一、实习时间:
xx年6月6日—xx年6月18日
实习地点:xxx水电站
二、实习目的及意义:
通过实习,从而把书本上的理论和现实中的技术结合起来,让我们对所学过的各种仪器设备有一个感性的直观认识;并从实习中提高我们的交流团结协作能力,用所学过的知识去分析解决现实中的问题。除此外,实习还是我们在大学期间的最后一次特殊的学习,是一门意义重大的必修课,给我们去电力部门工作打下扎实的基础,同时也为继续深造的同学一次实践的机会。
三、实习单位简介:
xxx电站是一座位于沱江流域的小水电站,它属于四川富益电力股份有限公司,而四川富益电力股份有限公司是一家集“发、输、配、供、用、建、管”于一体的集团型电力生产经营企业,曾荣获四川省“工业企业最佳效益500强”、自贡市“工业企业利税前十强”称号,保持省级银企合作“诚实守信单位”、自贡市“a级纳税信用等级”。
xxx电站以发电为主,兼有防洪、灌溉、航运等综合利用效益。库区容量有4120亿立方米,为下游农业灌溉等提供了很多方便;电站内现有三台发电机组,每台机组的装机容量是6900kw,设计年发电量合计1.73万千瓦时,供电人口100万人,受益面积15万公顷。
四、实习内容:
当我来到黄泥滩时,心情特别激动,这是我平生第一次进入水电站,也是我第一次真正意义上利用专业知识进行实际操作实习。
到站当天,受到电站领导和员工的热情接待。随后,由领导给我们讲了进入厂房的注意事项和相关的规定,由于我们是进行的电方面的操作,所以需时时处处注意安全,切实尊守安全操作规程,听从安排,长能确保人身、设备、仪器的安全,避免给个人和集体造成损失。当我们了解完这一切后,正式进入实习环节。
首先,我们的任务是参观电站设备等。先进入的是厂房,厂房又分为上部结构和下部结构,上部结构包括各层楼板及其梁柱系统、吊车梁和构架、以及屋顶及围护墙等。其作用主要为承受设备重量、活荷重和风雪荷载等,并传递给卞部结构;下部结构包括蜗壳、尾水管和尾水墩墙等结构。对于河床式厂房,下部结构中还包括进水口结构。其作用主要为承受水荷载的作用、构成厂房的基础,承受上部结构、发电支承结构,将荷载分布传给地基和防渗等。接着我们观看了发电机组和它的一些控制设备,那些控制设备都是记录有关发电机的运行状态,比如发电机运行时的温度,压力,输入输出的电流,电压等等。黄泥滩水电站是一个的中小型自动化水电站。需要大量的数据来检查运行状态,所以这的工作人员和技术人员必须每隔一定时间去抄表和检查,他们边工作的同时边给我们讲解有关设备的工作状态和解答我们提出的各种问题,我们从他们口中知道了那些励磁柜用途和原理,并且了解了很多的有关检查设备的方法。接下来我们观看了巨大的水轮机,共有三台,连接水轮机的是压力管道,压力管道是指从水库、前池或调压室向水轮机输送水量的管道。观看完厂房,我们坐船观看了库区以及船闸,工程师给我们讲解了船闸的构造及用途等。
接下来的几天,我们先听取了站内工程师们的讲座。讲座内容为发电站的历史、水电站的分类、水电站的优缺点、水电站的组成与水力发电的流程以及入厂的注意事项和操作规程等。着重对以下内容作的具体的讲解:
水电站基情况:水电站建设投资大,电站建成后运行成本较低,水能是一种环保可再生的能源,利用水电站机组开停比较方便可以做为调峰的职能。小型水电站对环境无大的影响,发电效率很高,能源利用率可达到80%,调节库区水量。不足之处是受自然环境影响较大,坝式水电站涉及库区围堰的淹没。电站按单机容量可分为大中小水电站。组成:挡水线路、泄水线路、排沙设施、发电引水系统、发电系统工程(主要设备水轮发电机组)、灯泡换流式机组(黄泥滩)、出口开关额定电压6300kv主变35kv、调速装置、励磁装置、冷却系统。水力发电工艺流程原理:水的势能通过流道推动水轮机的转动(水能-机械-能电能)转子随水轮机一起转动(制动装置由汽压、油压、水压操动)。主接线一次线路连接原则:运行可靠、检修方便、连接经济。
