,与半径无关 D.所有卫星的角速度均是相同的,与半径无关 练习12:在地球(看做质量均匀分布的球体)上空有许多同步卫星,下列说法中正确的是(A) A.它们的质量可能不同 B.它们的速率可能不同 C.它们的向心加速度大小可能不同 D.它们离地心的距离可能不同 知识点6.经典力学的局限性 知识点导学: ⑴经典力学有它的适用范围:只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界;只适用于弱引力情况,不适用于强引力情况。 ⑵对于高速运动(速度接近真空中的光速),需要应用爱因斯坦的相对论。当物体的运动速度远小于真空中的光速时,相对论物理学与经典物理学的结论没有区别。 ⑶对于微观世界,需要应用量子力学。当普朗克常数可以忽略不计时,量子力学和经典力学的结论没有区别。 ⑷对于强引力情况,需要应用爱因斯坦引力理论。当天体的实际半径远大于它们的引力半径时,爱因斯坦引力理论和牛顿引力理论计算出的力的差异并不很大。 练习13:下列说法中正确的是(C) A.经典力学适用于任何情况下的任何物体 B.狭义相对论否定了经典力学 C.量子力学能够描述微观粒子运动的规律性 D.万有引力定律也适用于强相互作用力 练习14:经典力学不能适用下列哪些运动(D) A.火箭的发射 B.宇宙飞船绕地球的运动 C.“勇气号”宇宙探测器 D.微观粒子的波动性 必修2第七章 机械能及其守恒定律 知识点1.动能、势能 知识点导学: ⑴相互作用的物体凭借其位置而具有的能量叫势能。 ⑵物体由于运动而具有的能量叫动能。 练习1:在伽利略实验中,小球从斜面A上离斜面底端h高处滚下斜面,通过最低点后继续滚上另一个斜面B,小球最终会在斜面B上某点停下来而后又下滑,这点距斜面底端的竖直高度仍为h,在小球运动过程中,下列说法正确的是(AD) A.小球在A斜面上运动时,离斜面底端的竖直高度越来越小,小球的运动速度越来越大。 B.小球在A斜面上运动时,动能越来越小,势能越来越大 C.小球在B斜面上运动时,速度越来越大,离斜面底端的高度越来越小 D.小球在B斜面上运动时,动能越来越小,势能越来越大 练习2:下列说法正确的是(BD) A.“力”这个最抽象的概念,是物理学中最重要、意义最深远的概念 B.“能量”这个最抽象的概念,是物理学中最重要、意义最深远的概念 C.“力”是牛顿没有留给我们的少数力学概念之一 D.“能量”是牛顿没有留给我们的少数力学概念之一 知识点2.功 知识点导学: ⑴功的概念 ①如果一个物体受到力的作用,并且在力的方向上发生了位移,物理学中就说这个力对物体做了功。 ②在物理学中,力和物体在力的方向上发生的位移,是做功的两个不可缺少的因素。 ⑵功的计算 ①计算公式:W=F•s•cosα ②计算总功的两种方法: A、是先求合外力,再根据公式W =Fl cosα计算。 B、是先分别求各外力的功,再求各外力的功的代数和。 ⑵正功、负功 ①正功的意义是:力对物体做功向物体提供能量,即受力物体获得了能量。 ②负功的意义是:物体克服外力做功,向外输出能量(以消耗自身的能量为代价),即负功表示物体失去了能量。 练习3:关于功的正负,下列说法正确的是(C) A.功的正负表示功的方向 B.功的正负表示功的大小 C.功的正负表示做功的效果:正功表示力与位移的夹角小于90°,负功表示力与位移的夹角大于90°。 D.功的正负和功的大小、方向都有关系 练习4:下列说法正确的是(D) A.只要物体运动,就一定有力对它做功 B.作用在物体上的力越大,做功越多 C.物体发生的位移越大,做的功越多 D.两个大小不同的力,做的功有可能相等 练习5:质量为150kg的物体受到与水平方向37°角斜向上的拉力500N的作用,在水平上移动5m,物体与水平地面间的滑动摩擦力为100N。求各力对物体做的功及总功。2000J,500J,1500J 知识点3.功率 知识点导学: ⑴功率:表示做功快慢的物理量。单位:瓦特(W) ⑵定义:功跟完成这些功所用时间的比值,叫功率 公式:P=W/t,求平均功率 ⑶P=Fv→ v是平均速度,P是平均功率;v是瞬时速度,P是瞬时功率。 ⑷额定功率和实际功率的区别 计算平均功率: 计算瞬时功率: (力F的方向与速度v的方向夹角α) 练习6:关于功率下列说法中正确的是 (B) A.功率是描述做功多少的物理量 B.功率是描述做功快慢的物理量 C.做功的时间长,功率一定小 D.力做功越多,功率一定越大 练习7:汽车上坡时,司机必须换挡,其目的是(C) A.减小速度,得到较小的牵引力 B.增大速度,得到较小的牵引力 C.减小速度,得到较大的牵引力 D.减大速度,得到较大的牵引力 练习8:一个质量为5Kg的物体从高处由静止开始下落,不计空气阻力,试求: ⑴前3秒的平均功率;750W ⑵3秒末的重力的瞬时功率。1500W 知识点4.重力势能 知识点导学: ⑴概念:重力势能EP=mgh 重力做功WG=mg(h1-h2) 重力势能的减少量△EP=mgh1-mgh2 ⑵理解:重力做功与路径无关只与始末位置的高度差有关;重力做功等于重力势能的减少量;重力势能是相对的,是和地球共有的,即重力势能的相对性和系统性. 