青岛版_平行四边形的面积教学设计

时间:2019-05-12 22:22:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《青岛版_平行四边形的面积教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《青岛版_平行四边形的面积教学设计》。

第一篇:青岛版_平行四边形的面积教学设计

第五单元 多边形的面积 第一课时 信息窗一

平行四边形的面积

教学内容:青岛版小学数学五年级上册65页 信息窗1 教学目标

1.掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。

2.经历探索平行四边形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。

3.能运用平行四边形的面积计算公式解决简单的实际问题,在解决问题的过程中,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。

教学重难点

教学重点:掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。

教学难点:经历探索平行四边形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。

教具学具

教师准备:多媒体课件 教学过程

一、情境创设,激发兴趣。出示情景图和玻璃的平面示意图

谈话:仔细观察情景图,你发现了那些信息?你能提出什么数学问题?

[设计意图] 借助具体情景和有关数据使学生产生求玻璃面积的欲望。

二、自主学习,小组探究。1.提出问题,明确目标

(1)谈话:求玻璃的面积就是求平行四边形的面积。咱们先来猜一猜怎样计算平行四边形的面积?在猜之前我们先来玩玩我们上节课制作的可活动的平行四边形.一边玩一边想:平行四边形和以前学过的那个图形是近邻?(长方形)现在来猜一猜怎样计算平行四边形的面积?(2)学生交流想法及猜测依据.(3)那你想用什么方法来验证你的猜想?

[设计意图]通过玩可活动的平行四边形,学生在大脑中先感知了平行四边形和长方形的联系.自然会想到根据长方形面积计算的方法来考虑平行四边形的面积.培养学生的转化思想。学生很容易的想到用数方格或推导公式的方法计算平行四边形的面积。这里注重了学生个性化的思考和正确的叙述猜测的依据。

2.解决问题

(1)谈话:同学们各抒己见,到底你们的猜想对不对呢?咱们小组一起想办法来实验验证一下吧!

(2)分组动手验证

为学生提供学具(平行四边形纸板、方格纸、直尺、剪刀)学生先讨论操作方法,再动手合作完成;教师巡视。

(分析思考:该怎样操作呢?先自己想一想,做一做。)(课后总结:一定放手让学生让学生大胆尝试,做完之后应该小组内初步讨论结果。)

[设计意图]所给学生充足的探究时间,让其经历知识产生的过程.三、汇报交流,评价质疑。1.汇报结果:

方法1:数方格 方法2:转化

2.肯定两种方法的可行性,鼓励学生利用旧知识解决新问题的方法。3.深化转化的方法。根据学生的汇报,教师提问:(1)为什么转化成长方形?(2)为什么要沿高剪开?

(3)观察几种不同的割补方法有什么共同点?

(4)是不是所有的平行四边形只要沿高剪开都能用割补的方法转化成长方形呢?重新取一个平行四边形动手剪一剪、拼一拼,验证。4.电脑演示:为什么一定要沿高剪开? 演示步骤:

(1)沿着高剪开就出现了直角,4个角都是直角是长方形的特征。(2)两组对边分别平行而且相等,平移后一定重合。

(3)依据平行四边形和长方形特征之间的联系,把平行四边形转化为长方形。

(4)小结:我们依据图形的特征,把平行四边形转化成与它面积相等的长方形,但实际上,我们计算平行四边形的面积的时候,总不能拿剪刀先去割补成长方形,然后在计算吧?比如:我们要求的平行四边形玻璃的面积就不能用剪刀割补。因此,我们应该寻求计算平行四边形面(1)对比这两种思路有什么相似的地方,(课后总结:交流方法时突出为什么一定要沿高剪开?要求学生掌握科学的转化方法.)

四、抽象概括,总结提升。

1.对应长方形和平行四边形,讨论:平行四边形和长方形的联系,进行猜测与合情推理。

长方形的面积= 长 × 宽 ↓ ↓ ↓平行四边形的面积= 底 × 高

S = a × h

2.利用公式解决课前问题:虾池的面积是多少? 学生独立解决,指名板演,集体订正。

[设计意图]学生自主探索,动手实践。通过剪一剪、拼一拼、议一.议,使学生的多种感官积极参加到学习活动中,借助已有经验推导出平行四边形的面积计算公式,让学生掌握探索问题的一般方法。

五、巩固应用,拓展提高。1.出示题目,明确题目要求。(1)自主练习第4题

(2)自主练习第5题(3)自主练习第8题

(分析思考:练习题从不同的角度深化了学生的运用知识的能力。)

2.总结:你这节课学到了什么,把带有中括号的运算顺序说给你同桌听。通 过这节课的学习,你有什么收获?或什么疑问?写进问题口袋里。

板书设计

平行四边形的面积 长方形的面积= 长 × 宽 ↓ ↓ ↓平行四边形的面积= 底 × 高

S = a × h

第二篇:青岛版平行四边形的面积教学设计

平行四边形的面积

教学内容:青岛版小学数学五年级上册75页 信息窗1 教学目标

1.掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。2.经历探索平行四边形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。

3.能运用平行四边形的面积计算公式解决简单的实际问题,在解决问题的过程中,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。

教学重难点

教学重点:掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。

教学难点:经历探索平行四边形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。

教具学具

教师准备:多媒体课件 教学过程

一、情境创设,激发兴趣。

出示水产养殖场情景图和虾池平面示意图

谈话:仔细观察情景图,你发现了那些信息?你能提出什么数学问题? [设计意图] 借助具体情景和有关数据使学生产生求虾池面积的欲望。

二、自主学习,小组探究。1.提出问题,明确目标

(1)谈话:求虾池的面积就是求平行四边形的面积。咱们先来猜一猜怎样计算平行四边形的面积?在猜之前我们先来玩玩我们上节课制作的可活动的平行四边形.一边玩一边想:平行四边形和以前学过的那个图形是近邻?(长方形)现在来猜一猜怎样计算平行四边形的面积?(2)学生交流想法及猜测依据.(3)那你想用什么方法来验证你的猜想?