实习报告
作为大三的水利专业学生,为了更好的掌握专业知识以及实践能力,在学校支持以及老师的组织下,我们参加了为期1天的实践教学活动。我们参观了槽渔滩电站、龟都府电站、水津关电站以及峡口滑坡体等地方。
下面我将对参观实习所观所感以及一些从网上学到的东西一一作介绍。首先,先介绍一下关于青衣江流域的具体情况:青衣江古称青衣水, 唐代又名平羌水, 清代称雅河, 历史上原为羌族聚居地,古有“青衣羌国”之称。青衣江是我们的母亲河, 流域面积12793km2,干流全长289km,从河源到河口总落差2944m,是大渡河的最大支流。青衣江流域有汉、藏、羌及其他少数民族165万人, 青衣江灌溉了流域外3万多hm2农田,更是川渝西水东调的最佳水源地。长征渠从洪雅县槽渔滩青衣江干流引水,灌溉四川盆地93.3万hm2 农田,早已规划在案, 将来有可能成为“第三条都江堰”。
流域内可开发的水力资源有5000MW,目前已开发接近60%,为社会提供了巨大能源。青衣江流域是全国著名旅游胜地,天下名山峨眉山和道教圣地瓦屋山分别位于青衣江支流花溪河和周公河上游。流域内森林密布,风景独特,干、支流上有多处大峡谷。如东拉山峡、灵山峡、多功峡、止水岩、千佛岩、大岩峡、金鸡峡、禁门关等,十分壮观。
青衣江流域属亚热带湿润气候区,受地理位置、地形条件和季风环境的影响, 具有春早气温多变化、夏无酷热雨集中、秋多绵雨湿度大、冬无严寒霜雪少的特点,多年平均气温12℃~ 18℃。流域内大部分处于暴雨区,雨量特别丰沛,产水量多,含沙量小,水质优,河流坡度大,水能蕴藏量尤其丰富。但因其暴雨量集中,洪峰流量大,暴涨暴落,对人民生活财产造成严重威胁,建国后逐步完善了防洪设施, 对洪水灾害有一定的减灾防控能力。
青衣江流域行政区划,从上游到下游分属雅安、眉山、乐山三市,另在芦山河上游大川河源流黑水河左岸及大川河大川镇以南约10km 河段,分属成都市大邑县及邛崃县境。
青衣江流域的地理位置在东经102°16′~ 103°43′、北纬29°24′~ 30°56′之间,流域形状像一片倒立的肺叶,南北长东西短。宝兴河是青衣江的主源, 还有芦山河、天全河、荥经河也是它的源流, 分别从北、西、南三面汇集于飞仙关以上。
宝兴河发源于宝兴县硗碛镇北面夹金山与邛崃山交接处的蜀西营(主峰高程4930m),源流分为东西两河。东河是主流,其上游称为蚂蟥沟,南流至硗碛镇以下称为东河,继续南流至宝兴县城北与右支西河汇合称宝兴河;东南流至芦山县城以南石佛寺纳左源芦山河,再南流至飞仙关接纳南源荥经河,始称青衣江。
青衣江西源天全河先在天全县安乐乡境与荥经河相汇,青衣江从此折向东流, 经雅安纳右支周公河,改向东南流,至草坝乡顺河村,纳左岸小支流名山河,在洪雅县止戈镇纳右支花溪河,在洪雅与夹江交界处先后纳右岸小支稚川溪及左岸小支安溪河,又在夹江与乐山市中区交界处纳左岸小支马村河,最后在乐山市中区肖坝大桥上游汇入大渡河。
青衣江流域西北高东南低,其主要干支流的上游多为高山峡谷,海拔高程一般在1000m 以上,约占流域总面积的60%,河谷多呈V字形,漫滩阶地极少,河道比降大于8‰,地质构造复杂,折皱强烈,断裂发育。流域内最高山峰5338m 高程, 位于宝兴河右支西河的支流扑鸡沟的分水岭处,属南北走向的夹金山脉主峰中下游属低山丘陵区,地势平缓,海拔高程约为600mm ~ 1100m,河谷呈U 字形,有宽阔的漫滩和阶地,河道比降约1.8‰,地质构造较单一。