重力势能: 重力做功计算公式: 重力势能变化量: 重力做功与重力势能变化量之间的关系: 重力做功特点:重力做正功(A到B),重力势能减小。重力做负功(C到D),重力势能增加。 练习9:关于重力势能的说法中正确的是 (D) A.重力势能的大小只有重力决定 B.重力势能恒大于零 C.在地面上的物体重力势能一定等于零 D.重力势能实际上物体和地球共有的练习10:物体在运动过程中,重力势能增加了40J,则(C) A.重力做功为40J B.合外力做功40J C.重力做功-40J D.合外力做功-40J 知识点5.弹性势能 知识点导学: ⑴弹性势能:发生弹性形变的物体各部分之间,由于弹力的相互作用而具有的势能. ⑵弹簧的弹性势能只与弹簧的劲度系数和形变量有关。 弹簧弹性势能: (弹簧的变化量) 弹簧弹力做的功等于弹性势能变化量的负值: 特点:弹力对物体做正功,弹性势能减小。弹力对物体做负功,弹性势能增加。 练习11:在光滑水平面上水平放置一轻质弹簧,有一物体从它正右端向弹簧做匀速运动,在物体压缩弹簧速度减为零时(C) A.物体的重力势能不变 B.物体的动能最大 C.弹簧的弹性势能最大 D.弹簧的弹性势能最小 知识点6.动能和动能定理 知识点导学: ⑴实验:探究功与物体速度变化的关系 ①实验思想方法:倍增法。虽为变力做功,但橡皮条做的功,随着橡皮条数目的成倍增加功也成倍增加。 ②数据处理方法:图像法。作出功-速度(W-v)曲线,分析这条曲线,得出功与速度变化的定量关系。 ⑵动能:物体由于运动而具有的能叫物体的动能。 表达式:Ek=mv2/2 ⑶动能定理:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化。 表达式:W=Ek2-Ek1 动能定理: 常用变形: 练习12:在做探究功与物体速度变化的关系的实验时,小车会因为受摩擦力而影响实验,我们可以使木板倾斜作为补偿。则下面操作正确的是(C) A.使拖着纸带的小车由静止释放,小车不下滑即可 B.使拖着纸带的小车有静止释放,小车能下滑即可 C.沿木板向下推拖着纸带的小车,放手后打点计时器在纸带上打下的点距均匀即可 D.以上说法都不对 练习13:一个质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度是2m/s,则下列说法中错误的是(ACD)。(g取10m/s2) A.手对物体做功12J B.合外力对物体做功12J C.合外力对物体做功2J D.物体克服重力做功10J 练习14:一质量为2kg的铅球从离地面2m高处自由下落,陷入沙坑2cm深处.求沙子对铅球的平均阻力.22N 知识点7.机械能守恒定律 知识点导学: ⑴内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变。 ⑵条件:只有重力或弹力做功 表达式: (初状态的势能和动能之和等于末状态的势能和动能之和) (动能的增加量等于势能的减少量) (A物体机械能的增加量等于B物体机械能的减少量) 练习15:下列实例中满足机械能守恒的是(AC) A.水平抛出的物体(不计空气阻力) B.被匀速吊起的集装箱 C.光滑曲面上的自由运动的物体 D.物体以4g/5的加速度竖直向上做匀加速直线运动 练习16:以10m/s的初速度从10m高的塔上水平抛出一颗石子,不计空气阻力,求石子落地时速度的大小.17.3m/s 知识点8.实验:验证机械能守恒定律 知识点导学: ⑴实验原理:在物体自由下落的过程中,只有重力对物体做功,遵守机械能守恒定律,即重力势能的减少量等于动能的增加量。用公式mv2/2=mgh验证机械能定恒定律,所选纸带1、2两点间距应接近2mm。 ⑵实验器材:铁架台(带铁夹);2、打点记时器;3、重锤(带纸带夹子);4、纸带几条;5、复写纸片;6、导线;7、直尺;8、交流电源。 练习17:某同学用电磁打点计时器验证机械能守恒定律,有关步骤如下: ①铁架台放在实验桌上,打点计时器竖直固定于铁架台上,用导线把打点计时器的与学生电源连接好 ②接通电源,打点稳定后释放纸带 ③重复几海外侨胞,挑选一条全适的纸带进行测量 ④把纸带的一端固定在重物的夹子上,纸带的另一端穿过限位孔,用手提着纸带的上端,使重物停靠在计时器附近 ⑤选择合适的点,测出点对应下落的高度hn和Vn ⑥计算比较mvn2/2和mghn后得出结论 合理的操作顺序是_①④②③⑤⑥ 练习18:在验证机械能定恒定律的实验中,已知打点计时器所用电源的频率为50Hz,查得当地的重力加速度为9.8m/s2,测得所用重物的质量为1.00kg,实验中得到一条点迹清晰的纸带,把第一个点记作O,另选连续的4个点A、B、C、D作为测量的点,经测量知道A、B、C、D各点到O点的距离分别为62.99cm、70.18cm、77.76cm、85.73cm,根据以上数据,可知重物由O点运动到C点,重力势能的减少量等于_____J,动能的增加量等于_____J(取3位有效数字) 知识点9.