《倒数的认识》教学设计

2023-01-30下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《《倒数的认识》教学设计》及扩展资料,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《倒数的认识》教学设计》。

《倒数的认识》教学设计

《倒数的认识》教学设计1

一、创设情境、导入新课。

1、课件出示:吞---吴干---士杏---呆。

2、请同桌互相交流一下,找一找下面文字的构成有什么规律吗?

3、学生汇报。

4、同学们观察的非常仔细,这种现象在数学中也有,今天这堂课我们就来研究倒数的知识。(板书课题:倒数的认识)

二、出示学习目标

1、能够理解和掌握倒数的意义。

2、学习求一个数的倒数的方法,能正确地求出一个数的倒数。

三、探究新知识

1、课件出示例1的算式,开展小组活动:算一算,找一找,这组算式有什么特点?

2、小组汇报交流。(通过计算,发现每组两个数的乘积都是1,还发现了相乘的两个分数的分子和分母的位置是颠倒的)

3、同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,也发现了每组两个数的.乘积都是1,我们现在就可以得出倒数的定义了:乘积是1的两个数互为倒数。(板书)

4、提问“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。

5、强调“两个数”“乘积是1”

6、出示0.4×2.5=1,让学生说一说0.4和2.5可不可以说互为倒数。

7、随堂练习:判断:

(1)得数是1的两个数叫做互为倒数。

(2)因为10×1/10=1,所以10是倒数,1/10是倒数。

(3)因为1/4+3/4=1,所以1/4是3/4的倒数。

8、出示例题2,找一找哪两个数互为倒数?再说一说你是怎么找的?

9、以小组为单位进行讨论交流。

10、分组汇报:

第一种方法:看两个分数的乘积是不是1。

第二种方法:看两个分数的分子与分母是否分别颠倒了位置。

哪一种方法比较快?

11、观察书中的找倒数的方法,强调:3/5的倒数是5/3,不能用等号相连。

我们刚才知道了真分数、假分数和整数找倒数的方法:还有一些数找倒数的方法我们没有归纳。请同学们想一想下面的数怎么找倒数?

1、真分数、假分数。

2、整数

3、小数

4、带分数(板书)

12、例2中还有哪些数没有找到倒数?

13、提问:1和0有没有倒数?如果有,是多少?(小组讨论、汇报。)

四、巩固练习

我们现在应用今天学习的知识解决一些问题。

五、课堂总结。

板书设计成知识树。

《倒数的认识》教学设计2

教学内容:

教科书第50页例7及相应的练习

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。

2、培养学生举例、观察、比较、抽象概括能力。

3、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。

一、口算导入

分别出示一四组算式(加减乘除),指名报答案,找这一组算式的共同点(和是1,差是1,积是1,商是1);

师:今天,我们就一起来研究乘积是1的这一类算式。同学们,你能自己写一些乘积是1的算式吗?老师给你30秒时间,看看哪位同学写得既对又多。

展示个别学生作品,大家写的算式都有一个共同点:(乘积是1)。(板书)

师:乘积是1的两个数到底存在什么样的关系呢?请大家把书翻到第50页,自学。

指名回答,(乘积是1的两个数互为倒数。)(板书)相机揭示课题(认识倒数)(板书)

二、教学新课

师:你认为在这一句话中有哪些词比较关键?师划出,逐一解读。先强调乘积及1。

(1)问:“互为”是什么意思?(互相)

一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。

(2)(结合学生的算式:)比如乘()等于1,所以()和()互为倒数,也可以说(A)是(B)的倒数或者(B)是(A)的倒数。

(3)观察互为倒数的两个数,看看它们的分子、分母有什么特点?指名回答。

(4)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?对啊,倒数相互依存的,这种存在相互依存关系的数,我们在五年级时就学习过,大家还记得吗?(倍数、因数)

(5)选择一个算式,跟你的同桌说说谁是谁的倒数。

三、求一个数的倒数

1、刚才,你们在短时间内写出了很多乘积是1的算式,在设计这些乘法算式时有什么窍门吗?指名回答(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)

为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)

讨论到这里,你知道怎样求一个数的倒数了吗?指名回答。大家同意吗?

好的.,接下来,老师要来考考大家了,有信心吗?我报一个数,你们一起说出这个树的倒数,5/9的倒数是9/5,7/6,6/10,11/8,3/7

2、师:同学们已经学会了求真分数、假分数的倒数,想一想,我们还学过哪些数?(整数、小数、带分数)那么,怎样求整数、小数、带分数的倒数呢?列出几个数:

自主探究

a四人为一小组,选择一种情况研究

b生交流汇报,师板书例子

c引导概括求倒数的方法

3、同学们真棒,通过自己的探索,学会了求一个数的倒数。那么有没有同学知道1的倒数呢?为什么?(1可以看成1/1,所以倒数仍是1,或者1×1=1)(板书)

那0的倒数呢?为什么?指名回答(0乘任何数都得0,即0乘任何数都不可能等于1。)(板书)

4、归纳如何求一个数的倒数

求一个数的倒数(0除外),只要把它的分子、分母交换位置。

5、师:学了那么多,下面就让我们一起来练一练吧(书本50页,练一练)

展示,核对,强调互为倒数的两个数之间不能用“=”连接。

《倒数的认识》教学设计3

教学目标

1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

3.培养学生的`观察能力和概括能力。

教学重点和难点

1.正确理解倒数的意义及互为的含义。

2.正确地求出一个数的倒数。

教学过程设计

(一)激发兴趣,引出概念

1.投影。哪个同学和老师比赛?谁说得快?

师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)

2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。

板书:乘积是1 两个数

3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?

生:两个数分子、分母颠倒位置就可以了。

师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)

4.举例说明,什么叫互为倒数?

师:3是倒数这句话对吗?为什么?

你们说得对,谁能说出几组倒数?

同桌互相说,每人说两组。(指名说)

问:怎样判断他们说得是否正确?

生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于

《倒数的认识》教学设计4

教学目标:

1、使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

2、培养学生观察、归纳、推理和概括的能力。

教学过程

一、创设活动情景,引入概念

出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)

师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

让学生读一读:“倒数”。

出示倒数的意义:乘积是1的两个数互为倒数。

二、探究讨论,深入理解

让学生说说对倒数意义的理解。

提问:“互为”是什么意思?(倒数是指两个数之间的'关系,这两个数相互依存,一个数不能叫倒数。)

判断下面的句子错在哪里?应该怎样叙述。

因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。

三、运用概念,探讨方法

出示例2,找一找哪两个数互为倒数?

汇报找的结果,并说说怎样找的?

