第一篇:九年级数学《圆》教学反思大全
九年级数学《圆》教学反思
圆的认识是在学生对圆有了初步感性认识的基础上来进行教学的,目的是为以后学习圆的性质及圆柱体、圆锥体等知识打下基础。为引导学生动手、动脑,主动参与知识的形成过程,这节课的教学设计主要突出了以下几点:
学生对圆并不陌生,生活中这个完美的曲边图形几乎处处可见,全部学生都能从若干个平面图形中挑出圆。学生看到的圆一般都是静态的,而圆的本质特点是到定点距离等于定长的点的轨迹,是动点的轨迹,这和直边图形有着本质的区别。要想让学生感悟圆的图形性质特征,就需要让学生看到动点,看到圆“动态生成”的过程——点动成线。圆是由一条封闭曲线围成的图形,它的特征主要体现在隐形的线段——半径和隐形的点——圆心上。
二、充分发挥学生的动手操作能力,动手学数学。
教师在学习的过程中应时刻关注学生的发展,尊重学生的选择,充分体现学生的主体性。新课标指出:“学生是学习的主人”,教师要“向学生提供充分从事数学活动的机会”。对圆的认识我的设计是从画圆开始。首先让学生利用手中的工具尝试自己画圆,然后展示所画的圆并说说用什么画的,重点放在用圆规规范画圆上。利用投影,先展示学生用圆规画圆的过程,然后让其他学生补充用圆规画圆的过程中需要注意的事项,使学生明确画圆时的定点、定长。这样的设计目的是让学生初步感知画圆可以利用手中的现有圆形物体来描画,也可以用圆规画出更规范的圆。
三、创设开放的生活情境,展现学生的不同思维。
每个学生都有分析、解决问题和创造的潜能,但是学生个体之间存在着一定的差异,这是必然的。学生在生活经验、认知特点、思维方式等方面的差异要求教师要适当创设开放性的问题情境,使学生能从不同的角度进行思考和探索。本节课几处开放性的设问都为学生创造了机会,使其不同思维都能在课堂中闪光。例如在解决“为什么车轮做成圆的”这一问题时,学生就展现出了不同的思维水平。绝大部分学生可以发现在同一圆内所有半径相等。学生用量的方法量出多条半径的长度,从而推断出所有的半径都相等。
四、利用多媒体调动学生的积极性。
利用多媒体的动画演示,学生不仅认识了圆的各部分名称,学会了画圆、而且掌握了圆的特征,半径直径之间的相互关系,更重要的是通过学生的主动探究过程,使学生从知识的积累和能力的发展走向素质的提高;使学生学会了从不同角度来思考问题,创造性思维得到了培养和发展。
这节课也出现了一些问题,一是没有给学生充分的时间探索圆的特性,二是学生在动手操作上还有许多的问题,另外,在动画制作上差距很大。
针对这三方面,在今后教学中,要不断完善,虚心学习,努力做到以学生为主,提高教学效率。
第二篇:九年级数学《圆》经典试题集锦
九年级数学《圆》经典试题集锦
一、选择题
1.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=,PB=1,那么∠APC等于()
(A)(B)(C)(D)
2.如果圆柱的高为20厘米,底面半径是高的,那么这个圆柱的侧面积是()
(A)100π平方厘米(B)200π平方厘米
(C)500π平方厘米(D)200平方厘米
3.“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=寸,求直径CD的长”.依题意,CD长为()
(A)寸(B)13寸(C)25寸(D)26寸
4.(北京市朝阳区)已知:如图,⊙O半径为5,PC切⊙O于点C,PO交⊙O于点A,PA=4,那么PC的长等于()
(A)6(B)2(C)2(D)2
5.如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于()
(A)2厘米(B)2厘米(C)4厘米(D)8厘米
6.相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘米和17厘米,则这两圆的圆心距为()
(A)7厘米(B)16厘米(C)21厘米(D)27厘米
7.如图,⊙O为△ABC的内切圆,∠C=,AO的延长线交BC于点D,AC=4,DC=1,则⊙O的半径等于()
(A)(B)(C)(D)