能量守恒定律与能源 知识点导学: ⑴能量守恒定律:能量既不会消失,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一物体,而在转化或转移的过程中,能量的总量保持不变。 ⑵能量耗散:在能源利用过程中,有些能量转变成周围环境的内能,人类无法把这些内能收集起来重新利用的现象。 ⑶能量虽然可以转化和转移,但转化和转移是有方向性的①热量可以自发的由高温物体传递给低温物体,但不能自发的由低温物体传给高温物体。 ②冒起的煤烟和散发开的炭灰不可能又重新组合成一堆煤炭。 ③散失到周围环境中的内能不能回收重新利用。 练习19:下列关于能的转化与守恒定律的说法错误的是(BD) A.能量能从一种形式转化为另一种形式的能,但不能从一个物体转移到另一物体 B.能量的形式多种多样,它们之间可以相互转化 C.一个物体能量增加了,和别的物体的能量有没有变化没有任何联系 D.能的转化与守恒定律证明了第一类永动机是不可能存在的3-1第一章 电场 电流 知识点1.电荷 库仑定律 知识点导学: ⑴自然界的两种电荷:玻璃棒跟丝绸摩擦,玻璃棒带正电;橡胶棒跟毛皮摩擦,橡胶棒带负电。 ⑵元电荷e=1.6×10-19C,所有物体的带电量都是元电荷的整数倍。 ⑶使物体带电的方法有三种:接触起电、摩擦起电、感应起电,无论哪种方法,都是电荷在物体之间的转移或从物体的一部分转移到另一部分,电荷的总量是。 ⑷电荷守恒定律的内容是。 ⑸库仑定律的成立条件:真空中静止的点电荷。 ⑹带电体可以看成点电荷的条件:如果带电体间距离比它们自身线度的大小大得多,以至带电体的形状和大小对相互作用力的影响可以忽略不计,这样的带电体可以看成点电荷。 ⑺定律的内容:真空中两个静止的点电荷之间的相互作用力,跟它们电荷量的乘积成正比,跟它们距离的二次方成反比,作用力的方向在它们的连线上。 ⑻表达式:F=,k=。 练习1:A、B两个完全相同的金属球,A球带电量为-3q,B球带电量为7q,现将两球接触后分开,A、B带电量分别变为 2q 和 2q。 练习2:真空中有两个静止的点电荷,它们之间的作用力为F,若它们的带电量都增大为原来的2倍,距离减少为原来的1/2,它们之间的相互作用力变为(D) A.F/2 B.F C.4F D.16F 知识点2.电场 电场强度 电场线 知识点导学: ⑴电场:存在于电荷周围的特殊物质。实物和场是物质存在的两种方式。 ⑵电场强度的定义:放入电场中某点的电荷所受到的电场力跟它的电量的比值。 表达式:E= 。电场强度的单位是 。电场强度的大小与放入电场中的电荷无关,只由电场本身决定。 ⑶电场强度方向的规定:电场中某点的电场强度的方向跟 电荷在该点受的电场力的方向相同。负电荷在该点受的电场力的方向。 ⑷电场线的特点:①电场线从正电荷或无穷远出发,终止于无限远或负电荷;②电场线在电场中不会相交;③电场越强的地方,电场线越密,因此电场线线不仅能形象地表示电场的方向,还能大致地表示电场强度的相对大小。 练习3:电场强度是描述电场性质的物理量,它的大小由 电场本身 来决定,与放入电场的电荷无关。由于电场强度由大小和方向共同决定,因此电场强度是 矢 量。 练习4:图中展示的是下列哪种情况的电场线(D) A.单个正点电荷 B.单个负点电荷 C.等量异种点电荷 D.等量同种点电荷 知识点3.生活中的静电现象 知识点导学: ⑴静电的防止: 放电现象:火花放电、接地放电、尖端放电等。 避雷针利用尖端放电原理来避雷:带电云层靠近建筑物时,避雷针上产生的感应电荷会通过针尖放电,逐渐中和云中的电荷,使建筑物免遭雷击。 ⑵静电的应用: 静电除尘、静电复印、静电喷漆等。 练习5:下列哪些措施是为了防止静电产生的危害(A) A.在高大的建筑物顶端装上避雷针 B.在高大的烟囱中安装静电除尘器 C.静电复印 D.静电喷漆 知识点4.电容器 知识点导学: ⑴两个正地的靠得很近的平行 间夹有一层绝缘材料,就构成了平行板电容器。这层绝缘材料称为电介质。电容器是的装置。 ⑵电容器储存电荷的本领大小用电容表示,其国际单位是 。平行板电容器的电容与、和 关,正对面积越大,电容越大,板间距离越大,电容越小。 练习6:对电容C=Q/U,下列说法正确的是(D) A.电容器充电量越大,电容增加越大 B.电容器的电容跟它两极所加电压成反比 C.电容器的电容越大,所带电量就越多 D.对于确定的电容器,它所充的电量跟它两极板间所加电压的比值保持不变 练习7:某一电容器标注的是:“300V,5μF”,则下述说法正确的是 (A) A.该电容器可在300V以下电压正常工作 B.该电容器只能在300V电压时正常工作 C.电压是200V时,电容不是5μF 知识点5.电流和电源 知识点导学: ⑴电流:电荷的定向移动产生电流。 ①产生电流的条件①自由电荷②导体两端有电压 ①金属中的自由电子,酸、碱、盐水溶液中的正、负离子,都是自由电荷,干电池、蓄电池、发电机等电源,它们在电路中的作用是保持导体上的电压。 ③规定正电荷定向移动的方向为电流的方向 ④把通过导线横截面的电荷量Q 与所用时间t的比值定义为电流,描述电流的强弱,用I表示,I=Q/t ⑤电流的单位是:安培,简称安,符号A,还有常用单位毫安mA,微安μA 1mA=10-3A,1μA=10-6A ⑵电源 ①电源的作用:使导体两端建立电场,电场力使导体中的自由电荷做定向运动,形成持续的电流。 ②电源两极间电压的大小是由电源本身的性质决定的.电源的这种特性,物理学中用电动势来描述,符号是E,电源的电动势等于电源没有接入电路时两极间的电压,电动势的单位与电压的单位相同,也是伏特。 练习8:关于电流,下列说法中正确的是 (C) A.通过导线截面的电量越多,电流越大 B.电子运动的速率越大,电流越大 C.单位时间内通过导体截面的电量越多,导体中的电流越大 D.因为电流有方向,所以电流是矢量 练习9:下列说法正确的是(C) A.电源内部电流是从正极流向负极 B.电源内部电荷是从正极流向负极 C.电源是通过非静电力做功把其它形式的能转化为电势能的装置 D.电源是产生电荷并使电荷定向移动的工具 知识点6.电流的热效应 知识点导学: ⑴电流通过导体时,导体发热的现象称为电流的热效应。 ⑵焦耳定律:电流通过导体时产生的热量,与电流的平方成正比,与导体的电阻成正比,与通电时间成正比,这就是焦耳定律。 关系式:Q=I2Rt 练习10:关于电热的利用,下列说法中正确的是(C) A.电热对我们来说总是有利的B.电热对我们来说总是不利的C.电饭锅是利用电流热效应的原理制成的D.电视机工作过程中没有产生电热 练习11:小明家新买了一只规格为800W的电热水壶,他经过几次使用后发现,晚饭后烧开一壶水所用的时间比早晨烧一壶水所用的时间长,你认为主要原因是(A) A.晚间电热水壶两端的电压低于早晨电热水壶两端的电压 B.晚间的大气压升高,水的沸点升高,需要的热量比早晨多 C.晚间的环境温度比早晨环境温度偏低 D.晚间烧水时,热量散失比早晨多 高一物理运动学知识点小结 一、机械运动 一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等运动形式. 二、参照物 为了研究物体的运动而假定为不动的物体,叫做参照物. 对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,灵活地选取参照物会给问题的分析带来简便;通常以地球为参照物来研究物体的运动. 三、质点 研究一个物体的运动时,如果物体的形状和大小属于无关因素或次要因素,对问题的研究没有影响或影响可以忽略,为使问题简化,就用一个有质量的点来代替物体.用来代管物体的有质量的做质点.像这种突出主要因素,排除无关因素,忽略次要因素的研究问题的思想方法,即为理想化方法,质点即是一种理想化模型. 四、时刻和时间 时刻:指的是某一瞬时.在时间轴上用一个点来表示.对应的是位置、速度、动量、动能等状态量. 时间:是两时刻间的间隔.在时间轴上用一段长度来表示.对应的是位移、路程、冲量、功等过程量.时间间隔=终止时刻-开始时刻。 五、位移和路程 位移:描述物体位置的变化,是从物体运动的初位置指向末位置的矢量. 路程:物体运动轨迹的长度,是标量.只有在单方向的直线运动中,位移的大小才等于路程。 六、速度 描述物体运动的方向和快慢的物理量. 1.平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间内的平均速度,即V=S/t,单位:m/ s,其方向与位移的方向相同.它是对变速运动的粗略描述.公式V=(V0+Vt)/2只对匀变速直线运动适用。 2.瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.瞬时速度的大小叫速率,是标量. 如果细细分析,可以发现速度不是一个简单概念,它是一个“大家族”,里面有“平均速度”和“瞬时速度”这些成员,还有“速率”这个“近亲”。其中瞬时速度是难点,又是重点。有时往往把瞬时速度简称为速度,这一点同学们须特别注意。 a.速度的物理意义是“描述物体运动快慢和方向的物理量”,定义是“位移与发生这个位移所用的时间之比”,即vx。速度是矢量。t b.上面式子所给出的其实是“平均速度”。对于运动快慢一直在变化的“非匀速运动”(又叫变速运动),如果要精确描述物体每时每刻运动的快慢程度,就必须引入“瞬时速度”这个概念。当Δt非常小(用数学术语来说,Δt→0)时的x就可以认为是瞬时速度。也就t 是说,要真正理解瞬时速度概念,需要数学里“极限”的知识,希望同学们结合数学相关内容进行学习。 c.速度是矢量,与“速度”对应的还有一个“速率”的概念。按书上的说法,速率(瞬时速率)就是速度(瞬时速度)的大小。它是一个标量,没有方向。不过,日常生活中人们说 4.在“速度-时间”图像中,加速度是图线的斜率。