1、看两个分数的乘积是不是1;

2、看两个分数的分子与分母是否分别颠倒了位置。

讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)

通过具体实例总结归纳找倒数的方法。

(1)找分数的倒数:交换分子与分母的位置。

例:

(2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

例:

四、出示特例,深入理解

看一看,例2中的哪些数据没有找到倒数?(1,0)

提问:1和0有没有倒数?如果有,是多少?

小组讨论、汇报。

1、关于1的倒数。

因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

也可以这样推导:

1的倒数是1。

2、关于0的倒数。

因为0与任何数相乘都不等于1,所以0没有倒数。

也可以这样推导:

分母不能为0,所以0没有倒数。

五、巩固练习

1、完成“做一做”。先独立做,再全班交流。

2、练习六第3题。用多媒体或投影逐题出示,学生判断,并说明理由。

3、同桌进行互说倒数活动(练习六第2题)。

六、总结

今天学习了什么?

什么叫倒数?怎样找出一个数的倒数?

《倒数的认识》教学设计5

教学内容:

数学第十一册19页----倒数的认识。

教学目标:

(1)知识目标:理解倒数的意义,掌握求倒数的方法。

(2)能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。

教学重点:

理解倒数的意义和怎样求一个数的倒数。

教学难点:

正确理解倒数的意义及0为何没有倒数。

一、游戏导入

教师:我知道同学们特别喜欢做游戏。今天我们一起做个游戏。这个游戏是这样的。如果我说1、2,大家就说2、1。那我说1、2、3,大家该怎么说?好!游戏正式开始。喜欢!我教育你!我吃西瓜!我打篮球!谁能说一说这个游戏的规则是什么?在数学当中,我们还可以怎样玩这个游戏?继续玩,我说分数,大家倒过来说。3/8、15/7、1/80、3(板书)

二、探究意义

1.找特点

师:请同学们观察黑板上四组数都有什么特点。

(生:分子、分母互相颠倒 )

师:请同学们把每一组中的两个数相乘,看乘积是多少?

(生:每一组中的两个数乘积都是1 )师及时板书

师:谁还能很快说出乘积是1的两个数吗?

(生回答)

师:同学们说得这么快一定找到了窍门,把你找到的窍门跟同学门说说好吗?

(生:两个数分子分母颠倒位置乘积是1)

师:那么乘积是1 的两个数数学给它起个什么名呢?

(生回答,师板书:乘积是1 的两个数叫互为倒数)

师:在这个概念中你认为哪个词比较重要?让学生自由说出自己的想法。

重点讲解“互为”的意思,就是互相是的意思。例如:

3/8×8/3=1 我们就说3/8是8/3的倒数,或者说3/8的倒数是3/8,也可以说8/3和3/8互为倒数。而不能说8/3的倒数,或3/8是倒数。

师:谁来把黑板上的后三组数仿照老师刚才叙述的来说一遍,用上“因为”“所以”一词。

(指名叙述)

师:根据同学们的叙述,我们可以看出倒数不是指某一个数,而是指两个数相互依存的关系,是相对两个数而言,不能孤立的说某一个数是倒数。

三、探究求倒数的方法。

师:现在我们已经理解了倒数的意义,那么怎样求一个数的倒数呢?继续观察黑板上的四组数,看互为倒数的两个数有什么特点,(分子,分母调换了位置)根据这个规律我们试着求下面几个数的倒数。

出示:3/5 7/2 8/6 5/12 10/4

(指名回答师板书)

师:你们是怎么找出每个数的倒数的?

(说自己的方法)

师:除了这些分数外我们还学过哪些数?(整数、小数、带分数)怎样求它们的倒数呢?求同学们试着求下面书的倒数。

出示:6 0.5 2 7/8 1

(生回答,师板书)并说说你是怎样求的?

师:是不是所有的数都有倒数呢?同桌讨论

0为什么没有倒数?(0和任何数相乘都不得1)

师:通过同学们的练习,谁来总结求一个数的倒数的方法?

(生总结,师板书)

四、小结并揭示课题

同学们我们今天重点认识了什么?(板书课题:倒数的认识)你们在这节课都学会了什么?下面老师想知道你们是否真正的掌握了没有,所以老师要考考你们,。

五、巩固练习。

1、填空

1、乘积是的两个数叫()倒数。

2、因为7/15 x 15/7 =1 所以7/15和15/7( )

3、5的倒数是( )。 0.2的倒数是( )。

4、()的倒数是它本身。()没有倒数。

5、8×()=1 0.25×()= 1

()×2/3=1 7/2×( )=( )×8=( )×0.15 =1

2、当把小医生。

1、得数是1的两个数叫互为倒数。()

2a是一个整数,它的倒数一定是 1/a 。()

3、因为2/3×3/2=1,所以2/3是倒数。()

4、1的倒数是1,所以0的倒数是0。()

5、真分数的倒数都大于1。()

6、2.5和0.4 互为倒数。()

7、任何真分数的倒数都是假分数。()

8、任何假分数的倒数都是真分数。()

3、面各数的倒数

2.5 4 1/8 2 6/7 0.12

4、列式计算

1、7/6加上它的倒数的和乘2/3,积是多少?

2、1减去它的倒数后除以0.12,商是多少?

3、已知A×3/2=B×3/5,(A、B都是不为0的数)

求A、B的大小

六、教学反思:

倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的`意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。

“倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。“倒数的求法”中求一个小数或带分数的倒数学生可能有些困难。

今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过游戏的形式激发学生的学习兴趣,学生发现了算式的特点,并让学生举例后发现,有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的方法时,我又给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数么?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。最后,大家一致认为”0“没有倒数。因为“0”和任何数相乘都不等于1,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。

《倒数的认识》教学设计6

教材分析

《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

学情分析

学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。

教学目标

1、知道倒数的意义,会求一个数的倒数。

2、经历倒数的意义这一概念的形式过程。

3、培养学生观察、归纳、推理和概括的能力。

4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。

教学重点和难点

理解倒数的意义,会求一个数的倒数。

教学过程

教学反思

“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。这节课上,我采用了探究式的教学方法,正确处理了“教教材”和“用教材”的关系。1.在本课的引入中,我没有采用多种铺垫,而是直接通过让学生计算教材中的.四个乘法算式,观察积的特点与算式中两个因数的特点,直接对倒数形成了初步的认识,更明白了只要调换分子与分母的位置就会得到一个新的分数。为了使学生深入了解倒数的意义,我引导学生举了大量分数的例子,并通过观察、计算等方法使学生明确“互为倒数的两个数的乘积是1”、“倒数的两个数只是把分子和分母的位置进行调换”、更让我高兴的是学生能注意到“倒数是相互依存的”。抓住学生的这一发现,我引导他们很快就总结出了倒数的概念——乘积是1的两个数叫做互为倒数。2.在让学生通过研究求各种数的倒数的方法的环节上,避免了学生在学习中只会求分数的倒数的知识的单一,延伸的所学的内容。在最后,面对特殊的0和1这两个数时,学生们出现了小小的“争执”。有人认为:“0和1有倒数。”有人认为:“0和1没有倒数。”对于学生的“争执”我没有直接介入,而是引导他们互相说说自己的理由,在他们的交流中,学生们达成了一致的认识:0没有倒数,1的倒数是它本身。并且在说明理由时,学生还认为“0不能做分母,所以0没有倒数”这个理由,拓展了我所提供给学生的知识内容。如果让我重新上这节课我会设计出更多的形式多样的练习让学生在练习中得到更大的提高。