青衣江流域的暴雨主要集中在右侧支流花溪河、周公河以及荥经河、天全河的中上游,即峨眉山与大相岭北坡至夹金山东坡暖湿气流的迎风面上。据建国后雨量观测记录,年最大降水量在峨眉山华严顶为3121..8mm(1979年),荥经县的金山为2981mm(1975年), 麓池为2874.9mm(1967 年);洪雅县高庙、炳灵及雅安市晏场一带,多年平均降水量在2600mm~ 2700mm 以上;最大月雨量达到700mm ~ 900mm。夹江县城1934年8月降水量达1899mm,该年全年降水量达4340.4mm,是极其罕见的。这一地区的多年平均径流深高达1600mm~ 1700mm。但在主源宝兴河宝兴县城以北约2800km2 的面积内,最大月降水量不足400mm, 最大年降水量在1200mm以下,年均径流深不足1000mm。在同一流域内,形成了两种截然不同的水文地理分区,这种奇特现象,是因为东来的水汽受邛崃山脉阻挡所致。
青衣江的暴雨,加上主要干支流呈扇形分布,流域内绝大部分洪水同时汇集于飞仙关至雅安城区约15km 的河段内,是造成青衣江干流洪水频发,洪峰流量大的主要原因。洪水陡涨陡落,属山区洪水特性,高水位持续时间不长,有利于工程防护。据夹江水文站的实测及调查记录,警戒水位以上持续时间一般在12 小时左右,最长可达20 小时。夹江水文站自1886年到现在,发生洪峰流量大于15000m3/s的年数就有5次。其中,1917 年7月21日洪峰流量18700m3/s,洪水位高出多年平均水位8.58m, 相当于100 年一遇的洪水;1955年7月14日洪峰流量17400m3/s,洪水位高出多年平均水位8.20m,相当于50 年一遇的洪水。岷江干流彭山水文站及大渡河干流福禄水文站与夹江站比较,100年一遇洪峰流量仅为夹江站的81.3%和58.3%集水面积分别是夹江站的2.4倍及6倍,可见青衣江的洪水之猛烈殊非一般。建国前沿江城镇缺少防洪设施,1917 年、1931年洪水沿青衣江干流的主要城镇雅安、洪雅、夹江、乐山一带较低街道及乡镇均遭淹没,冲毁房舍农田难计其数。建国后随着经济的发展,沿江城镇及重要经济开发区经统一规划,因地制宜,逐步建成了有一定标准的防洪工程,以及在有人居住的河心洲坝设置永久性救生高台,初步形成一套科学有效的防洪减灾系统。据青衣江下游夹江水文站1937~ 1989年实测资料分析,其多年平均流量532m3/s,变差系数CV =0.14,偏差系数CS =2CV;多年平均径流深1343mm,是长江流域多年平均径流深526mm 的2.55倍,全国平均值284mm 的4.73倍。虽然青衣江的流域面积不大,在全国130条1万km2 以上河流中排名126 位,仅有黄河流域面积的1.7%,淮河流域的9.7% ,但因其特殊的地理位置与气候条件,其多年平均年产水量达172亿m3,相当于黄河水量的30% ,接近淮河水量的70%。流域内单位面积年产水量达134.4万m3/km2,是长江流域各支流之最,在全国130条主要河流中排名第三。
流域内有大型灌区一处,即玉溪河水利工程灌区,从芦山县宝盛乡引玉溪河水灌溉芦山、名山、邛崃、蒲江四县, 有效灌面3.36万hm(其中, 流域外灌面2.14万hm2)。流域内还有中型渠堰9处,中型水库1处,小(一)水库7处。以上总计有效灌溉面积5.12万hm2。其中,位于乐山市境内的中型灌区有4处,即跃进渠、东风堰、牛头堰、江公堰, 灌溉夹江县、峨眉山市及乐山市中区共1.28万hm2 农田。