速度图线越陡,加速度越大;速度图线为水平线,加速度为0的速度其实往往就是速率(日常语言词汇中几乎没有速率这个词)。 *其实速率的原始定义是“运动的路程与所用时间之比”,而不是“位移与所用时间之比”,在物体作曲线运动时,“平均速率”与“平均速度的大小”通常并不相等(因为在作曲线运动时,路程是曲线轨迹的长度,比位移直线长,“平均速率”总是比“平均速度的大小”要大些)。 但是,在发生一段极小的位移时,位移的大小和路程相等,所以瞬时速度的大小就等于瞬时速率。因此书上的说法只能理解成“瞬时速率就是瞬时速度的大小”。 七、匀速直线运动 1.定义:在相等的时间里位移相等的直线运动叫做匀速直线运动. 2.特点:a=0,v=恒量. 3.位移公式:S=vt. 八、加速度 1.加速度的物理意义:反映运动物体速度变化快慢的物理量。...... 加速度的定义:速度的变化与发生这一变化所用的时间的比值,即a = vv2v1=。tt 加速度是矢量。加速度的方向与速度方向并不一定相同。 2.加速度与速度是完全不同的物理量,加速度是速度的变化率。所以,两者之间并不存在“速度大加速度也大、速度为0时加速度也为0”等关系,加速度和速度的方向也没有必然相同的关系,加速直线运动的物体,加速度方向与速度方向相同;减速直线运动的物体,加速度方向与速度方向相反。 *速度、速度变化、加速度的关系: ①方向关系:加速度的方向与速度变化的方向一定相同。在直线运动中,若a的方向与V0的方向相同,质点做加速运动;若a的方向与V0的方向相反,质点做减速运动。 ②大小关系:V、△V、a无必然的大小决定关系。 3.还有一个量也要注意与速度和加速度加以区分,那就是“速度变化量”Δv,Δv = v2 — v1。Δv越大,加速度并不一定越大,还要看所用的时间的多少。 九、匀变速直线运动 1.定义:在相等的时间内速度的变化相等的直线运动叫做匀变速直线运动. 2.特点:a=恒量. 3.公式:(1)vt=v0十at(2)s=v0t +at2(3)vt2-v02=2as(4)s=1 2v0vtt. 2 说明:(1)以上公式只适用于匀变速直线运动. (2)四个公式中只有两个是独立的,即由任意两式可推出另外两式.四个公式中有五个物理量,而两个独立方程只能解出两个未知量,所以解题时需要三个已知条件,才能有解. (3)式中v0、vt、a、s均为矢量,方程式为矢量方程,应用时要规定正方向,凡与正方向相同者取正值,相反者取负值;所求矢量为正值者,表示与正方向相同,为负值者表示与正方向相反.通常将v0的方向规定为正方向,以v0的位置做初始位置. (4)以上各式给出了匀变速直线运动的普遍规律.一切匀变速直线运动的差异就在于 它们各自的v0、a不完全相同,例如a=0时,匀速直线运动;以v0的方向为正方向; a>0时,匀加速直线运动;a<0时,匀减速直线运动;a=g、v0=0时,自由落体应动;a=g、v0≠0时,竖直抛体运动.(5)对匀减速直线运动,有最长的运动时间t= v0/a,对应有最大位移s= v02/2a,若t>v0/a,一般不能直接代入公式求位移。 4、推论: (l)匀变速直线运动的物体,在任两个连续相等的时间里的位移之差是个恒量,即ΔS= S 2Ⅱ- SⅠ=aT=恒量. (2)匀变速直线运动的物体,在某段时间内的平均速度,等于该段时间的中间时刻的瞬时速度,即Vt=V= 2v0vt.以上两推论在“测定匀变速直线运动的加速度”等学生实验中经2 常用到,要熟练掌握. (3)匀变速直线运动的物体,在某段位移的中间位移处的瞬时速度为vs 22v0vt2 2 (4)初速度为零的匀加速直线运动(设T为等分时间间隔): ① IT末、2T末、3T末„„瞬时速度的比为Vl∶V2∶V3„„∶Vn=1∶2∶3∶„„∶n; ② 1T内、2T内、3T内„„位移的比为Sl∶S2∶S3∶„„Sn=12∶22∶32∶„„∶n2; ③ 第一个T内,第二个T内,第三个T内„„位移的比为SI∶SⅡ∶SⅢ∶„„∶SN=l∶3∶ 5∶„„∶(2n-1); ④ 静止开始通过连续相等的位移所用时间的比t1∶t2∶t3∶„„tn= 1:21:2::nn1 十、匀变速直线运动的图像 1.对于运动图象要从以下几点来认识它的物理意义: a.从图象识别物体运动的性质。 b.能认识图像的截距的意义。 c.能认识图像的斜率的意义。 d.能认识图线覆盖面积的意义。 e.能说出图线上一点的状况。 2.利用v一t图象,不仅可极为方便地证明和记住运动学中的一系列基本规律和公式,还可以极为简捷地分析和解答各种问题。 1)s——t图象和v——t图象,只能描述直线运动——单向或双向直线运动的位移和速度随时间的变化关系,而不能直接用来描述方向变化的曲线运动。 2)当为曲线运动时,应先将其分解为直线运动,然后才能用S—t或v一t图象进行描述。