8.一居民小区有一正多边形的活动场.为迎接“AAPP”会议在重庆市的召开,小区管委会决定在这个多边形的每个顶点处修建一个半径为2米的扇形花台,花台都以多边形的顶点为圆心,比多边形的内角为圆心角,花台占地面积共为12π平方米.若每个花台的造价为400元,则建造这些花台共需资金()
(A)2400元(B)2800元(C)3200元(D)3600元
9.如图,AB是⊙O直径,CD是弦.若AB=10厘米,CD=8厘米,那么A、B两点到直线CD的距离之和为()
(A)12厘米(B)10厘米(C)8厘米(D)6厘米
10.某工件形状如图所示,圆弧BC的度数为,AB=6厘米,点B到点C的距离等于AB,∠BAC=,则工件的面积等于()
(A)4π(B)6π(C)8π(D)10π
11.如图,PA切⊙O于点A,PBC是⊙O的割线且过圆心,PA=4,PB=2,则⊙O的半径等于()
(A)3(B)4(C)6(D)8
12.已知⊙O的半径为3厘米,⊙的半径为5厘米.⊙O与⊙相交于点D、E.若两圆的公共弦DE的长是6厘米(圆心O、在公共弦DE的两侧),则两圆的圆心距O的长为()
(A)2厘米(B)10厘米(C)2厘米或10厘米(D)4厘米
13.如图,两个等圆⊙O和⊙的两条切线OA、OB,A、B是切点,则∠AOB等于()
(A)(B)(C)(D)
14.如图,AB是⊙O的直径,∠C=,则∠ABD=()
(A)(B)(C)(D)
15.弧长为6π的弧所对的圆心角为,则弧所在的圆的半径为()
(A)6(B)6(C)12(D)18
16.(甘肃省)如图,在△ABC中,∠BAC=,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为()
(A)1(B)2(C)1+(D)2-
17.(宁夏回族自治区)已知圆的内接正六边形的周长为18,那么圆的面积为()
(A)18π
(B)9π(C)6π(D)3π
18.(山东省)如图,点P是半径为5的⊙O内一点,且OP=3,在过点P的所有弦中,长度为整数的弦一共有()
(A)2条
(B)3条(C)4条(D)5条
19.(南京市)如图,正六边形ABCDEF的边长的上a,分别以C、F为圆心,a为半径画弧,则图中阴影部分的面积是()
(A)(B)(C)(D)
20.(杭州市)过⊙O内一点M的最长的弦长为6厘米,最短的弦长为4厘米,则OM的长为()
(A)厘米(B)厘米(C)2厘米(D)5厘米
21.(安徽省)已知圆锥的底面半径是3,高是4,则这个圆锥侧面展开图的面积是()
(A)12π(B)15π(C)30π(D)24π
22.(安微省)已知⊙O的直径AB与弦AC的夹角为,过C点的切线PC与AB延长线交P.PC=5,则⊙O的半径为()
(A)(B)(C)10(D)5
23.(福州市)如图:PA切⊙O于点A,PBC是⊙O的一条割线,有PA=3,PB=BC,那么BC的长是()
(A)3(B)3(C)(D)
24.(河南省)如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()
(A)π(B)1.5π(C)2π(D)2.5π
25.(四川省)正六边形的半径为2厘米,那么它的周长为()
(A)6厘米(B)12厘米(C)24厘米(D)12厘米
26.(四川省)一个圆柱形油桶的底面直径为0.6米,高为1米,那么这个油桶的侧面积为()
(A)0.09π平方米(B)0.3π平方米(C)0.6平方米(D)0.6π平方米
27.(贵阳市)一个形如圆锥的冰淇淋纸筒,其底面直径为6厘米,母线长为5厘米,围成这样的冰淇淋纸筒所需纸片的面积是()
(A)66π平方厘米(B)30π平方厘米(C)28π平方厘米(D)15π平方厘米
28.(新疆乌鲁木齐)在半径为2的⊙O中,圆心O到弦AB的距离为1,则弦AB所对的圆心角的度数可以是()
(A)(B)(C)(D)
29.(新疆乌鲁木齐)将一张长80厘米、宽40厘米的矩形铁皮卷成一个高为40厘米的圆柱形水桶的侧面,(接口损耗不计),则桶底的面积为()
(A)平方厘米(B)1600π平方厘米
(C)平方厘米(D)6400π平方厘米