[设计意图]通过玩可活动的平行四边形,学生在大脑中先感知了平行四边形和长方形的联系.自然会想到根据长方形面积计算的方法来考虑平行四边形的面积.培养学生的转化思想。学生很容易的想到用数方格或推导公式的方法计算平行四边形的面积。这里注重了学生个性化的思考和正确的叙述猜测的依据。

2.解决问题

(1)谈话:同学们各抒己见,到底你们的猜想对不对呢?咱们小组一起想办法来实验验证一下吧!

(2)分组动手验证

为学生提供学具(平行四边形纸板、方格纸、直尺、剪刀)学生先讨论操作方法,再动手合作完成;教师巡视。

(分析思考:该怎样操作呢?先自己想一想,做一做。)

(课后总结:一定放手让学生让学生大胆尝试,做完之后应该小组内初步讨论结果。)

[设计意图]所给学生充足的探究时间,让其经历知识产生的过程.三、汇报交流,评价质疑。1.汇报结果:

方法1:数方格 方法2:转化

2.肯定两种方法的可行性,鼓励学生利用旧知识解决新问题的方法。3.深化转化的方法。根据学生的汇报,教师提问:(1)为什么转化成长方形?(2)为什么要沿高剪开?

(3)观察几种不同的割补方法有什么共同点?

(4)是不是所有的平行四边形只要沿高剪开都能用割补的方法转化成长方形呢?重新取一个平行四边形动手剪一剪、拼一拼,验证。4.电脑演示:为什么一定要沿高剪开? 演示步骤:(1)沿着高剪开就出现了直角,4个角都是直角是长方形的特征。(2)两组对边分别平行而且相等,平移后一定重合。

(3)依据平行四边形和长方形特征之间的联系,把平行四边形转化为长方形。(4)小结:我们依据图形的特征,把平行四边形转化成与它面积相等的长方形,但实际上,我们计算平行四边形的面积的时候,总不能拿剪刀先去割补成长方形,然后在计算吧?比如:我们要求的平行四边形虾池的面积就不能用剪刀割补。因此,我们应该寻求计算平行四边形面(1)对比这两种思路有什么相似的地方,(课后总结:交流方法时突出为什么一定要沿高剪开?要求学生掌握科学的转化方法.)

四、抽象概括,总结提升。

1.对应长方形和平行四边形,讨论:平行四边形和长方形的联系,进行猜测与合情推理。

长方形的面积= 长 × 宽 ↓ ↓ ↓平行四边形的面积= 底 × 高

S = a × h

2.利用公式解决课前问题:虾池的面积是多少? 学生独立解决,指名板演,集体订正。

[设计意图]学生自主探索,动手实践。通过剪一剪、拼一拼、议一.议,使学生的多种感官积极参加到学习活动中,借助已有经验推导出平行四边形的面积计算公式,让学生掌握探索问题的一般方法。

五、巩固应用,拓展提高。1.出示题目,明确题目要求。(1)自主练习第4题

(2)自主练习第5题(3)自主练习第8题

(分析思考:练习题从不同的角度深化了学生的运用知识的能力。)

2.总结:你这节课学到了什么,把带有中括号的运算顺序说给你同桌听。通 过这节课的学习,你有什么收获?或什么疑问?写进问题口袋里。板书设计

平行四边形的面积 长方形的面积= 长 × 宽 ↓ ↓ ↓平行四边形的面积= 底 × 高

S = a × h

使用说明

1.教学反思 本节课的教学内容属于公式推导课。教学重点是推导出平行四边形的面积计算公式,并能正确运用。教学难点是把平行四边形转化成学过的图形,通过找关系推导出平行四边形的面积公式。课前我一直在思考,如何用新课程的理念去教这一内容呢?于是我对这节课进行了大胆的尝试。整个推导过程较为抽象,学生掌握起来有相当的难度,所以根据学生的认知规律,本节课充分发挥学生的主动性,在教师的引导下,让每一个学生亲自动手操作,把平行四边形转化为长方形,通过观察、比较、分析、概括、讨论的方法,自己去发现平行四边形与长方形之间的关系,然后一步步地推导出平行四边形面积的计算公式。

2.使用建议 “ 转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。

3.需破解的问题 在图形的转化中,利用图形的特征之间的联系进行转化“为什么沿高剪开,就能拼成长方形?”通过课件的演示让学生明白图形转化的依据,为后续知识作了铺垫。突破以往的教学思路,不但引导学生转化图形还要让学生明白图形转化的依据,为以后的图形转化起了一个导航作用。

苗芳 市中区君山路小学

第三篇:青岛版_平行四边形的面积教学设计

平行四边形的面积

教学内容:青岛版小学数学四年级下册22页 信息窗1 教学目标

1.掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。

2.经历探索平行四边形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。

3.能运用平行四边形的面积计算公式解决简单的实际问题,在解决问题的过程中,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。

教学重难点 教学重点:掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。教学难点:经历探索平行四边形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。

教具学具

教师准备:多媒体课件 教学过程

一、情境创设,激发兴趣。

出示水产养殖场情景图和虾池平面示意图

谈话:仔细观察情景图,你发现了那些信息?你能提出什么数学问题?

二、自主学习,小组探究。

1.提出问题,明确目标

(1)谈话:求虾池的面积就是求平行四边形的面积。咱们先来猜一猜怎样计算平行四边形的面积?在猜之前我们先来看看能不能从以前学过的图形求面积中得到一些启发.(出示长方形,求面积)说说怎么求的?

(出示平行四边形,求面积)你会用数格子的方法求出平行四边形的面积吗? 观察长方形和平行四边形,他们有什么共同之处?

猜想:这个平行四边形的底和高与它的面积之间有什么关系?(2)那你想用什么方法来验证你的猜想? 2.解决问题

(1)谈话:同学们各抒己见,到底你们的猜想对不对呢?咱们小组一起想办法来实验验证一下吧!