a、位移时间图象 位移时间图象反映了运动物体的位移随时间变化的关系,匀速运动的S—t图象是直线,直线的斜率数值上等于运动物体的速度;变速运动的S-t图象是曲线,图线切线方向的斜率表示该点速度的大小. b、速度时间图象 (1)它反映了运动物体速度随时间的变化关系. (2)匀速运动的V一t图线平行于时间轴. (3)匀变速直线运动的V—t图线是倾斜的直线,其斜率数值上等于物体运动的加速度. (4)非匀变速直线运动的V一t图线是曲线,每点的切线方向的斜率表示该点的加速度大 小. 十一、自由落体运动 物体只受重力作用所做的初速度为零的运动. 特点:(l)只受重力;(2)初速度为零. v1规律:(1)vt=gt;(2)s=gt2;(3)vt2=2gs;(4)s=tt;(5)221vgt; 2 十二、竖直上抛运动 1、将物体沿竖直方向抛出,物体的运动为竖直上抛运动.抛出后只在重力作用下的运动。其规律为:(1)vt=v0-gt,(2)s=v0t -gt2(3)vt-v0=-2gh2 21几个特征量:最大高度h= v02/2g,运动时间t=2v0/g. 2.两种处理办法: (1)分段法:上升阶段看做末速度为零,加速度大小为g的匀减速直线运动,下降阶段为自由落体运动. (2)整体法:从整体看来,运动的全过程加速度大小恒定且方向与初速度v0方向始终相反,因此可以把竖直上抛运动看作是一个统一的减速直线运动。这时取抛出点为坐标原点,初速度v0方向为正方向,则a=一g。 3.上升阶段与下降阶段的特点 (l)物体从某点出发上升到最高点的时间与从最高点回落到出发点的时们相等。即t上=v0/g=t下所以,从某点抛出后又回到同一点所用的时间为t=2v0/g (2)上把时的初速度v0与落回出发点的速度V等值反向,大小均为 gH2gH;即V=V0= 注意:①以上特点适用于竖直上抛物体的运动过程中的任意一个点所时应的上升下降两阶段,因为从任意一点向上看,物体的运动都是竖直上抛运动,且下降阶段为上升阶段的逆过程. ②以上特点,对于一般的匀减速直线运动都能适用。若能灵活掌握以上特点,可使解题过程大为简化.尤其要注意竖直上抛物体运动的时称性和速度、位移的正负。 十三、运动学解题的基本方法、步骤 运动学的基本概念(位移、速度、加速度等)和基本规律是我们解题的依据,是我们认识问题、分析问题、寻求解题途径的武器。只有深刻理解概念、规律才能灵活地求解各种问题,但解题又是深刻理解概念、规律的必需环节。 根据运动学的基本概念、规律可知求解运动学问题的基本方法、步骤为 (1)审题。弄清题意,画草图,明确已知量,未知量,待求量。 (2)明确研究对象。选择参考系、坐标系。 (3)分析有关的时间、位移、初末速度,加速度等。 (4)应用运动规律、几何关系等建立解题方程。 (5)解方程。 第一单元 运动描述 一、质点 1.质点:用来代替物体的有质量的点. 2.说明:(1)质点是一个理想化模型,实际上并不存在. (2)物体可以简化成质点的情况:①物体各部分的运动情况都相同时(如平动).②物体的大小和形状对所研究问题的影响可以忽略不计的情况下(如研究地球的公转). 二、参考系和坐标系 1.参考系:在描述一个物体的运动时,用来作为标准的另外的物体. 说明:(1)同一个物体,如果以不同的物体为参考系,观察结果可能不同. (2)参考系的选取是任意的,原则是以使研究物体的运动情况简单为原则;一般情况下如无说明,则以地面或相对地面静止的物体为参考系. 2.坐标系:为定量研究质点的位置及变化,在参考系上建立坐标系,如质点沿直线运动,以该直线为x轴;研究平面上的运动可建立直角坐标系. 三、时刻和时间 1.时刻:指的是某一瞬间,在时间轴上用—个确定的点表示.如“3s末”;和“4s初”. 2.时间:是两个时刻间的一段间隔,在时间轴上用一段线段表示. 四、位置、位移和路程 1.位置:质点所在空间对应的点.建立坐标系后用坐标来描述. 2.位移:描述质点位置改变的物理量,是矢量,方向由初位置指向末位置,大小是从初位置到末位置的线段的长度. 3.路程:物体运动轨迹的长度,是标量. 五、速度与速率 1. 速度:位移与发生这个位移所用时间的比值(v=),是矢量,方向与Δx的方向相同. 2.瞬时速度与瞬时速率:瞬时速度指物体在某一时刻(或某一位置)的速度,方向沿轨迹的切线方向,其大小叫瞬时速率,前者是矢量,后者是标量. 3.平均速度与平均速率:在变速直线运动中,物体在某段时间的位移跟发生这段位移所用时间的比值叫平均速度(v=),是矢量,方向与位移方向相同;而物体在某段时间内运动的路程与所用时间的比值叫平均速率,是标量. 说明:速度都是矢量,速率都是标量;速度描述物体运动的快慢及方向,而速率只能描述物体运动的快慢;瞬时速率就是瞬时速度的大小,但平均速率不一定等于平均速度的大小,只有在单方向直线运动中,平均速率才等于平均速度的大小,即位移大小等于路程时才相等. 六、加速度 1.物理意义:描述速度改变快慢及方向的物理量,是矢量. 2.定义:速度的改变量跟发生这一改变所用时间的比值. 3.公式:a= = 4.大小:等于单位时间内速度的改变量. 5.方向:与速度改变量的方向相同. 6.理解:要注意区别速度(v)、速度的改变(Δv)、速度的变化率().