《倒数的认识》教学设计7

教学目标:

1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

2、培养学生的数学思维。

教学重点:理解倒数的意义,求一个数的倒数。

教学难点:从本质上理解倒数的意义。

教学过程:

一、呈现数据,先计算,再观察发现。

1、出示:3/8×8/3 7/15×15/7 5×1/5 0。25×4 2、

计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)

二、交流思辨,抽象概念。

1、汇报。乘积都是1。

2、你能根据上面的观察写出乘积是1的另一个数吗?

3/4×( )=1 ( )×9/7=1

说说你是怎样写得,有什么窍门?

你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的?

如0。5、1。7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

4、让学生说说上面的`数(用两种说法)。

5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

学生讨论:分数的分子分母调了一下位置;

师:那么5×1/5 0。2×5乘积也是1哟!怎么?把整数和小数也化成分数。

6、沟通:分子分母倒一下跟乘积是1有联系吗?

7、现在你对倒数有了怎样的认识?

三、求一个数的倒数。

1、找一个数的倒数。

5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。

你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)

2、会找了吗?你能找到下列数的倒数吗?

3/5 4/9 6 7/2 1 1.25 1。2 0

学生独立完成,然后交流。

《倒数的认识》教学设计8

教学目标:

1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

教学重点:

理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。

教学难点:掌握求倒数的方法。

教具准备:多媒体课件。

教学过程

一、旧知铺垫(课件出示)

1、口算:

(1)× × 6× ×40

(2)××3××80

2、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识

二、新授

1、课件出示知识目标:

(1)什么叫倒数?怎样理解“互为”?

(2)怎样求一个数的倒数?

(3)0、1有倒数吗?是什么?

2、教学倒数的意义。

(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。

(2)学生汇报研究的结果:乘积是1的两个数互为倒数。

(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

(3)互为倒数的两个数有什么特点?(两个数的.分子、分母正好颠倒了位置)

3、教学求倒数的方法。

(1)写出的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

4、教学特例,深入理解

(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

5、同桌互说倒数,教师巡视。

三、当堂测评

1、练习六第2题:

2、辨析练习:练习六第3题“判断题”。

3、开放性训练。

3/5×( )=( )×4/7=( )×5=1/3×( )=1

四、课堂总结

你已经知道了关于“倒数”的哪些知识?

你联想到什么?

还想知道什么?

设计意图

倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。

教学后记

第十一、十二课时:整理和复习

《倒数的认识》教学设计9

【教学内容】

教材P28页中的例1、“做一做”及练习六中的部分练习题。

【教学目标】

1、知识与技能:通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

2、过程与方法:引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

3、情感、态度与价值观:通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

【教学重点】

理解倒数的意义,学会求倒数的方法。

【教学难点】

小数与整数求倒数的方法以及0、1的倒数。

【教学方法】

创设情境、启发诱导、合作交流、自学与讲授相结合等。

【教具准备】

课件

【教学过程】

一、激趣引入

师:(板书“呆”)呆是一个上下结构的字,“呆”字如果上下颠倒就成了“杏”,语文中的文字有许多这样的构字规律,比如(杏——呆;吞——吴;音——昱;士——干……)那么在数学中的数也有这种规律吗?

二、新知探究

(一)探究讨论,理解倒数的意义。

1、课件出示算式。

先计算,再观察,看看有什么规律。

3/8×8/37/15×15/75×1/51/12×12

小组汇报交流

2、出示倒数的意义:乘积是1的两个数互为倒数。

3、你是怎样理解“互为倒数”的呢?能举例吗?

4、倒数的表达方式。

(二)深化理解。

1、乘积是1的两个数存在着怎样的倒数关系呢?

2、互为倒数的两个数有什么特点?

3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

4、辨析:下面的说法对吗?为什么?

A:2/3是倒数。

B:得数为1的两个数互为倒数。()

C、7/15和15/7乘积是1,所以7/15和15/7互为倒数。()

D、0的倒数还是0。()

(三)运用概念。

1、讨论求一个分数的倒数的方法。

出示例1:写出其中3/5和7/2两个分数的倒数。

(1)学生试做并讨论。

(2)生汇报:

(3)师生共同小结:求一个分数的倒数,只要把这个分数的分子、分母调换位置。

2、怎样求整数(0除外)的倒数?请求出6的倒数是几?(出示课件)

3、1的'倒数是几?0的倒数是几?

(1)学生试做并讨论。

(2)生汇报:

(3)师生共同小结:1的倒数是1,0没有倒数。

4、小结。

求一个数的倒数(0除外),只要把这个数的分子、分母调换位置。

三、巩固练习

1、写出下面各数的倒数。

4/1116/97/84/1535

2、判断。

(1)真分数的倒数都是假分数。()

(2)假分数的倒数都小于1。()

(3)0的倒数是0,1的倒数是1。()

四、课堂小结

今天我们学习了有关倒数的哪些新知识?