(2)分组动手验证

为学生提供学具(平行四边形纸板、方格纸、直尺、剪刀)学生先讨论操作方法,再动手合作完成;教师巡视。

(分析思考:该怎样操作呢?先自己想一想,做一做。)

三、汇报交流,评价质疑。1.汇报结果:

方法:转化

2.肯定方法的可行性,鼓励学生利用旧知识解决新问题的方法。3.深化转化的方法。

根据学生的汇报,教师提问:(1)为什么转化成长方形?(2)为什么要沿高剪开?

(3)观察两种不同的割补方法有什么共同点?(4)是不是所有的平行四边形只要沿高剪开都能用割补的方法转化成长方形呢?重新取一个平行四边形动手剪一剪、拼一拼,验证。4.电脑演示:为什么一定要沿高剪开? 演示步骤:

(1)沿着高剪开就出现了直角,4个角都是直角是长方形的特征。(2)两组对边分别平行而且相等,平移后一定重合。

(3)依据平行四边形和长方形特征之间的联系,把平行四边形转化为长方形。(4)小结:我们依据图形的特征,把平行四边形转化成与它面积相等的长方形,但实际上,我们计算平行四边形的面积的时候,总不能拿剪刀先去割补成长方形,然后在计算吧?比如:我们要求的平行四边形虾池的面积就不能用剪刀割补。因此,我们应该寻求计算平行四边形面(1)对比这两种思路有什么相似的地方,四、抽象概括,总结提升。对应长方形和平行四边形,讨论:平行四边形的底和高与剪拼后的长方形的长和宽之间有什么关系?

长方形的面积= 长 × 宽 ↓ ↓ ↓平行四边形的面积= 底 × 高

S = a × h

五、巩固应用,拓展提高。

1、随机练习

(1)求平行四边形的面积。

(2)这样计算平行四边形的面积对吗?(3)如何计算平行四边形的面积?

2.利用公式解决课前问题:虾池的面积是多少? 学生独立解决,指名板演,集体订正。

六、小测:课本第26页6 七.总结:通过这节课的学习,你有什么收获?或什么疑问?写进问题口袋里。板书设计

平行四边形的面积

长方形的面积= 长 × 宽

↓ ↓ ↓平行四边形的面积= 底 × 高

S = a × h

第四篇:平行四边形面积教学设计

平行四边形面积教学设计(精选6篇)

作为一位杰出的教职工,就难以避免地要准备教学设计,借助教学设计可以更好地组织教学活动。我们该怎么去写教学设计呢?下面是小编为大家收集的平行四边形面积教学设计(精选6篇),希望对大家有所帮助。

平行四边形面积教学设计1

教学内容:

实验教材小学数学五年级上册第76页内容。

教学目标:

1、用转化的方法探索并掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。

2、经历探索平行四边形面积计算方法的过程,培养初步的观察能力、抽象能力,进一步发展空间观念。

3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的密切联系,培养初步的数学应用意识和解决简单实际问题的能力。

教学准备:

学生:方格图、平行四边形纸片、直尺、剪刀、三角尺

教师:课件、投影仪

教学过程:

一、谈话引入,提出问题

师:同学们,你们喜欢吃水产品吗?比如:鱼、虾、扇贝。去水产品养殖基地参观过吗?下面我们一起去参观小明家承包的两个养殖池吧!(出示课件)仔细观察图中的信息,你能提出什么数学问题?

(1:虾池的面积是多少? 2:虾池是什么形状的?……)

师:虾池是什么形状的?(平行四边形)

师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积)

二、合作探索,解决问题

1、猜想

师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图)

师:希不希望通过自己的探究找到这个公式?

师:相信你们一定能行!在探究之前,先请同学们猜想一下:平行四边形的面积计算公式可能是什么?并说说你的理由。

(学生独立思考)。

师:谁来说?

(1、我猜平行四边形的面积计算公式是“底×邻边”。我是根据长方形的面积计算公式猜的。)

师:谁有不同想法?

(2、我猜平行四边形的面积计算公式是“底×高”。我发现沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。)

师:现在出现两种猜想,各有各的理由,而真正的计算公式肯定只有1个。我们怎么办?(验证)

师:对!我们要逐个进行验证,看看正确的公式究竟是什么。

为了方便大家探究,老师为每个小组都准备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮助。在动手验证之前,老师有几点小提示,请看屏幕:(课件出示,指名读)

1.小组同学先讨论验证的方法,再动手验证。

2.小组成员要团结合作,合理分工。

3.每组推选1名代表进行汇报,其他组员可以补充

4.使用学具时注意安全,用完后装入信封。

2、验证“底×邻边”

师:先来验证“底×邻边”这个猜想对不对。

比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开始。

(学生合作,教师巡视)

3、交流

师:经过大家的动手操作,相信都有答案了。哪个小组愿意先来交流?

(我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜想公式算出的面积是35平方厘米。所以 “底×邻边” 的猜想是错误的。)

师:听明白他们小组的做法了吗?(找两人分享)感谢你们的介绍。还有不一样的小组吗?(没有)

师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,根据“底×邻边”的猜想公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜想是错误的。虽然这个猜想是错误的,但我们要感谢提出这个猜想的同学,因为你的猜想很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地认识。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用第二个信封的帮助再来验证“底×高”这个猜想对不对。一定要交流好验证方法再动手操作,开始。

4、验证“底×高”

(学生活动,教师参与)

5、交流

师:相信大家又有了新的发现和收获。哪组先来分享你们的研究成果?

(1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜想是正确的。

师评价:他们小组的这种方法怎么样?我发现他们小组很会利用资源。刚才知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?注意听,看看他们采用的究竟是什么方法。)

(2、我们小组是沿着平行四边形的高剪下来,把它拼成长方形,我们发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展示。)

师评价:他们小组通过剪一剪、拼一拼,说明平行四边形的面积=底×高。你们觉得这种方法怎么样?(很好)谁再来说说?