青衣江水力资源十分丰富,干支流理论蕴藏量5824MW,可开发量5000MW,已建、2在建及已纳入近期开发规划的2910MW。其中,位于宝兴河干流的中型电站有6处, 青衣江干流有11 处,总装机容量达1755MW。另在芦山河上规划12级开发,共装机123.8MW;周公河上规划7级开发,共装机364.9MW。这些资源主要集中在宝兴、洪雅、芦山三县,到2007年三县已建、在建的水电站总装机分别为1280MW、833MW、355MW。洪雅县在2007年底年发电量达到55亿kW.h,相当于吉林省丰满水电站多年平均发电量的2.75倍。
由于流域内植被良好,森林覆盖率高,青衣江的水质基本良好,干流及主要支流河段多为)级以上水质,符合饮用水标准。泥沙含量也相对较小,据夹江水文站实测资料分析,其多年平均值为609g/m3,相当于沱江的62%,嘉陵江的26%,黄河三门峡的1.4%。
青衣江的水资源不仅丰富而且稳定。从全国水资源评价看,凡年降水量大于1000mm,年径流深超过800mm的地区就属于多雨丰水带。青衣江全流域的平均年径流深约为1343mm。其中,上游花溪河、荥经河、天全河的多年平均径流深分别以天宫、荥经、天全三处水文站的多年实测资料为代表,分别是1643mm、1628mm、1640mm。毫不夸张地说,这一地区的水资源可称得上是中国水资源的珠穆朗玛峰。其变差系数CV 在0.14 左右,凡年径流CV 值小于0.20的河流都属年际变化小而稳定,开发利用成本较低的高品位水资源。
水资源和水环境支撑着人类的文明。从总量看,我国人均年径流量3200m3, 约为世界人均值的1/4;适于人类饮用和合乎环保要求的水量就更为稀缺,缺水危机已迫在眉睫,在我国北方地区尤为严重。相比之下,生活在青衣江流域的人们独踞地理之优势,可谓不幸中的幸运者,但我们无权浪费,应当谨记母亲滴水之恩, 树立起全民节水意识,放眼全国,从大局考虑,为子孙后代着想,我们维护母亲河的责任更加重大。我们要统筹保护与开发,协调生态与发展,在开发中落实保护, 在保护中促进开发。
槽渔滩电站
槽渔滩水电站位于眉山市洪雅县境内,青衣江中下游,是1992年修建的,在1994年10月31号开始发电。该发电站由左岸泄洪闸、冲沙闸,中间部分由发电厂房和右岸副坝组成。电站装机3*25MW,水库正常蓄水容量2720万m³,大坝主体为混凝土重力坝,右岸副坝为面板堆石坝,上游为30CM的混凝土层面。为了防止在右岸坝段产生绕坝渗流,在右岸坝肩设置了灌浆平洞。该电站右岸高边坡问题比较突出,但由于该电站大坝为混凝土重力坝,因此对大坝的安全不构成威胁。在大坝的右岸修建了2孔冲沙闸和7孔泄洪闸,为钢筋混凝土坝,右岸6道调速闸门,为石砌坝,冲沙闸是采用驼峰堰;洪泄闸是采用的平顶堰。采用底流消能的消能方式,该电站共有三台发电机组,每台机组发电量是2.5KW。
我们在工作人员的带领下进入了位于坝身下游面的厂房,厂房很宽大,四周由牛脚撑住,加强结构。该电站有三台机组,第一层是控制所用,这都是一些操作型的按钮,如今电站的操作,已经实现了全自动化,非常方便快捷。我们进入了其他一些廊道,观察了水轮机的一些下层结构,了解了线路在廊道中的传输,并亲眼见证了水轮机运转时的工作情景。在进入最下层,蜗壳层的时候,听负责人说,我们是非常幸运的,因为我们这次到来的时候刚好赶上2号机组检修,因此我们可以进入到蜗壳里面,亲眼见证蜗壳里面的宏伟与壮观。廊道中的通风也是非常重要的,我们就看到了根据气流原理设计的通风结构。之后,我们又去电脑控制室参观了一些监控设备,并在外面看见一些变压和输电设备。可以说,现在的电站控制系统已经非常完整和先进,所以,我们更应努力学习先进知识,以保证自己能跟上水电站技术的发展。
龟都府电站