加速度的大小即,而加速度的方向即Δv的方向 七.速度、速度变化量及加速度有哪些区别? 速度等于位移跟时间的比值.它是位移对时间的变化率,描述物体运动的快慢和运动方向.也可以说是描述物体位置变化的快慢和位置变化的方向. 速度的变化量是描述速度改变多少的,它等于物体的末速度和初速度的矢量差.它表示速度变化的大小和变化的方向,在匀加速直线运动中,速度变化的方向与初速度的方向相同;在匀减速直线运动中,速度的变化的方向与速度的方向相反.速度的变化与速度大小无必然联系. 加速度是速度的变化与发生这一变化所用时间的比值.也就是速度对时间的变化率,在数值上等于单位时间内速度的变化.它描述的是速度变化的快慢和变化的方向.加速度的大小由速度变化的大小和发生这一变化所用时间的多少共同决定,与速度本身的大小以及速度变化的大小无必然联系. 第二单元 匀变速直线运动 1.匀速直线运动: 物体沿直线运动,如果在相等的时间内通过的位移相等,这种运动就叫做匀速直线运动. 2.匀变速直线运动:(1)概念:物体做直线运动,且加速度大小、方向都不变,这种运动叫做匀变速直线运动. (2)分类:分为匀加速直线运动和匀减速直线运动两类.加速度与速度方向相同时,物体做加速直线运动,加速度与速度方向相反时,物体做减速直线运动. 3.一般的匀变速直线运动的规律: 速度公式: 匀减速直线运动 a取大小 位移公式:x=v0t+ at2 x=v0t- at2 位移公式:S= t 速度与位移的关系:v 2-v 02=2ax v 2-v 02=-2ax平均速度计算式: 4.几个推论: ⑴某段时间的中间时刻的速度 ⑵某段位移的中间位置的速度 ⑶两相邻的相等时间(T)内的位移之差等于恒量。即 Δx= =aT2 该公式可用于测定加速度,也可作为判断初速度不为零的匀变速直线运动的重要条件。*⑷初速度为零的匀加速直线运动的特点:(从运动开始时刻计时,且设t为时间单位)①ts末、2ts末、3ts末、…nts末瞬时速度之比为: v 1:v 2:v3:…vn=1׃2׃3׃…׃n ②ts内、2ts内、3ts内、…nts内位移之比为: x1׃x2׃x3׃…׃xn=12׃22׃32׃…n2 ③在连续相等的时间间隔内的位移之比为: xⅠ׃xⅡ׃xⅢ׃…:xN=1:3:5:…:(2n-1)④经过连续相同位移所用时间之比为: tⅠ∶tⅡ∶tⅢ∶…∶tN=1:():():…׃()5.运用匀变速直线运动的规律来解题步骤:(1)根据题意,确定研究对象. (2)明确物体作什么运动,并且画出草图. (3)分析运动过程的特点,并选用反映其特点的公式.(4)建立一维坐标系,确定正方向,列出方程求解.(5)进行验算和讨论. 6.怎样处理追及和相遇类问题? 两物体在同一直线上运动,往往涉及追及、相遇或避免碰撞等问题,此类问题的本质的条件就是看两物体能否同时到达空间的同一位置。求解的基本思路是:①分别对两物体研究;②画出运动过程示意图;③找出两物体运动的时间关系、速度关系、位移关系;④建立方程,求解结果,必要时进行讨论。(1)追及问题:追和被追的两物体的速度相等(同向运动)是能否追上及两者距离有极值的临界条件,常见的有下列两种情况: 第一类——速度大者减速(如匀减速直线运动)追速度小者(如匀速运动):①当两者速度相等时,若追者位移仍小于被追者位移,则永远追不上,此时两者间有最小距离。②若两者位移相等,且两者速度相等时,则恰能追上,也是两者避免碰撞的临界条件。③若两者位移相等时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,其间速度相等时两者间距离有一个较大值。 第二类——速度小者加速(如初速为零的匀加速直线运动)追速度大者(如匀速运动):①当两者速度相等时有最大距离。②若两者位移相等时,则追上. (2)相遇问题:①同向运动的两物体追上即相遇。②相向运动的物体,当各自发生的位移大小之和等于开始时两物体的距离时即相遇。 (3)处理这类问题,也可以只用位移的关系列出x-t二次函数方程,利用判别式求x极值,或由有一组解、两组解、无解,确定是否相遇、相撞、相遇次数。7.运动的图象问题 物理规律的表达除了用公式外,有的规律还用图像表达,优点是能形象、直观地反映物理量之间的函数关系,这也是物理中常用的一种方法。 对图像的要求可概括记为:“一轴二线三斜率四面积”。 (1)x-t图象:图1-2-2所示为四个运动物体的位移图象,试比较它们的运动情况.这四个物体的位移图象都是直线,其位移又都随时间增加,说明都向着同方向(位移的正方向)作匀速直线运动,只是其速度的大小和起始情况不同.a、b两物体从t=0开始,由原点出发向正方向作匀速直线运动.c物体在t=0时从位于原点前方x1处向正方向作匀速直线运动.d物体在时间t1才开始向正方向作匀速直线运动.由图中可知,任取相同时间△t,它们的位移△x大小不同:△xc>△xB>△xa>△xd,所以它们的速度大小关系为vc>vB>va>vd.(2)v-t图: ①说出如图1-2-5中的各物体的运动情况。 ①是沿规定的正方向的匀加速直线运动;②是沿规定的正方向的匀减速直线运动;③是沿与规定的正方向的反方向的匀减速直线运动;④是沿规定的正方向的反方向的匀加速直线运动。 ②v-t图象的倾斜程度反映了物体加速度的大小.如图1-2-6所示,加速度,即加速度a等于v-t图象的斜率。由于匀变速直线运动的速度图象是一条倾斜直线,所以速度图象与横轴的夹角恒定,即加速度是一个恒量(大小和方向都不改变).而非匀变速直线运动的速度图象是一条曲线,所以图象与横轴的夹角 在改变,即加速度不恒定.如图1—7所示,速度图象与横轴的夹角越来越小,表示加速度逐渐减小,即速度的变化率越来越慢.这里要注意,图1-2-7所表示的加速度虽逐渐减小,但速度却越来越大,这也体现了加速度与速度的区别. 第三单元 自由落体 1.定义:物体从静止开始下落,只在重力作用下的运动 2.特点:初速度为零,加速度为g的匀加速运动 3规律:初速度为零、加速度a=g的匀加速直线运动 v=gt h= v2=2gh 从运动开始连续相等的时间内的位移之比为1:3:5:…… 连续相等的时间内的位移增加量相等:Δx=gt2 一、力的基本知识: 1.力是指物体对物体的作用. 2.力的作用效果:(1)使物体产生形变;(2)使物体产生加速度(物体运动状态变化). 3.力是矢量,要准确表述一个力,必须同时指出它的大小、方向和作用点. 二、三种最常见的力: 1.重力 (1)重力:由于地球的吸引而使物体受到的力叫重力. (2)重力的大小:①由G=mg 计算 ②用弹簧秤测量,物体处于静止时,弹簧秤的示数等于重力的大小.(3)重力的方向竖直向下(即垂直于水平面向下). (4)重心:物体所受重力的作用点.①质量分布均匀的物体的重心,只与物体的形状有关.形状规则的均匀物体,它的重心就在几何中心上,如均匀直棒的重心,在棒的中心.②质量分布不均匀的物体的重心与物体的形状、质量分布有关.③薄板形物体的重心,可用悬挂法确定. 2.弹力: (1)形变:物体在力的作用下形状或体积发生改变,叫做形变. (2)弹力:发生形变的物体,由于要恢复原状,就会对跟它接触使它发生形变的物体产生力的作用,这种力叫做弹力. (3)弹力产生的条件:两物体①直接接触,②有弹性形变. (4)弹力的方向:弹力的方向总是与作用在物体上使物体发生形变的外力方向相反. 常见支持物的弹力方向: 平板的弹力垂直于板面指向被支持的物体; 曲面的弹力垂直于曲面该处的切平面指向被支持的物体; 支承点的弹力垂直于跟它接触的平面(或曲面的切平面)指向被支持的物体; 绳索的弹力沿着绳子指向收缩的方向. (5)弹力的大小:弹力的大小跟形变的大小有关,形变越大,弹力越大. ①胡克定律:在弹性限度内,弹簧的弹力跟它的伸长成正比,即F=kx,k叫劲度系数,单位是N/m. 弹性限度:如果物体的形变过大,超过一定的限度,物体的形状将不能恢复,这个限度叫着弹性限度. ②对于微小形变产生的弹力大小,一般根据物体所处的状态,利用平衡条件或动力学规律求解. 3.滑动摩擦力 (1)定义:一个物体在另一个物体表面上相对于另一个物体滑动时,所受到的阻碍它相对滑动的力.(2)产生的条件:⑴两物体相互接触挤压;(2)物体间接触面不光滑;(3)两物体间存在相对运动. (3)大小:跟压力FN成正比,F=μFN. (4)方向:与接触面相切,并且跟物体相对运动的方向相反.(5)作用效果:总是阻碍物体间的相对运动. 4.静摩擦力 (1)定义:两个相互接触、相对静止的物体,由于有相对运动趋势,而在物体接触处产生的阻碍相对运动的力. (2)产生的条件: ①两物体相互接触挤压;②物体间接触面不光滑;③两物体相对静止但存在相对运动趋势. (3)方向:总是跟接触面相切,并且跟物体3)相对运动趋势的方向相反,与物体接触面之间的弹力方向垂直. (4)大小:等于使物体产生相对运动趋势的外力的大小.两物体间的静摩擦力F在零和最大静摩擦力fmax之间,即O ①Fmax略大于滑动摩擦力f,为方便起见,解题时如无特殊说明,可认为Fmax=F. ②Fmax的数值跟相互接触的两物体的材料、接触面的粗糙程度有关,跟正压力成正比,但静摩擦力的数值与正压力大小不成正比. 5.如何判断静摩擦力的方向? 静摩擦力的方向沿着两物体接触面的切线,与相对运动趋势的方向相反,而相对运动趋势的方向又难以判断,这就使静摩擦力方向的判断成为一个难点.判断静摩擦力的方向常用下列方法:(1)用假设法判断静摩擦力的方向: 我们可以假设接触面是光滑的,判断物体将向哪滑动,从而确定相对运动趋势的方向,进而判断出静摩擦力的方向.如右栏例1. (2)根据物体的运动状态判断静摩擦力的方向: 首先弄清物体运动状态(是平衡状态,加速或减速状态),分析出除摩擦力外的其它力,看是否能维持这个运动状态,若不能维持,说明一定受摩擦力,根据平衡条件或牛顿定律,即可判断出静摩擦力的方向.第三篇:高一物理知识点复习手册
第四篇:高一物理运动学知识点小结
第五篇:高一物理上册复习知识点总结人教版必修1