《倒数的认识》教学设计10

【教材依据】

倒数的认识是义务教育课程标准试验教科书北师大版小学五年级数学(下册)第三单元中的第一节课内容。

【设计思路】

1、指导思想:

让学生通过文字游戏感受民族语言文字的美,激发学生学习新知的热情,进一步利用同桌关系让学生理解“互为”的含义。自然地引领学生进入到数学王国,理解倒数的概念。利用倒数的概念学会找一个数的倒数的方法。

2、设计理念

本节课内容与学生以前所学的知识联系不大,学生也很容易接受和理解,因此在设计本节课内容的时候,主要从学生的生活实际出发,利用游戏来调动学生学习的积极性,让学生在玩游戏的过程中掌握本节课的知识点,尽量分散难点,突出重点,这样学生容易接受。 3、教材分析

本节课的内容是倒数的认识,主要是让学生了解倒数的概念,能正确的找一个数的倒数,知道1的倒数是1,0没有倒数。会找小数和带分数的倒数。因此在设计教学的时候,我是一步一步进行深入的,先引导学生认识倒数的概念,理解倒数具备的条件,会找一个数的倒数。(真分数和整数的倒数),紧接着在学生练习的过程中引入小数和带分数,引导学生理解如何找小数和带分数的倒数,从而让学生熟练的掌握找小数和带分数倒数的方法。

【教学目标】

(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出一个数的倒数。

(2)能力目标:引导学生学会观察、归纳,培养学生学会在小组内与人交流,与人合作的意识。从而提高学生观察、比较、抽象、归纳以及合作学习的能力。

(3)情感目标:培养学生学习数学的兴趣,探寻数学知识的欲望以及良好的学习习惯。

【教学重点】:倒数的意义与求法。

【教学难点】:1、0的倒数,小数、带分数倒数的求法。

【教学过程】:

一、创境导课、激发兴趣。

1、文字游戏:

师:同学们,我们在学习新课之前,来做个文字颠倒游戏,,比如老师说:“人小”,大家可以说“小人”,好不好,有情趣没有?

生:(大声喊道)好!

师:学科

生:科学

师:人人为我,

生:我为人人。

师:上海自来水,

生:水来自海上

师:同学们,刚才的文字颠倒游戏好玩不?

生:好玩。

师:那我们再来玩一种文字游戏,大家听好了,老师说“秦少坤是朱倩倩同学的同桌”,还可以怎么说呢?

生:还可以说“朱倩倩是秦少坤同学的同桌。”

师:老师能不能理解为“秦少坤和朱倩倩同学互为同桌呢?

生:开始有些迟疑,然后回答到“可以”。

板书“互为”

2、数字游戏:

师:同学们,我们的民族语言文字有这样的美妙,其实在数学王国也存在着这样的美,我们不妨来试试。老师比如说“3/4,大家就来说4/3.

师:6/7

生:7/6

师:8/9

生:9/8

师:像这样6/7和7/6的两个数就互为倒数。

师问:那么什么是倒数呢?谁知道?

生:没人回答。

师:既然大家不知道什么是倒数?我们就先来看一下几道练习题。

二、探究新知:

(一) 倒数的概念:

1、出示下列习题。

4/5×5/4= 6/7×7/6= 1/8×8= 2/3×3/2= 5×1/5= 2/9×9/2=

(1) 指名学生回答。

(2) 学生观察这些算式有什么特点?

(3) 小组内进行交流。

(4) 各组汇报交流的情况。

(5) 师总结归纳:

② 这些算式的乘积都是1. 这些算式中分子和分母都打颠倒了。

2、学生齐读倒数的概念,理解倒数具备的条件。

(二)、找一个数的倒数的方法:

师:那么我们刚才认识了倒数的概念,如何去找一个数的倒数呢? 生:交换分子和分母的位置就可以了。

师:好,老师现在给大家出几道练习题,大家试试看,能不能正确地找出一个数的倒数。

生:欢呼雀跃(表现出极其热情的表情)。

师:4/5的倒数是( ),5/6的倒数是( ),

0.2的倒数是( ),1 1/2的倒数是( )。

生:相互交流,然后每个小组派出一个代表来汇报交流的结果。 学生汇报:

生A:4/5的倒数是5/4, 5/6的倒数是6/5。

生B:0.2的倒数是1/0.2, 1 1/2的倒数是2. 板书:像这样乘积是1的两个数互为倒数。

生C:我和上面的同学答案一样。

师:老师可以明确的告诉大家同学B的回答是错误的,那么正确的答案又是多少呢?小数和带分数如何去找它们的倒数呢?

生:叽叽喳喳,没人敢回答。

师:既然大家都不会,老师来告诉大家:小数在找倒数的时候,首先要将这个小数化成分数,然后将分数的分子和分母的位置交换即可。带分数在找倒数的时候,要将带分数先化成假分数,然后交换分子和分母的位置即可。大家会了吗?

生:(齐声回答)会了。

生:再次将刚才做错的题目纠正过来。

师:同学们,老师碰到了一个难题,有人问老师数字0和数字1的倒数是多少?老师有点不知道,大家能帮老师这个忙吗?帮老师找到这个答案,好不好?

生:好

生:小组内交流,然后汇报交流结果。

(二) 特殊数字的倒数:

生1:我们小组一致认为数字0没有倒数,因为0×0=0,根

据倒数的概念判断,乘积是1的两个数才互为倒数,所以我

们认为0没有倒数。

生2:我们小组大家都认为数字1的倒数的1,因为1×1=1,

根据倒数的概念进行判断,乘积是1的两个数互为倒数。所

以1的倒数是1.

师:同学们,你们刚才的表现太棒了,大家说的一点都没错,

看来大家对倒数的概念已经理解了,老师很欣慰。

板书:1的倒数是1,

0没有倒数。

三、巩固练习:

1、3/5的倒数是( ), 0.5的.倒数是( )。

2、判断:

①、1没有倒数。( )。

②、0的倒数是0( )。

③、0.4的倒数的2/5( )。

四、拓展练习:

列式计算:

1、4/7乘以它的倒数是多少?

2、1/6乘以2/3的倒数,积是多少?

五、课堂小结:

师:同学们,本节课即将结束,大家在本节课中学到了那些知识?请你用:“我最高兴的是??,令我最思索的是??,令我最想说的是??,令我最满意的是??”中的一句或者多句对本节课进行总结一下。

生1:令我最高兴是本节课我认识了新的一种数-----倒数。 生2:令我最满意的是本节课我不但认识了一种新的数—倒数,而且我学会了找一个数的倒数的方法。

??

五、作业:

板书设计:

倒数的认识

像这样乘积是1的两个数互为倒数。

1的倒数是1, 0没有倒数。

【有效反思】:

本节课教学自己感觉成功之处是:

1.学生对倒数的概念理解了,知道倒数必须具备的条件是什么,会找一个数的倒数。

2.学生课堂上参与率高,在小组内能和大家相互讨论、相互交流,学会了与人合作的能力。

不足之处是:

1.学生对找小数和带分数的倒数的方法掌握的不够熟练,全班有。

1/3的学生没有很好的掌握这个知识点,需要课后及时进行辅导。

2.本节课在设计练习题的时候没有照顾到学困生的学习,这是本节课不足之处。

《倒数的认识》教学设计11

教学目标:

(1)知识目标:通过计算、观察、概括,使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。

(2)能力目标:通过引导学生自主探索学习,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳的能力。培养学生的分析、推理、判断等思维能力,发展学生的思维

(3)情感目标:提高学生学习数学的兴趣,培养学生独立探索精神和合作交流意识,并渗透“事物之间相互联系、相互依存”的辨证思想。

教学重点:

倒数的意义和求法,理解倒数的意义,会求不同种类数的倒数。

教学难点:

熟练正确的求不同种类数的倒数,发现不同种类数的倒数的一些特征。1、0的倒数,小数的倒数。

教学准备:

写有数的纸片。

教学过程:

一、导入新课。

请同学们观察下面两组字:杏–呆,吴–吞。

师提问:你们发现了什么,能说说你们的发现吗?小组内说一说。然后让学生个别说。同学们给予评价。

学生:我们发现这两组字都是由相同的字构成的,都是上下结构。上下两部份交换位置就成了另一个新字。

师说:在数学中,有没有像这样的数字上下两部份交换位置成了另一个新的数,这样的两个数之间有什么联系呢?