龟都府水电站位于四川省雅安市草坝镇水口村附近名山河与青衣江汇合处的龟都府小岛展布的河段上,是青衣江干流规划开发第六级中型水电站工程。该电站系闸坝式低水头河床式电站,以发电为主,距雅安市24公里,紧靠负荷中心,,交通方便,是雅安地区电气化建设的重要电源点。该工程已经完成可行性研究报告。电站设计装机容量3 x1.95MW。总容量5.85万千瓦,保证出力1.229万千瓦。电站多年平均发电量2.9645亿千瓦时,年利用小时数5068小时,设计发电引用流量566立方米/秒,水库总库容2120万立方米,调节库容330万立方米,具有日调节性能。枢纽主要建筑物有非溢流坝、泄洪闸、冲砂闸、主厂房、副厂房、变电站及附属工程等组成,其中冲沙闸、泄洪闸设计断面尺寸为27.5 m x 3m(长x宽),闸墩高26.5 m,设计高程545m,最大坝高15.6m。工程总工期34个月。
龟都府电站在最初开始施工时,由于工程量大、工期紧, 为确保安全渡讯,项目部还采取了许多有效的施工方案和施工技术。特别是在泄洪闸工程的施工技术上。采取了很多有效的方法,确保了泄洪闸的施工。围堰截流、闭气和防渗施工
截流采用立堵法上下游同时进占施工, 龙口预留宽度20~30m。鉴于交通原因, 龙口选在右岸, 流速约为6.0m/s。龙口合龙施工采用上挑角抛投法, 抛投块体材料为大块石、混凝土四面体, 在适当抛投块体后, 石渣料与大块石或混凝土四面体混合后用推土机推人江中, 效果较好, 最终成功截流。
龙口合龙戗堤形成后即进行闭气施工, 在戗堤迎水面采用粘土铺盖和土工膜相结合的方法进行初期闭气。戗堤长约110m, 粘土用量很大, 为节约工程成本, 就地取材, 利用龟都府岛上的粘土, 粘土铺盖采用两台反挖、一台推土机, 若干自卸汽车配合施工, 施工关键点在于粘土铺盖要紧压密实。戗堤坡脚渗水量一般较大, 不仅粘土要到位, 粘土用量也要足够, 利用反挖压密实, 直至不渗水.其次, 粘土铺盖施工要保持连续, 不能断断续续施工, 以防止被水淘刷掉或形成新的渗漏点。
上游围堰俄堤高程以下填筑料和河床砂卵石覆盖层进行的高压旋喷灌浆防渗深人基岩0.5m, 围堰加高后堰体采用粘土心墙加土工膜防渗。下游围堰设计高程为524m, 戗堤施工时一次填筑到设计高程, 524m高程以下填筑料和河床砂卵石覆盖层进行高压旋喷灌浆防渗后, 发现戗堤与河床砂卵石层之间存在一大块石层, 防渗效果不佳, 故引进膏状浆液灌浆技术, 成功防渗。
施工原则与施工程序
泄洪闸施工区域约10 000m2, 采取步步为营, 边开挖边浇筑的施工原则, 并且每个工作面要
尽快形成混凝土浇筑的局面, 尤其是闸室段。原因在于业主右边坡征地滞后, 导致边坡开挖渣料 包括粘土.全部堆积在闸室段与消力池施工区域内, 对施工进度已产生严重影响。为最大程度地降低对工期的影响, 必须尽快形成开挖与浇筑同时进行的局面。先施工闸室段的原因为:① 闸室段基础深, 开挖工作量大, 回填混凝土量相应较大且受河床渗水的影响大;② 闸墩混凝土至少要浇至防汛高程530.0m(最终高程为545m);③闸室段固结灌浆和帷幕灌浆均必须在“ 三枯” 施工期内完成;④闸墩门槽门轨安装及二期混凝土必须完成至防汛高程530.0m。
泄洪闸在“ 三枯” 施工前已开挖完成左上游导墙和左边墩, “ 三枯” 开挖施工程序是先岸坡后基坑, 从上至下, 分梯段开挖。为提高工作效率, 自始自终配备一台液压独臂钻施工。围堰闭气后, 进行基坑开挖。
混凝土浇筑随开挖进行, 每个工程部位只要能形成混凝土施工工作面, 就立即组织混凝土施工队伍进场施工。为确保施工工期, 不等该部位开挖工作全部完成后才进行混凝土作业, 现场施工道路规划任何时候都要满足开挖与混凝土浇筑同时施工的需要。
泄洪闸基坑排水