师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。根据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。)

师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简单问题了。

师:是不是沿着平行四边形的任意一条高裁剪都可以?(是的)

师:我还有第二个问题:平行四边形的面积为什么不是长×宽,而是底×高呢?

(平行四边形没有“长”和“宽”。)

师:说的真好,我们可不能混淆了。

三.应用公式,巩固训练

师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米)

师:如果老师再给你提供这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?)

师:谁来解决这个问题?其余同学写在练习本上。(30×5400=162000(尾))

师:听说你们很顺利的获取了平行四边形面积计算的公式,平行四边形家族就派出了几名代表,来挑战大家,有信心迎接挑战吗?

(出示课件:四个挑战)

1、初试锋芒:下面是四个平行四边形,明明认为它们的面积都是12平方厘米。你认为对吗?

为什么?(单位:厘米 图略)

2、乘胜追击:计算下面平行四边形的面积。(课本79页第5题)

3、再接再厉:一个平行四边形的停车位,底是2.5米,高是4米,一个停车位的占地面积是多少?

4、聪明小屋:下图中正方形的周长是24厘米,平行四边形的面积是多少?

师:真不错,挑战成功。

四.收获平台,课外延伸

师:不知不觉中就要下课了。想一想,这节课你有哪些收获?

(我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。)

师:回忆一下:我们在推导平行四边形的面积公式时是按什么步骤进行的?

(猜想--验证--结论。这是数学上常用的探究方法,相信你们在以后的学习中会经常使用它。这节课,同学们不仅仅学到了知识,而且掌握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简单的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间互相交流一下。)

平行四边形面积教学设计2

教学目标:

1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学重点:

理解公式并正确计算平行四边形的面积。

教学难点:

理解平行四边形面积公式的推导过程。

教学方法:

动手操作、小组讨论、启发、演示等教学方法。

教学准备:

1、学具:每组两个平行四边形模型,剪刀,透明方格纸,直尺。

2、课外延伸思考题。

3、平行四边形转化为长方形的课件。

教学过程

一、创设情境,导入新课:

1、同学们,唐僧师徒去西天取经,唐僧想考考猪八戒和沙和尚谁更聪明些,便分派任务让他们去收割稻谷。唐僧说:“有两块地,一块是长方形,长9米,宽4米;另一块地是平行四边形,底是6米,高是6米。你们随便挑一块吧。”猪八戒心想挑一块面积小一点的地,可以做少一点,所以他急忙说:“我挑长方形那块地,可以做少一点”,孙悟空听了笑着说:“老猪你的如意算盘打错了。”,猪八戒怎么都不明白,同学们想知道为什么吗?

2、师:比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?

师:这节课我们就带着这些问题一起来研究《平行四边形的面积计算》(板书课题)

二、合作交流,探究新知

1、数方格比较两个图形面积的大小。

(1)提出要求:每个方格表示1平方米,不满一格的都按半格计算。

(2)学生用数方格的方法计算两个图形的面积

(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

2、引导:我们用数方格的方法得到了一个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

学生讨论,鼓励学生大胆发表意见。

3、归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于它的底乘高;是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下,因为我们已经计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?想不想亲自动手来验证、验证,请同学们试一试,小组商量。

学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

请学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?

生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)

教师用课件演示剪——平移——拼的过程。(多种方法)

4、我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

小组讨论。可以出示讨论题。

(1)拼出的长方形和原来的平行四边形比,面积变了没有?

(2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

(3)能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?

小组汇报,教师归纳:

我们把一个平行四边形转成为一个长方形,它的面积与原来的平行四边形面积相等。

同学们在验证时真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲。

板书:

平行四边形面积= 底 × 高。

5、根据长方形的面积公式得出平行四边形面积公式并用字母表示。

平行四边形的面积还可以用什么来表示。教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。

板书:S=a×h=ah=ah6、活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

三、分层运用新知,逐步理解内化

1、(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?

2、那同学们知道孙悟空为什么笑猪八戒吗?谁来说说?(让学生讨论)

3、我们一起来听听孙悟空是怎样说的?(因为长方形面积是长9米乘以宽4米得36平方米;另一块地是平行四边形,底是6米乘以高是6米得36平方米,两块都一样大,猪八戒占不了便宜。)

4、求下列平行四边形的面积。

(2)判断对错:

师强调:在求平行四边形的面积时,要注意底和高是互相对应的(课件点击)

(3)观察下面的平行四边形,形状相同吗?再仔细观察两个平行四边形,它们之间有什么关系?(课件出示等底等高的平行四边形)

生读题。

师:等底等高的平行四边形面积一定相等。

3.思考题:你有几种方法求下面图形的面积?

四、总结全课,深化认识

通过今天的学习,你一定都有很多收获,谁愿意让大家来分享你收获的果实?

今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学习致用。

平行四边形面积教学设计3

一、教学目标

(一)知识与技能

让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的实际问题。

(二)过程与方法

通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

(三)情感态度和价值观

通过活动,培养学生的探索精神,感受数学与生活的密切联系。

二、教学重难点

教学重点:探索并掌握平行四边形面积计算公式。

教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。

三、教学准备

平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。

四、教学过程

(一)创设情境,激趣导入

1.创设情境。

(1)呈现教材第86页单元主题图。(PPT课件演示)

教师:瞧!校园门口,你在哪些物体上看到了我们学过的平面图形?

(2)学生汇报交流。

(3)回顾:我们生活在一个图形的世界里,这些图形有大有小,平面图形的大小就是它们的面积。我们已经研究过哪些平面图形的面积?怎样计算?