学生:有,是分数,上面部份是分子,下面部份是分母。分数的分子和分母交换能成一个新的分数。比如:2/3和3/2、6/5和5/6。

师:这样的两个数我们给它们取个名叫互为倒数。(板书:倒数的认识)

二、新知探究。

(一)小组验证互为倒数的两个数的`特点。

师:那好,我们就进行一个小小的比赛。我给大家30秒的时间,请你写出分子与分母交换了位置的两个数,看谁写得多。

师:你们刚才写的所有算式都有怎样的共同点?

学生:我们写的每组数的分子与分母的位置是调换了的。

师:请第一组用加、第二组用减、第三组和第四组用乘的方法验证刚才2/3和3/2、6/5和5/6,能发现什么规律?(分小组活动)

板书:第一组:3/2+2/3=9/6﹢4/6=13/6

6/5+5/6=36/30+25/30=61/30

第二组:3/2-2/3=9/6-4/6=5/6

6/5-5/6=36/30-25/30=11/30

第三组和第四组:3/2×2/3=16/5×5/6=1

师问:互为倒数的两个数相加、相减、相乘有何特点?

学生:互为倒数的两个数相加的和不相等,互为倒数的两个数相减的差也不相等,互为倒数的两个数相乘的结果都是1。

师:互为倒数的两个数的乘积是1,乘积是1的两个数互为倒数。(板书:倒数的概念)

指出:互为倒数的两个数分子分母互相颠倒,这样的两个数的乘积一定是1。比如:2/3和3/2互为倒数,2/3的倒数是3/2,3/2的倒数是2/3;6/5和5/6互为倒数……

2、试下面数的倒数。

2的倒数是0。2的倒数是0。25的倒数是

让学生说一说怎样求一个数的倒数,用什么方法能快速求出来?(引导学生把小数化成分数:0。2=1/5,想:0。2=1/5,1/5的倒数是5,所以0。2的倒数是5。0。25=1/4……然后再求它们的倒数)让尽可能多的学生说说它们是怎么互为倒数的。

明确:互为倒数的两个的分子分母互相颠倒,这样的两个数的乘积一定是1。

(二)课堂练习:求一个数的倒数。

1、质疑:互为倒数的两个数有什么特征?谁能举例说明什么是互为倒数。

2、师:完成教材P45“填一填”

5/87/462/310.8(补充)

让学生与同桌说一说自己的想法,知道求小数的倒数需先把小数化成分数。

3、讨论:0有倒数吗?学生交流。

板书:0和任何数相乘都不能得到1,所以0没有倒数。

4、完成P47课堂活动的对口令。

汇报时让学生说一说谁是谁的倒数。

(小结:刚才我们就学习了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

5、出示判断:

(1)得数为1的两个数互为倒数。

(2)因为9/4×4/9=1,所以9/4和4/9都是倒数。()

(3)互为倒数的两个数乘积一定是1。()

(4)因为1/3+2/3=1,所以1/3和2/3互为倒数。()

(5)a是1/a的倒数,1/a是a的倒数。()

(6)a/b是b/a的倒数,b/a是a/b的倒数。()

6、探索求真分数和假分数的倒数的特点。

学生分小组讨论,把讨论的结果记录在本子上,然后小组让代表汇报。

师生共同小结:真分数的倒数一定是假分数。假分数(1除外)的倒数一定是真分数。

《倒数的认识》教学设计12

教学目的:

1.使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。

2.培养学生的观察能力、数学语言表达能力、发现规律的能力等。

教学重点:求一个数的倒数的方法。

教学难点:理解倒数的意义,掌握求一个数的倒数的方法。

教学准备:教学光盘

课前研究:自学课本P50:

(1)什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。

(2)观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?

(3)0有倒数吗?为什么?

教学过程:

一、作业错例分析。

二、学习分数的倒数:

1.出示例7

学生在自备本上完成,指名核对。

教师板书: ×=1× =1× =1

2.你能模仿着再举几个例子吗?

学生回答,教师板书。

3.观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)

和 互为倒数,也可以说的倒数是 ,的倒数是。

让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?

4.你能分别找出和的倒数吗?

学生同桌讨论找法,指名交流。

5.观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?

指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。

6.合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。

三、学习整数的倒数:

1.电脑出示:5的倒数是多少?1的倒数呢?

学生跟自己的同桌说一说,再指名交流。

方法一:求5的倒数时,可以先把5看作,所以它的倒数是;

方法二:想5×( )=1,再得出结果。

2.那1的倒数是多少?(1)

3.0有倒数吗?为什么?(没有一个数与零相乘的积是1,所以0没有倒数)

4. 分数和整数(0除外)都有它的倒数,小数有没有倒数?你能发表自己的观点吗?

0.25 0.1 的倒数是多少?如何求的?

5.练一练 示范写 的倒数: 的倒数是 ,明确不能写成 =。

学生独立完成,集体核对。

四、巩固练习:

1.练习十第1题

学生独立完成后集体订正,说说思路及倒数的意义和求倒数的方法

2.练习十第2题

学生先独立找一找,再交流想法,注意说完整话。例:与4互为倒数。

3.练习十第3题

学生独立填空后集体订正。

4.练习十第4题

写出每组数的倒数。说说有什么发现?

第1组中都是真分数,倒数都是大于1的假分数。

第2组中都是大于1的假分数,倒数都是真分数。

第3组中都是一个分数的分数单位,倒数都是整数。

第4组中都是非0的自然数,倒数都是几分之一。

5.练习十第5题:

学生独立完成。说说怎样求正方体的表面积和体积。

6.练习十第6题

学生独立列式解答后,辨析。

两题中分数的不同意义:

第一题中的表示两个数量间的'倍比关系,要用乘法计算。

第二题中的表示用去的吨数,求还剩多少吨,要用减法计算。

7.思考题

学生小组讨论,指名交流。

按钢管的长度分三种情况考虑:

(1)如果钢管的长度都是1米,那么两根钢管用去的一样多;

(2)如果钢管的长度小于1米,那么第一根用去的长度长一些;

(3)如果钢管的长度大于1米,那么第二根用去的长度长一些。

五、课堂总结:

今天我们学习了两个数之间的一种新的关系——倒数关系,谁再来说一说倒数是怎样定义的?怎样求一个数的倒数?1的倒数是多少?0有没有倒数?