30.(成都市)如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10厘米,AP∶PB=1∶5,那么⊙O的半径是()
(A)6厘米(B)厘米(C)8厘米(D)厘米
31.(成都市)在Rt△ABC中,已知AB=6,AC=8,∠A=.如果把Rt△ABC绕直线AC旋转一周得到一个圆锥,其表面积为S;把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S,那么S∶S等于()
(A)2∶3(B)3∶4(C)4∶9(D)5∶12
32.(苏州市)如图,⊙O的弦AB=8厘米,弦CD平分AB于点E.若CE=2厘米.ED长为()
(A)8厘米(B)6厘米(C)4厘米(D)2厘米
33.(苏州市)如图,四边形ABCD内接于⊙O,若∠BOD=,则∠BCD=()
(A)(B)(C)(D)
34.(镇江市)如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE交⊙O于点F.若⊙O的半径为,则BF的长为()
(A)(B)(C)(D)
35.(扬州市)如图,AB是⊙O的直径,∠ACD=,则∠BAD的度数为()
(A)(B)(C)(D)
36.(扬州市)已知:点P直线l的距离为3,以点P为圆心,r为半径画圆,如果圆上有且只有两点到直线l的距离均为2,则半径r的取值范围是()
(A)r>1(B)r>2(C)2<r<3(D)1<r<5
37.(绍兴市)边长为a的正方边形的边心距为()
(A)a(B)a(C)a
(D)2a
38.(绍兴市)如图,以圆柱的下底面为底面,上底面圆心为顶点的圆锥的母线长为4,高线长为3,则圆柱的侧面积为()
(A)30π(B)π(C)20π(D)π
39.(昆明市)如图,扇形的半径OA=20厘米,∠AOB=,用它做成一个圆锥的侧面,则此圆锥底面的半径为()
(A)3.75厘米(B)7.5厘米(C)15厘米(D)30厘米
40.(昆明市)如图,正六边形ABCDEF中.阴影部分面积为12平方厘米,则此正六边形的边长为()
(A)2厘米(B)4厘米(C)6厘米(D)8厘米
41.(温州市)已知扇形的弧长是2π厘米,半径为12厘米,则这个扇形的圆心角是()
(A)(B)(C)(D)
42.(温州市)圆锥的高线长是厘米,底面直径为12厘米,则这个圆锥的侧面积是()
(A)48π厘米(B)24平方厘米
(C)48平方厘米(D)60π平方厘米
43.(温州市)如图,AB是⊙O的直径,点P在BA的延长线上,PC是⊙O的切线,C为切点,PC=2,PA=4,则⊙O的半径等于()
(A)1(B)2(C)(D)
44.(常州市)已知圆柱的母线长为5厘米,表面积为28π平方厘米,则这个圆柱的底面半径是()
(A)5厘米(B)4厘米(C)2厘米(D)3厘米
45.(常州市)半径相等的圆内接正三角形、正方形、正六边形的边长之比为()
(A)1∶∶(B)∶∶1(C)3∶2∶1
(D)1∶2∶3
46.(广东省)如图,若四边形ABCD是半径为1和⊙O的内接正方形,则图中四个弓形(即四个阴影部分)的面积和为()
(A)(2π-2)厘米(B)(2π-1)厘米
(C)(π-2)厘米(D)(π-1)厘米
47.(武汉市)如图,已知圆心角∠BOC=,则圆周角∠BAC的度数是()
(A)(B)(C)(D)
48.(武汉市)半径为5厘米的圆中,有一条长为6厘米的弦,则圆心到此弦的距离为()
(A)3厘米(B)4厘米
(C)5厘米(D)6厘米
49.已知:Rt△ABC中,∠C=,O为斜边AB上的一点,以O为圆心的圆与边AC、BC分别相切于点E、F,若AC=1,BC=3,则⊙O的半径为()
(A)(B)
(C)(D)
50.(武汉市)已知:如图,E是相交两圆⊙M和⊙O的一个交点,且ME⊥NE,AB为外公切线,切点分别为A、B,连结AE、BE.则∠AEB的度数为()
(A)145°(B)140°(C)135°(D)130°
二、填空题
1.(北京市东城区)如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧上的一点,已知∠BAC=,那么∠BDC=__________度.