预设学生回答:长方形的面积=长×宽,正方形的面积=边长×边长。

(4)引入新课:这幅图中除了有长方形和正方形,还有平行四边形、三角形和梯形,你们会计算它们的面积吗?今天这节课,就让我们一起进入“多边形的面积”的学习。(板书单元课题:多边形的面积)

2.揭示本节课题。

复习引入。(PPT课件演示)

请大家看校园门口的这两个花坛,哪一个大呢?要比较花坛的大小,其实就是比较它们的什么?你会算哪个花坛的面积?怎样计算?那平行四边形的面积怎样计算呢?今天这节课,我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)

设计意图通过简单的情境创设,让学生从实际生活(教材主题图)中发现图形,巩固和加深对已学图形特征的认识,引入多边形及面积的概念,从而揭示单元课题;从比较主题图中的两个花坛的情境引入平行四边形面积计算的教学,以小见大,在渗透思考方法中揭示本节课的课题,让学生快速进入学习情境,同时又为后面探究面积公式指引了转化的方向。

(二)主动探索,推导公式

1.用面积单位测量平行四边形的面积。

(1)提问:要知道这个平行四边形的面积,怎么办?(PPT课件演示)

引导学生回顾用面积单位测量图形面积的方法。

(2)操作:现在把它们放在方格纸上,一个方格代表1 m2,不满一格的都按半格计算。平行四边形的面积是多少,你能数出来吗?长方形的面积呢?(教师适时用PPT课件演示)

(3)学生先独立数平行四边形的面积,再互相交流。

预设平行四边形的面积:

方法一:从左往右数,每行6个,有4行,平行四边形的面积是24平方米;

方法二:先数整格有20个,再数半格有8个,相当于4个整格,合起来一共是24平方米。

长方形的面积:长6米,宽4米,面积是6×4=24(平方米)。

(4)教师小结:虽然大家数的方法不一样,但同学们都是在用面积单位进行测量。

(5)填写表格。

①师生共同完成表格:平行四边形的面积是多少?它的底和高分别是多少?长方形呢?(PPT课件演示)

②引导学生观察:观察这个表格,你发现了什么?

③交流回报,小结:有的同学发现了,这个平行四边形的底与长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积与长方形的面积相等。还有的同学发现,这个平行四边形底乘以高正好等于它的面积,由此猜测平行四边形的面积=底×高。

设计意图面积计算最基本的方法是单位面积测量法,即用统一的面积单位进行测量,这个方法虽然学生在学习长方形和正方形的面积计算时已经使用过,但因为平行四边形中出现了半格,所以本环节教师可引导学生进行测量;对于长方形的面积,学生已会计算,可直接通过计算得出结果;再通过对比它们的底(长)、高(宽)和面积的数据,沟通这两个图形之间的联系,为后面进一步探寻平行四边形面积的计算方法做准备。

2.操作思考,推导公式。

(1)教师:看来,数方格的确能让我们知道平行四边形的面积。但是,如果有很大一块草坪,数方格方便吗?显然是不方便的。如果不数方格,怎样计算平行四边形的面积呢?

这个平行四边形的面积恰好等于底×高,那是不是所有的平行四边形的面积都等于底×高呢?看来,还需进一步研究哦!(PPT课件演示)

(2)引导学生确定探究方向:我们已经学过某些图形的面积计算方法,能否将平行四边形转化成它们来计算面积呢?请大家借助手中的平行四边形卡纸,先独立思考、动手操作,找到答案后在小组内交流。

(3)操作转化,推导公式。

①操作转化。

a.学生独立思考,动手剪拼平行四边形,将它转化成长方形后组内交流。

b.学生展示汇报。(PPT课件演示)

c.大家发现它们有什么相同之处?为什么要沿着平行四边形的高来剪开?有多少种不同的剪法?为什么?

②观察思考。

a.观察:原来的平行四边形和转化后的长方形,你发现它们之间有哪些等量关系?(PPT课件演示)

b.思考:平行四边形的底和长方形的 相等,平行四边形的 和长方形的 相等,这两个图形的面积。(PPT课件演示)

c.学生汇报。(教师板书)

③概括公式。

你能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?会用字母表示吗?(PPT课件演示,板书公式)

(4)回顾与小结。

①我们已经知道平行四边形的面积等于底乘高,回顾一下,它是怎样推导出来的?

②教师小结:首先把一个平行四边形沿高剪开后平移拼成一个长方形,再观察原来的平行四边形和拼接后得到的长方形,发现等量关系:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,两个图形的面积也相等。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。像这样把未知的平行四边形的面积转化成已学的长方形的面积来研究的方法,在我们数学学习中经常用到。如果同学们在后面的学习中碰到类似的问题,也可以用它来解决问题。

设计意图在尝试单位面积测量法之后,本环节首先让学生感受到数方格的局限性,启发他们将平行四边形转化为已学的图形来计算面积,激发他们探究公式的欲望;在推导公式的过程中,设计了三个层次的活动:第一个层次是操作转化,让学生达成共识——沿高剪开后通过平移将平行四边形转化成长方形;第二个层次是观察思考,让学生通过观察对比后发现转化前后图形之间的等量关系,沟通了两个图形之间的内在联系,为有效推导面积公式提供了有力的支撑;第三个层次是概括公式,水到渠成。这样设计层次清楚,目标明确。最后的小结环节,在引导学生回顾推导公式的过程中培养他们回顾反思的能力,同时又渗透转化思想。

(三)巩固运用,解决问题

1.教学教材第88页例1。

(1)出示例题,呈现问题情境。(PPT课件演示)

(2)理解题意,叙述题目内容。

①用自己的话说一说题目的意思是什么?

②学生根据图文叙述:知道平行四边形花坛的底是6米,高是4米,求花坛的面积是多少平方米。

(3)收集信息,明确问题。

①提问:从题目中你获得了哪些数学信息?要求什么?

②思考:要求花坛的面积,其实就是求什么?

③归纳:要求花坛的面积,其实就是求底是6米、高是4米的平行四边形的面积。

(4)学生独立解答。

(5)学生汇报,教师板书,规范书写。

2.课堂练习。

完成教材第89页练习十九第1题。

(1)学生独立完成。

(2)同桌互相说说自己是怎样做的。

(3)全班集体交流:这个问题你是怎样算的?