泄洪闸基坑排水分为初期排水和经常性排水, 上下游围堰闭气后, 即进行基坑初期排水, 在下游围堰左侧安装11 台55万kW 的清水泵, 初期蓄留于基坑内的抽排水量约11.5万m3,5天排干基坑。基坑经常性排水主要是排除施工过程中从围堰、地基渗透进人基坑的渗水、施工生产废水、降雨积水等。基坑经常性排水是关键, 根据泄洪闸的施工程序(先闸室段, 后消力池底板),基坑经常性排水分两期进行。
一期闸室段排水方案, 开挖闸室段时在下游侧开挖形成一个水泵坑, 坑深必须低于闸室段基础, 遇到岩石要爆破形成, 必须确保闸室段基础干地施工, 水泵坑内安装水泵抽排水至消力池, 通过下游围堰上的11 台水泵排人青衣江中。
二期排水方案是保证消力池和消力坎齿槽施工。根据工地实际情况分三步进行.第一步, 闸室段水泵坑抽排水加长水泵管路延长至下游围堰外侧直接排人青衣江中, 闸室段水泵坑是泄洪闸排水的核心, 既要保证闸室段施工, 又要保证消力池和导墙施工.第二步, 将原设在下游围堰上的11 台清水泵下降至512.0m高程, 即低于消力池底部高程, 截断下游围堰该高程以上的渗水.第三步, 开挖消力坎齿槽时在左侧下游侧适当位置形成最后一个水泵坑, 坑深低于齿槽底部高程508.5m, 以排除下游围堰11 台水泵未抽完的渗透水和在此高程上下游围堰的渗透水。
通过一、二期排水方案的实施, 基坑渗水得到了有效控制, 完全保证了泄洪闸施工。龟都府因中间的龟都府小岛而得名,因为这个小岛,使得龟都府水电站和著名的三峡水电站有异曲同工之处,修好电站之后,不仅发电可以造福百姓,而且也可以增添一处旅游的景点。虽然只能远远的看到大坝以及厂房和变电站,但是老师的讲解也是让我们有所收获的。
水津关电站
青衣江水津关水电站工程位于雅安市雨城区草坝镇,上距雅安城区13km,下距草坝镇3km。上游与已建的大兴电站衔接,下游与龟都府电站衔接。水津关电站的开发符合该河段梯级开发总布局。工区左岸有雅(安)—乐(山)公路、右岸有雅(安)—大(兴)公路通过,交通方便。青衣江全流域面积13744km2,坝址以上流域面积10268km2,多年平均流量432m3/s。水津关电站工程属河床式开发,水库正常蓄水位549.00m,正常蓄水位时的库容为596万m3。电站额定水头12m,设计引用流量586m3/s,电站装机容量63MW。电站多年平均发电量29686万kW.h,年平均利用小时4712h。根据《防洪标准》(GB50201-94)、《水利水电工程等级划分及洪水标准》(SL252-2000)、《堤防工程设计规范》(GB50281-98)规定和《四川省发展改革委员会关于印发青衣江水津关水电站可行性研究报告工程技术方案审查意见的通知》(川计能源[2004]501号):“本工程属三等工程。电站枢纽主要建筑物为3级,次要建筑物为4级,临时建筑物为5级,左岸防洪堤为堤防2级,右岸防洪堤为堤防4级。”
峡口滑坡
峡口滑坡雅安市陇西河左岸的峡口地区,这是一块巨大的滑坡体,滑坡体由体积1.0X107m³的老滑坡体(含2.6X16m³的新滑坡以8X10m³/s的变形体)组成,属于老滑坡复活体,历史上可能发生过多次不同程度的活动。自1978年有人在滑坡前缘,陇西河床中大量放炮采石,斜坡开始出现变形。1981年7月~8月在暴雨诱发下滑坡体出现大规模地复活,毁坏前缘公路,中断交通达3个月。1987年雨季再次中断交通。1995年至今,滑坡体仍在蠕变。峡口滑坡一旦整体失稳下滑,将对其上部灌溉渠极其前缘公路造成破坏。同时有可能造成对陇西河的暂时堵江并导致下游形成洪水或堰塞湖的危害,进而对当地农民的农田、耕地、房屋等生命财产造成很大危害。