《倒数的认识》教学设计13

学习内容:人教版义务教育教科书数学六年级上册P28—29

学习目标:

(1)理解倒数的意义及倒数的特点,掌握求倒数的方法,并能正确熟练的求出倒数。

(2)采用自主探究与合作交流的方法,进一步培养学生的自主学习能力,提高学生观察、比较、归纳、概括以及合作学习的能力。

(3)通过亲身参与探究活动,体验数学学习的乐趣,激发积极的学习情感,培养学生学会与人合作,愿与人交流的习惯。

学习重点:倒数的意义、特点和求倒数的方法。

学习难点:1和0的倒数的求法。

学习过程

一、创设情境,激趣导学。

1.出示算式,找特征。

先计算,再观察,看看有什么规律。

×=1×=15×=1×12=1

问:“你发现了什么?”

2.引出倒数的定义。让学生看书。

3.揭题:今天我们就来学习“倒数的意义”(板书课题)。

二、独学质疑,合作探究。

1.初步理解

我们知道×=1,那么我们可以说:“因为×=1所以和互为倒数”

这句话还可以怎么说?的倒数是,的倒数是。

你能照样子,结合黑板上的例题,说说算式中两数之间的.关系吗?

2.判断,加深理解

(1)判断正误,并说明理由。

a.和7都是倒数。(关注到了倒数的概念中关键的词语“互为”)

b.+=1,所以和互为倒数。(关注了倒数概念中关键的词语“乘积是1。”)

c.××=1,所以、、互为倒数。(关注了倒数中的关键词“两个数”)

小结:对于概念的学习,应该充分关注概念中的关键词语。

(2)请任意写出三个数的倒数,要求,写完整:谁的倒数是谁?

三、点拨互动,应用提升。

1.出示例2,找一找哪两个数互为倒数?

2.学生汇报找的结果,并说说怎样找的?

(1)看两个数的乘积是不是1。

(2)看两个数的分子与分母是否交换了位置。

3.根据寻找出的结果,探究倒数的特点。

4.这两种方法,哪一种比较快?

5.设问:1和0有没有倒数?如果有,是多少?

(1)分组讨论。(2)学生汇报。

四、检测诊断,总结评价。

1.基本练习:完成教科书P28的做一做,然后集体订正。

2.加深练习:倒数一定比它本身要小吗?探究什么数的倒数比它本身要大,什么数的倒数比它本身要小。

《倒数的认识》教学设计14

教学重点:认识倒数并掌握求倒数的方法

教学难点:小数与整数求倒数的方法

教学过程:

一、基本训练

口算:

上面各式有什么特点?

还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

(板书:乘积是1,两个数)

二、引入新课

刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

(板书:倒数)

三、新课教学

1、乘积是1的两个数存在着怎样的倒数关系呢?

请看:,那么我们就说是的倒数,反过来(引导学生说)

是的'倒数,也就是说和互为倒数。

和存在怎样的倒数关系呢?2和呢?

2.深化理解

提问:①什么是互为倒数?

怎样理解这句话?(举例说明)

(的倒数是,的倒数是,......不能说是倒数,要说它是谁的倒数。)

②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。

3.求一个数的倒数

教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。

①出示例题

例:写出、的倒数

学生试做讨论后,教师将过程板书如下:

所以的倒数是,的倒数是。

(能不能写成,为什么?)

总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

②深化

你会求小数的倒数吗?(学生试做)

《倒数的认识》教学设计15

教材分析:

教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

教学目标:

(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:知道倒数的意义和会求一个数的倒数

教学难点:1、0的倒数的求法。

教具准备:课件

教学过程:

一、课前谈话:

师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。

生:好!

师:那你想怎样表述我们的关系?

生: 我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。 这样学生对马上接触到的“互为倒数”就比较容易理解了。

二、揭示倒数的意义

师:前面我们学习了分数乘法,请同学们计算几道题。 师:观察它们有什么共同的特点? 生:乘积都是1!??

师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?

生:(齐)能!

师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。

准备好了吗?开始??

师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

(生读,师有选择的板书在黑板上。 )

师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个

出示例7

师:那请你们来帮帮忙,找出乘积是1的两个数。

(学生个别回答)

师:你们找的这些与之前写的所有算式都有怎样的共同点?

生:乘积都是1。

师:你知道吗?揭示意义】 教师板书:乘积是1的两个数叫做互为倒数。生齐读。

师:黑板上所写的两个数的积都是1 ,所以他们互为倒数。比如3/8和8/3的乘积是1 ,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数) 【示范说】

师:3/8和8/3互为倒数!我们还可以怎么说呢。

生:3/8的倒数是8/3;8/3的倒数是3/8。

师:为什么乘积是1的`两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?

生1:“互为”是指两个数的关系。

生2:“互为”说明这两个数的关系是相互依存的。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?

师:2/5和5/2的积是1,我们就说??(生齐说)

师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。

(学生活动)

(小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

探索求一个倒数的方法

师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。

生1:互为倒数的两个数分子和分母调换了位置。

师:同意吗?

生:同意。

师:根据这一特点你能写出一个数的倒数吗?

生:能

师:试一试!

师在黑板上出示3/5 7/2 ,写出它们的倒数。

师:那5(0.1)的倒数是什么?它可是没有分子和分母呀? 还有1 又1/8呢?

生:把5看成是分母是1的分数,再把分子分母调换位置。

求小数的倒数的方法:小数 求带分数的倒数的方法:带分数

三、分数倒数。 倒数。 假分数

师:那1 的倒数是几呢?(学生很快就说出来了,并说明了理由)

0的倒数呢?

师:为什么?

生1:因为0和任何数相乘都得0,不可能得1。

师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后。。。。。。(生齐:分母就为0了,而分母不可以为0。) 师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个数的倒数,只要把分子分母调换位置。

生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

生3:1 的倒数是1,0没有倒数。

(生齐读求一个数倒数的方法。 )

四、巩固练习

1、打开书,阅读课本P34,把你认为重要的划起来。

2、完成练一练。

(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

(2)发现一学生书写有误,与该生交流。

(3)用展台展示该生的错误。

师:这样写可以吗?(4/11=11/4)

生:不可以!