设计意图例1是直接从情境中选取的实际问题,既可以指导学生如何应用计算公式解决实际问题,又可以具体验证计算公式的正确性(与数方格所得的面积相等);同时还应注意对书写格式的指导,即先用字母表示计算公式,再将数据代入公式求值。

(四)变式练习,内化提高

1.基本练习。

完成教材第89页练习十九第2题。(PPT课件演示)

(1)学生独立完成。

(2)同桌互相说一说自己是怎样算的。

(3)全班集体交流第3题:这个图形的面积你是怎样计算的?(注意选择平行四边形中对应的底和高来计算面积。)

参考答案:12 cm2;18.72 cm2;4.8 cm2。

2.提高练习。

完成教材第89页练习十九第4题。(PPT课件演示)

(1)理解题意:怎样计算出这两个平行四边形的面积?需要知道什么?(先测量出平行四边形中对应的底和高,再利用公式计算。)

(2)学生独立完成。

(3)全班集体交流:两个平行四边形的底和高分别是多少?怎样计算面积?

3.拓展延伸。

等底等高的平行四边形的面积一定相等吗?面积相等的平行四边形一定等底等高吗?(PPT课件演示)

设计意图通过基本练习的计算帮助学生进一步理解和掌握公式,提高练习则让学生在计算与解决实际问题的过程中不断加深对公式的理解与运用,最后的拓展延伸旨在让学生在辨析中发散思维。

(五)全课总结,畅谈收获

1.今天这节课学习了什么?怎样学的?

2.今天我们主要推导出了平行四边形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导公式时,我们首先选择的是计算面积的基本方法,就是单位面积测量法,通过数方格知道了平行四边形的面积;再观察表格中的数据,猜测平行四边形的面积等于底乘高;为了验证这一猜想是否正确,又通过剪拼的操作,将未知的平行四边形转化成已知的长方形来研究,最后通过观察对比发现转化前后的平行四边形与长方形之间的等量关系,从而推导出了平行四边形的面积计算公式等于底乘高,从而也验证了猜想的正确性。在这个过程中,大家经历了测量——观察——猜测——转化——验证的过程,最后我们还利用公式解决了生活中的实际问题。

(六)作业练习

1.课堂作业:练习十九第5题。

2.课外作业:练习十九第3题。

平行四边形面积教学设计4

一、课前引入、渗透转化。

1、课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?

2、播放制作七巧板的视频。

3、出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。

二、创设情境,揭示课题。

1、电子白板导出两个花坛,比一比,哪个大?

2、揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。

三、对手操作,探究方法。

1、利用数方格,初步探究

2、出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的`铺垫。导出“初步探究学习卡”

四、白板演示,验证猜想。

1、探索把一个平行四边形转化成已学习过的图形。

2、观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。

3、平行四边形的面积=底×高

4、引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。

五、巩固练习,加深理解。

1、课件出示例12、课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件

六、课堂小结,反思回顾。

回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?

平行四边形面积教学设计5

教学目标:使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

教学重、难点:

探索并掌握平行四边形的面积计算公式及推导过程。

教具学具:

课件、平行四边形卡片、剪刀、三角板、直尺等。

教学模式:

“我能行”四步教学法。(详见文后注)

教学流程:

课前交流:

同学们,你们想了解老师吗?你想知道关于我的什么情况?

预设:老师的年龄是多少?教几年级?

师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜?

生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的年龄应该是(30)岁。

师:想得真好,许老师就是(30)岁。

师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。这节课我们就用这种数学“转化”思想来学习本节课。

一、情境导入,确定目标

师:1.在数学课堂上哪些地方用到了“转化”?

预设:应用题三步转化成两步,再转化成一步;求未知数X,开始给出的式子比较复杂,然后一步一步转化成简单的方程。

看来,“转化”是一位非常高深的、不见踪影的高人,在背后帮助着我们。

2.请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢?

生:演示方法。

3.师:为什么把它拼成一个长方形呢?

预设:学过长方形面积的计算,而且能够拼成长方形。

这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。

4.刚才的图形“转化”过程,什么变了,什么没变?

5.请同学们看这个平行四边形,它的面积怎样求呢?请看我们本节课的学习目标。

(1)我会用“转化”的数学思想推导平行四边形的面积计算公式。

(2)我会用平行四边形面积公式解决实际问题。

设计意图情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。

二、互动展示,生成问题

师:1.你猜一猜平行四边形的面积会与什么有关?

预设:长方形、正方形、底、高、夹角、相邻的边等。

2.平行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的平行四边形纸片来试着“转化”求它的面积。

3.请带着问题自学。(课件)

4.四人小组交流一下你是怎样“转化”平行四边形面积的。

设计意图通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。

三、启发思路,引导归纳

师:1.谁来汇报一下你们小组的发现?你们推导出平行四边形的公式吗?

2.平行四边形的面积怎么算?

3.板书:平行四边形的面积=底×高

4.你是怎样推导的?说一下你的操作过程。

5.剪下来这多余的,这条线是不是随便画的一条线?这是什么?(平行四边形的高)

6.为什么要剪下来,要拼成一个什么图形?(拼成长方形)

7.这个平行四边形与剪拼的长方形之间有什么关系?

预设:平行四边形的面积与长方形的面积相等(板书)

8.剪拼后的长方形的长,是原平行四边形的什么?宽呢?

9.我们学习过用字母来表示数量关系式,请同学们翻开数学书P81自学用字母怎样表示平行四边形的面积。(板书:S=ah)

设计意图在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。

四、练习检测,拓展链接

1.练习检测卡一题。

2.课件:判断、选择题、口答列式。

3.练习检测卡二、三题。

4.谈谈你对这节课的收获,好吗?

拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。

设计意图归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。

板书设计:

(注:“我能行四步教学法”是我校开展的优质课教改实验项目之一,这种教学模式注意教学过程的民主化、多元化和学生个性的和谐发展,充分体现师生之间民主平等、亲密合作的教学观和师生观,具体流程为“情境导入,确定目标――互动展示,生成问题――启发思路,引导归纳――练习检测,拓展链接”。)

平行四边形面积教学设计6

教学目标:

1、能用割补的方法,把平行四边形转化成面积不变的长方形,通过长方形面积的计算方法推导出平行四边形面积的计算方法

2、能用平行四边形面积的计算方法解决简单的实际问题。

3、在操作、观察、比较中,渗透转化的思想方法。

4、在探究活动中,体验到成功的快乐。

教学重点:

推导平行四边形面积公式,并能够运用平行四边形面积公式解决简单的实际问题。

教学难点:

推导平行四边形面积公式

教学准备:

课件平行四边形硬纸片剪刀透明方格纸

教学过程:

一、情境激趣:

师:同学们,你们去过宁江区的江滨公园?美不美?公园还要在这里铺草坪,这是其中的两块(电脑出示草坪图),根据图中提供的数学信息你能提出哪些数学问题?

1、铺长方形草坪需要多少钱?(根据长方形的面积公式学生可以解决)2、铺平行四边形的草坪需要多少钱?师:需要先求什么?

生:平行四边形的面积。师:这节课我们就来研究平行四边形的面积。(板书课题)

二、实验探究:

1、猜想

那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。

2、实验

1)独立自主探究:

师:每个小组的桌上都有一些学具,有数格子用的格子纸、印的平行四边形和长方形和表格、剪刀、平行四边形,想一想你打算用什么方法来研究?

生:我用数格子的方法。

师:数格子时,不足一格的按一格算,把得到的数据填在表格里

师:还有什么方法?

生:我用剪一剪、拼一拼的方法。

师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。

2)小组内交流:

师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。

3)学生汇报:

第一个小组:

(1)数格子(把表格带到前面说)

(2)剪拼

师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?(生:长方形的长等于平行四边形的底、宽等于平行四边形的高)你们小组转化的清楚,介绍的明白真了不起)

是这样吗?师课件演示解说强调平移

师:还有其他的剪拼方法吗?(你们组的方法与人不同,让同学们又学了一招啊!)生汇报后师演示

(多么巧妙的剪拼,我发现你们的思维很灵活啊。)(我只能说两个字了:“佩服!”)

师:还有其他的方法吗?其他几个小组同学,通过动手操作你们得到了什么结论。一起说(师板书:平行四边形的面积=底*高)

师:如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式又该怎样写呢?s=ah

四、运用公式解决

师:现在我们来算一下铺这块平行四边形草坪要用多少钱?

(生口算)

五、拓展练习

1、求下列图形的面积是多少?

底15厘米,高11厘米

(不仅准确计算出了结果,速度还很快,真不错。)

2、开放题:这是一张全国地图,有一个省的地形很接近平行四边形,山西省。山西南北大约590千米,东西大约310千米,你能估计一下它的土地面积吗?(东西能否再平些)

(能在实际问题的解决中恰当运用公式,了不起)

3、学校要建一个面积是12平方米的平行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)1)可以有几种方案?2)哪种方案更合理?(你们能从不同角度考虑,为学校选择更合理的方案,老师非常感谢大家)

六、全课小结:

师:这节课,你是怎么学习的?你有哪些收获?

(我是用数方格的方法、我用平移这种方法把平行四边形转化成长方形再与平行四边形进行比较得出平行四边形的面积的师演示)你们很了不起,能想办法把平行四边形转化成我们以前学过的长方形来研究它的面积。我们这节课使用的这种方法,以后在学习其它图形面积时还会用到。今天的家庭作业是以《平行四边形的面积》为题写一篇数学日记,写清平行四边形的面积的推导过程,可以画、也可以剪贴。

课后反思

课堂教学是一个动态生成的过程。因此,在教学时,我把关注的焦点放在学生身上,关注学生的情感体验,关注学生的自主建构,更关注学生真实的学习过程。从而适时地激发学生的情感,点燃学生的智慧,发挥学生的创造性。主要体现在以下几个方面:

1、适时渗透、领悟思想方法

数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,经历问题解决的过程,了解数学学习的价值,增强数学的应用意识,获得数学的基本思想方法。我觉得,这节课学习的转化的数学思想方法将永远铭刻在学生头脑中,将在学生今后的学习中发挥更大的作用。

2、适时引导、主动建构知识

学生学习数学知识的过程是主动建构的过程。因此,在教学中,我让学生象科学家一样经历大胆猜想、动手验证、得出结论的过程。先让学生根据已有的知识经验进行猜想:平行四边形的面积可能与什么有关?然后,给学生足够的探究时间和空间,“数”、“剪拼”都是学生的智慧,“数的过程”、“剪拼的过程”都是学生的思维过程。最后,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正的实现了自主学习。

3、适时点拨、有效进行指导

探究学习是把学生的“学”作为实施教学的基本点,而教师的“导”是实现学生“学”的根本保证。因此,在教学中我适时地对学生进行点拨、指导,做到“放得开、收得住”。如在自主探究过程中我发现,有的学生把平行四边形剪开后无法拼成长方形。于是,我进行了个别指导。引导学生思考:为什么只有沿高剪开才能拼成长方形?通过指导,使学生明白沿平行四边形的高剪开,是将平行四边形转化成长方形的关键。

第五篇:平行四边形面积教学设计

平行四边形面积教学设计

教学内容:

人教版《数学》五年级上册80、81页 教学目标:

1、在特定的数学探究活动中,经历体验,探究推导出平行四边形的面积计算公式。

2、通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。

3、通过小组合作培养学生动手实践、自主探索与合作探究的精神,在活动中得到成功的体验。、能够应用公式正确地计算平行四边形的面积,解决生活中的问题。教学重点:

理解公式并正确计算平行四边形的面积。教学难点:

理解平行四边形面积公式的推导过程。

教学准备:

1、学具:每组两个平行四边形模型,剪刀,透明胶纸,直尺。

2、平行四边形转化为长方形的课件。教学设计:

一情境引入,激趣导课。(多媒体演示)出示两块形状不规则的图形

师:图形经过剪拼,转化成了我们学过的图形,形状虽然发生了变化,但面积不变。二自主学习,自我构建。

出示主题图中的花坛(长方形和正方形),这两个花坛那一个大呢? 1 涂格比赛,初步验证

两个学生比赛图绿色,两个学生记录方格数。

提出问题:面积相等,是不是所有的平行四边形都能转化成我们学过的长方形呢?(揭示课题:平行四边形的面积计算)三动手操作,推导公式。

师:猜测——验证是科学研究的一种重要方法,让我们也像科学家一样来研究一下吧。下面以四人小组进行活动。出示活动要求:(1)小组合作:通过剪拼移的方法,进行验证(2)展示交流,澄清问题。

转化后的长方形和原来的平行四边形的底和高 有什么关系? 转化后的长方形面积和原来的平行四边形的面积有什么关系?(3)推导出面积公式:(板书)长方形的面积=长*宽平行四边形的面积=底*高

(4)电脑演示剪拼过程,进一步明确平行四边形和长方形是关系。(5)演示其他剪拼方法(6)用字母表示:s=ah

三应用公式,解决问题.1师:(课件出示,如下图)要计算这个平行四边形的面积,下面几个选择,你选哪个?为什么?(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)

6厘米5厘米4厘米7.5厘米A、7.5×4C、7.5×6B、5×4D、5×6

2算一算

师:(课件出示如下图)算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)

3正方形的周长是36厘米,你能求出平行四边形的面积吗? 4小设计:你能设计一个与下面长方形面积相等的平行四边形吗?

2.5m5m小汽车3m7.5m大货车

四你知道吗

五全课总结平行四边形的设计 第一个环节导入 两个不规则的图形,(电脑演示)复习长方形的面积公式,渗透转化。师:图形经过剪拼,转化成了我们学过的图形,形状虽然发生了变化,但面积不变。出示照片:学校的楼梯栏杆是平行四边形(画外音)师:楼梯栏杆是什么图形?校长为了大家的安全,决定在楼梯栏杆上镶上玻璃,你们知道需要多大的玻璃吗 ? 3 揭题:平行四边形面积的计算。第二个环节新授 探究方格图 师:动脑筋想想,你能知道它的面积吗?试一试?生尝试上黑板移动方块。(露出平行四边形高-——转化成长方形的宽)师:你发现了什么?电脑演示过程。师:平行四边形的面积能转化成长方形来求,提出问题:是不是所有的平行四边形都能转化成我们学过的长方形呢?你觉得平行四边形的面积和谁有关呢? 2 动手操作

师:猜测——验证是科学研究的一种重要方法,让我们也像科学家一样来研究一下吧。下面以四人小组进行活动。出示活动要求:(电脑显示)

(1)小组合作:通过剪拼移的方法,进行验证。师追问:为什么面积相等?

生小组上台展示,强调语言叙述准确(2)展示交流,澄清问题。(电脑演示)三变: 三不变:

平行四边形——长方形 形状变了,但面积不变平行四边形的底——长方形的长 长度不变平行四边形的高——长方形的宽 长度不变 3推导出面积公式(板书)长方形的面积=长×宽平行四边形的面积=底×高 用字母表示:s=ah 4底和高对应,师:不用数方格了,太麻烦。我们只要量出平行四边形的底和高,这些同学量的对吗?练习1出示(练习中电脑出示两种方法)第三个环节应用 1 分层次练习4个

2.5m5m小汽车7.5m大货车3m

2你知道山西省有多大吗?

3解决学校楼梯问题可以有两种方法 4它们相等吗?

方案1方案2方案3

5小设计:和这个长方形面积相等的平行四边形

下载青岛版_平行四边形的面积教学设计word格式文档
下载青岛版_平行四边形的面积教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    平行四边形面积教学设计

    《平行四边形的面积》教案 巨鹿县堤村校区 张秋焕 教学目标: 1﹑尝试用测量工具和面积公式计算实际生活中平行四边形物体的面积。 2﹑动手操作,能通过割补的办法拼接长方形......

    平行四边形面积教学设计

    《平行四边形的面积》教学设计 教学目标 1、 经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。 2、 在探究的过程中感悟“转化......

    《平行四边形的面积》教学设计

    《平行四边形的面积》教学设计【教学内容】教材第87、88页的内容,第89页练习十九第1~5题。【教学目标】1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边......

    “平行四边形的面积”教学设计

    “平行四边形的面积”教学设计教学内容:人教版数学五年级上册第80-81页。教学目标:1.理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算方法。2.引导学生经历比较、探......

    平行四边形的面积教学设计模板[本站推荐]

    《平行四边形的面积》是人教版九年义务教育第九册第五单元多边形面积的计算第一小节的内容。下面是小编收集整理的平行四边形的面积教学设计,欢迎阅读参考!教材分析:《平行四边......

    《平行四边形的面积》教学设计

    《平行四边形的面积》教学设计 《平行四边形的面积》教学设计1 教学内容:平行四边形面积的计算。教学目标:知识目标:通过长方形面积计算知识迁移,理解长方形面积的计算公式,并能......

    五年级《平行四边形面积》教学设计

    五年级《平行四边形面积》教学设计15篇 五年级《平行四边形面积》教学设计1 教学内容:人教版小学《数学》五年级上册,平行四边形的面积。教学目标:1、使学生经历探索平行四边形......

    《平行四边形的面积》教学设计

    平行四边形面积教学设计 五年级《平行四边形的面积》教学设计 一、设计思想: 本节课在探究平行四边形的面积时,将平行四边形转化成学生学过的长方形来计算它们的面积,将“转化......