研究表明峡口滑坡目前仍处在蠕滑变形的阶段。在雨季变形明显,在枯水季节减缓,表明雨水冲刷是峡口滑坡蠕滑变形的主要影响因素。滑坡体在遭受特大暴雨的情况下,有发生整体失稳的可能。在暴雨季节应加强对滑坡的实时监测,除采取地表、地下排水措施外,可考虑采取抗滑支挡结构,以减缓或控制滑坡的变形。峡口滑坡地处陇西河峡M大拐弯处,地形宽缓,属低山丘陵地带。坡体前缘的陇西河右岸为悬崖峭壁,左岸则为峡口滑坡体。滑体经过多次间隙性活动现在已经形成明显三级平台,并保留了完整的台阶、阶面和台壁地形。在平面上滑坡体保留了较为完整的圈椅环形地形,前后缘高程分别为750m和950m。
此峡口滑坡示范点是有中国地质环境监测院承担,四川省地质环境监测总站、雅安市国土资源局及雨城分局、雅安市气象局及气象台协作承办的项目。是国土资源部中国地质调查局“四川雅安地质灾害预警示范区”成立的重点监测示范工程。该滑坡位于雅安市城区以北约10Km雨城区北郊乡峡口村,古滑坡体长约700m,宽约500m,体积约1000万立方。峡口滑坡1981年在暴雨山洪的冲刷下局部复活过,1987年出现了蠕变体,本监测示范工作重点针对峡口滑坡的蠕动变形体,监测蠕变情况和滑坡体的稳定状况。“四川雅安地质灾害预警示范区建设”项目2001-2006六年间,完成了地质灾害调查(勘查)-评价-监测-预警等大量工作,取得了大量第一手资料。具体完成了1:5万地质灾害调查1067km2,1:1万地质灾害调查100km2,1:2000工程地质测绘1km2,1:1000工程地质测绘1.2km2,钻探199米,地质灾害调查点153个,地质环境调查189处,实测剖面12个,岩土样测试26个。该点运用了全球定位系统GPRS、大地测量、裂缝测量、钻孔测斜、地下水水位水温监测、雨量监测、钻孔TDR测量、岩土体含水率测量,并以短信、GPRS、北斗通信系统为数据传输方式建设并安装17个GPS监测点、10个监测测斜孔、13台自动雨量站、3个岩土体含水率监测孔、5个水位监测孔、3处地裂缝监测点、9个全站仪排桩监测点。真正的是实现了高科技高含量的数字化技术。
它是四川雅安地质灾害预警示范区,也是国土资源科普基地。在这里有许多先进的仪器实时监测着山体的滑坡情况,如GPS、钻孔等。沿着山体每隔一段距离都一个峡口滑坡监测点,通过钻孔的方式研究山体的位移。监测点主要是为了监测峡口的深部位移与地标位移的关系,我们通过参观,了解了滑坡监测系统的一些基本情况,如地标位移、深部测斜、雨量观测和水位水温监测等。为了准确了解峡口滑坡变形情况,根据蠕滑变形体的空间分布,在变形体上及其外围布设了自动雨量计、GPS、自动位移监测仪、点位移计排桩、TDR光波测斜仪、地下水自动监测仪器等,对蠕滑变形体的地标及地下位移变形、地下水水位以及所在地的降水量等分别进行了监测。
其主要成果如下:(1)提出了地质灾害监测预警区建设的方案:按照地质灾害详细调查评价-地质灾害监测网络布设及运行-地质灾害预警预报判据模型研究及系统开发-群专结合的综合减灾系统的运行的步骤开展建设工作。(2)构建了区域和单体2个地质灾害专业监测网路:区域监测网络以降雨量监测和岩土体含水率监测组成;重点地质灾害单体监测网络包括地表位移、深部位移、地下水等监测设施。(3)探索了先进的地质灾害监测手段及数据传输手段:开展了静态GPS连续位移监测试验研究;建立了基于北斗一号卫星系统的滑坡多参数自动监测系统,提高了地质灾害监测的精度和传输的实时性。(4)开发了基于WEBGIS和降雨量实时监测的地质灾害区域预报预警系统和可视化的单体滑坡预报预警系统。(5)在雅安市雨城区已起到良好的地质灾害减灾效果,也为后续开展的地质灾害监测预警项目提供了经验.