师:为什么?

生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。

(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

3、小游戏:同桌互相出一题,对方说出答案。

4、先说说下面每组数的倒数,再看看你能发现什么?

(1)3/4的倒数是( ) (2)9/7的倒数是( )

2/5的倒数是( )10/3的倒数是( )

4/7的倒数是( ) 6/5的倒数是( )

(3)1/3的倒数是( ) (4)3的倒数是( )

1/10的倒数是( )9的倒数是( )

1/13的倒数是( )14的倒数是( )

由学生说出各数的倒数。然后

师:请你仔细观察,看能从中发现什么,发现得越多越好。

师:小组间可以先互相说一说。

汇报:

生1:我从第一组中发现真分数的倒数都是假分数。

生2:我从第二组中发现假分数的倒数是真分数或者假分数。

生3:真分数的倒数都小于1,假分数的倒数大于1。 假分数的倒数也可能等于1。 生4:我发现分子是1的分数。

4、填空:

7×( )=15/2×( )=( )×3又2/3=0.17×( )=1

五、课堂小结

1、小结:今天我们学习了什么???

2、学了倒数有什么用呢?

大家课后可去思考一下。

板书设计

倒数的认识

乘积是1的两个数互为倒数 1的倒数是1。0没有倒数。

0.1的倒数10 5的倒数是5 1又1/8的倒数是8/9 。

(0.1=1/10) (5=5/1) (1又1/8=9/8)

求小数的倒数的方法: 求带分数的倒数的方法:带分数

分数假分数 倒数。 倒数。

认识倒数教学设计

龙溪小学 王樱

【教学内容】

教科书第42页单元主题图,第43页例1。【教学目标】

1.在观察比较中理解倒数的意义,掌握求倒数的方法。

2.进一步培养学生学习数学的兴趣和学习能力。【教学重点】

倒数的意义与求法。【教学难点】

理解“互为倒数”的意义。【教学过程】

一、情境引入

出示教科书第42页单元主题图。

1.看图后,你想说些什么?

2.对提出的数学问题列出解决的算式。针对学生列出的除法算式提问:我们学过解答这些问题吗?它们属于什么范围的问题?

引出单元内容:分数除法。

3.从今天开始我们就一同进入“分数除法”的学习当中,让它帮助我们解决生活中更多的问题。

4.我们今天的学习就从做一个游戏开始。

游戏内容:写两个因数相乘的乘法算式,使两个因数的乘积是1。(不能重复)

游戏形式:四人小组合作完成。

游戏时间:2分钟。

评比标准:写得又对又多的小组为胜。

5.展示学生完成的算式,评选出优胜的小组。

二、认识倒数

1.在学生刚才写出的算式中选出几组分数。(若没有,老师写出几组)

请同学们看看刚才你们写出的这几组乘积是1的算式,仔细观察,看看你有什么发现?

小结:两个因数分子和分母的位置颠倒。

2.是不是将分子和分母颠倒后相乘的两个数,积都是1呢?试一试,并想想为什么?

3.出示:0.5×2=1,(如果学生游戏的算式中有相应的例子,可直接用)它们的乘积也是1,这样的算式可不可以看成是分子和分母颠倒的呢?小组议一议。

全班交流后验证:0.5可以看作是“1”的一半,即为12,整数2可以看作分母是1的分数,12与2即为一对分子和分母颠倒的数。

4.通过刚才的分析,你能说说乘积是1的两个数有什么特点吗?

5.在数学上,人们称乘积是1的两个数互为倒数。(板书:认识倒数)

6.理解“互为”的意义。

(1)“互为”是什么意思?(互相)

一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。

(2)(结合学生的算式来说明)比如12乘2等于1,所以12和2互为倒数,也可以说2是12的倒数或者12是2的倒数。

(3)指名学生结合另外的算式,说说谁是谁的倒数。

我们能单独说某一个数是倒数吗?

(4)想一想:在我们学过的数的概念中,哪些用一个数也不能单独表示它的含义?(约数、倍数、互质数)

(5)写一个两个因数乘积是1的算式,跟你的同桌说说它们之间的关系。

三、求倒数

1.试着说说下面两组数的倒数。(课件出示题目)

①47、56、13、18

②32、85、9、1、1313

(1)独立完成,小组内交流你求倒数的方法。

全班交流后得出:求一个数的倒数,就是将这个数的分子和分母颠倒位置。

(2)观察比较每组数中每个数与它的倒数,看看你有什么发现。

充分让学生交流后引导学生小结:

①真分数的倒数都是假分数。

②大于1的假分数的倒数都是真分数。

2.0有没有倒数?为什么?(小组内讨论)

学生充分交流后小结: 互为倒数是要求乘积是1的两个数。而0和任何数相乘都得0,所以0没有倒数。

3.若用字母a表示任意一个自然数,那么它的倒数该怎样表示?有没有什么特殊的规定?

a的倒数为1a(a不为0)。

4.完成教科书第43页“填一填”,独立完成,同桌交换检查。

四、拓展练习

1.对口令。(同桌中一人任意说一个数,另一人很快的说出相对应的倒数)

2.辩一辩。(课件出示练习)

(1)得数是1的两个数互为倒数。()

(2)1的倒数是1,0的倒数是0。()

(3)18是倒数。()

(4)因为x×y=1(x≠0,y≠0),所以x和y互为倒数。()

(5)所有假分数的倒数都是真分数。()

3.练习九第2题。

4.开放性练习。(课件出示练习)

23×()=()×4 =52×()= 1×()括号里都可以填哪些数字?你有几种填法?根据是什么?

填法(1):23×32=14×4=52×25=1×1每个括号都填出所给数的倒数。

填法(2):23×3=12×4=52×45=1×2每个括号都填出所给数的倒数的2倍。

填法(3):只要每个括号都填出所给数的倒数的a倍即可。

五、总结

今天这堂课你学习了什么?最大的收获是什么? 教学反思:

本课设计从一个游戏引入新课,让学生在轻松自主的学习中发现问题、解决问题,体会了学习的乐趣。在学习的过程中,教师鼓励学生独立思考,寻找解决问题的方法,并通过小组交流等形式让学生对写出“乘积是1的两个数”的方法进行优化,从而找出其中规律,总结出倒数的意义。整个教学过程中,教师从组织到引导,充分给予了学生思考和探究的空间,发展了学生比较、归纳、概括的能力。

比的意义

龙溪小学

彭风

【教学内容】

教科书第65页例1及相关练习。【教学目标】

1.在具体情境中理解比的意义,知道比的各部分名称,掌握比的读、写方法,会求比值。

2.培养学生的合作意识,让学生在小组活动中初步理解比与分数,比与除法之间的关系。【教学重点】

理解比的意义及比、分数、除法的联系。【教学过程】

一、导入新课

1.出示例1图表:

姓名从家到学校的路程(m)从家到学校的时间(分)

张丽 240 李兰 200 4

教师引导学生观察表格后提问:你从表格中了解到什么信息?每两个数量之间有怎样的关系?你都会用哪些方法表示它们之间的关系?

学生可能找到每两个数量之间各种各样的关系,针对学生所答,及时作出引导评价。

2.小结: 我们会用加法表示两个量之间的合并关系。会用减法表示两个量之间的相差关系,也会用分数或除法表示两个量之间的倍数关系。今天,我们再来学习一种新的表示两个量间数量关系的方法。

二、学习新知

1.初步认识比及比的读、写方法。

(1)找出板书中学生用分数或除法表示两个量之间倍数关系的实例,用彩色粉笔标注出来,指出:像这样两个数相除又叫做两个数的比。

教师举例:比如张丽用的时间是李兰的几倍? 5÷4=54,我们就说,张丽和李兰所用时间的比是“5比4”,可以写成 5:4 或54,读作:5比4。

(2)学生带着问题自读教科书例1内容。

问题:①比的各部分名称是什么?

②你都知道了关于比的哪些知识?

③5比4是哪个数量与哪个数量的比?那4比5呢?

学生自学后根据问题谈自己的收获。

(3)教学例1“试一试”。

①提问:你能用刚才所学的知识解决“试一试”中的问题吗? 组织学生独立思考,解决问题,然后集体订正,评价。

教师追问:为什么张丽与李兰所用时间的比中5是比的前项,而在李兰与张丽所用时间的比中5又是比的后项呢? 学生回答后,教师指出:两个数的比是有顺序的。因此,在用比表示两个数量的关系时,一定要按照叙述的顺序,正确表达是一个数量与另一个数量的比,不能颠倒两个数的位置。

②教师提问:5分钟、4分钟都表示什么?(时间)

教师小结:5分钟、4分钟都表示时间,它们是同一种量,我们就说这两个数量的比是同类量的比。

观察“试一试”中的最后一个问题。

教师提问:求的是什么?(速度)谁和谁进行比较?(路程和时间)谁除以谁?

教师:我们也可以用比来表示路程和时间的关系。路程除以时间可以说成什么?(可以说成路程和时间的比)路程和时间是同一类量吗?(不是)不同类量比的结果是什么?(产生一个新的量:速度)

师生共同小结:两个数量的比可以是同类量的比,也可以是不同类量的比。

2.求比值。

思考:5∶4表示什么?4∶5表示什么?

说明:比的前项除以比的后项得到的商就是比值。你知道怎么求比值吗?

课堂内完成课堂活动第1题。

3.比与除法、分数之间的关系。

分组讨论,议一议:比、分数和除法之间有什么关系?

学生讨论后汇报,根据汇报情况师生共同完成下表。

相应部分区别

比前项∶(比号)后项比值一种关系

除法被除数÷(除号)除数商一种运算

分数分子-(分数线)分母分数值一种数

三、巩固练习

1.想一想,填一填。

(1)比的前项是5,后项是3,比值是()。

(2)比的后项是8,前项是4,比值是()。

(3)比的前项是0,比值也是0,后项是()。

(4)甜甜3分钟做60道口算题,做口算题的个数与时间的比是()

学生独立思考、解答,然后指名回答,集体订正。(提醒学生:比的后项不能是0)

2.拓展练习。(课件出示)

(1)“甲队在一场球赛中以12∶0的比分大胜乙队”请问“12∶0”是比吗?(不是比,它是记录两队得分的多少的一种形式)

(2)我国陆地和世界陆地的比是1∶15。我国人口和世界人口的比是1∶5。

据世界卫生组织统计,全球每年有500万人因吸烟而死亡,其中中国因吸烟而死亡的人数与全球因吸烟而死亡的人数的比是1∶5。

你从所提供的信息中找到了哪些关于比的信息?看到这些信息,你有何想法?

(3)图示呈现:两杯糖水,第一杯中糖与水的比是2∶50;第二杯中糖与水的比是3∶50。哪一杯糖水更甜? 学生思考、讨论回答后,教师小结。

四、全课总结

教师:同学们,这一节课你学得愉快吗?你有什么收获?(指名说一说)

教师总结。(略)

五、课外作业

收集生活中关于比的信息。

教学反思:

本节课的设计注重对学生原有知识的了解,让学生在已有认知经验的基础上,给学生提供自主探究的时间和空间,同时教师结合具体问题,把握时机,培养学生收集信息的能力,合理的把数学与生活紧密联系起来。

下载《倒数的认识》教学设计word格式文档
下载《倒数的认识》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《倒数认识》教学设计

    《倒数认识》教学设计 《倒数认识》教学设计1 教学目标:1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。2、培养学生的数学思维。教学重点:......

    倒数的认识教学设计

    《倒数的认识》教学设计 公主岭市岭东小学 郭晓敏 教学内容:小学数学六年级上册教科书第24页例1、例2及“做一做”。 教学目标:1.使学生通过探究活动,认识倒数的意义,掌握找到倒......

    倒数的认识教学设计

    《倒数的认识》教学设计 学 校:甘沟小学教 师:李梅 倒数的认识 教学目标1知识与技能:通过创设情境,认识、理解倒数的意义,并熟练掌握求一个数倒数的方法; 2过程与方法:使学生经历倒......

    倒数的认识教学设计

    倒数的认识初定稿设计 临湘一小 王梅香 教学内容: 教科书第24页例1和例2. 教学目标: 知识技能: 通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存......

    倒数的认识 教学设计

    倒数的认识 教学设计 指导思想与理论依据: 数学新课程标准强调:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生学习的积极性,向学生提......

    倒数的认识教学设计

    倒数的认识 【教材依据】 倒数的认识是义务教育课程标准试验教科书北师大版小学五年级数学(下册)第三单元中的第一节课内容。 【设计思路】 1、指导思想: 让学生通过文字游戏感......

    倒数的认识教学设计

    《倒数的认识》 教学内容:苏教版六年级上册第二单元例7内容 教材分析: “倒数的认识”是苏教版六年级上册的教学内容,这部分内容学生是在学习了分数乘法的计算方法基础上进行......

    《倒数的认识》教学设计

    《倒数的认识》教学设计 执教者: 马良文 设计理念:本课以学生自己的举例、观察、比较、分析、抽象和概括为学习的主要方法,获得“倒数”的概念这一知识要点,通过自主探索、合作......