2.(北京市东城区)在Rt△ABC中,∠C=,AB=3,BC=1,以AC所在直线为轴旋转一周,所得圆锥的侧面展开图的面积是__________.
3.(北京市海淀区)如果圆锥母线长为6厘米,那么这个圆锥的侧面积是_______平方厘米
4.(北京市海淀区)一种圆状包装的保鲜膜,如图所示,其规格为“20厘米×60米”,经测量这筒保鲜膜的内径、外径的长分别为3.2厘米、4.0厘米,则该种保鲜膜的厚度约为_________厘米(π取3.14,结果保留两位有效数字).
5.(上海市)两个点O为圆心的同心圆中,大圆的弦AB与小圆相切,如果AB的长为24,大圆的半径OA为13,那么小圆的半径为___________.
6.(天津市)已知⊙O中,两弦AB与CD相交于点E,若E为AB的中点,CE∶ED=1∶4,AB=4,则CD的长等于___________.
7.(重庆市)如图,AB是⊙O的直径,四边形ABCD内接于⊙O,,的度数比为3∶2∶4,MN是⊙O的切线,C是切点,则∠BCM的度数为___________.
8.(重庆市)如图,P是⊙O的直径AB延长线上一点,PC切⊙O于点C,PC=6,BC∶AC=1∶2,则AB的长为___________.
9.(重庆市)如图,四边形ABCD内接于⊙O,AD∥BC,=,若AD=4,BC=6,则四边形ABCD的面积为__________.
10.(山西省)若一个圆柱的侧面积等于两底面积的和,则它的高h与底面半径r的大小关系是__________.
11.(沈阳市)要用圆形铁片截出边长为4厘米的正方形铁片,则选用的圆形铁片的直径最小要___________厘米.
12.(沈阳市)圆内两条弦AB和CD相交于P点,AB长为7,AB把CD分成两部分的线段长分别为2和6,那么=__________.
13.(沈阳市)△ABC是半径为2厘米的圆内接三角形,若BC=2厘米,则∠A的度数为________.
14.(沈阳市)如图,已知OA、OB是⊙O的半径,且OA=5,∠AOB=15,AC⊥OB于C,则图中阴影部分的面积(结果保留π)S=_________.
15.(哈尔滨市)如图,圆内接正六边形ABCDEF中,AC、BF交于点M.则∶=_________.
16.(哈尔滨市)两圆外离,圆心距为25厘米,两圆周长分别为15π厘米和10π厘米.则其内公切线和连心线所夹的锐角等于__________度.
17.(哈尔滨市)将两边长分别为4厘米和6厘米的矩形以其一边所在直线为轴旋转一周,所得圆柱体的表面积为_________平方厘米.
18.(陕西省)如图,在⊙O的内接四边形ABCD中,∠BCD=130,则∠BOD的度数是________.
19.(陕西省)已知⊙O的半径为4厘米,以O为圆心的小圆与⊙O组成的圆环的面积等于小圆的面积,则这个小圆的半径是______厘米.
20.(陕西省)如图,⊙O的半径OA是⊙O的直径,C是⊙O上的一点,OC交⊙O于点B.若⊙O的半径等于5厘米,的长等于⊙O周长的,则的长是_________.
21.(甘肃省)正三角形的内切圆与外接圆面积之比为_________.
22.(甘肃省)如图,AB=8,AC=6,以AC和BC为直径作半圆,两圆的公切线MN与AB的延长线交于D,则BD的长为_________.
23.(宁夏回族自治区)圆锥的母线长为5厘米,高为3厘米,在它的侧面展开图中,扇形的圆心角是_________度.
24.(南京市)如图,AB是⊙O的直径,弦CD⊥AB,垂足是G,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长是_________.
25.(福州市)在⊙O中,直径AB=4厘米,弦CD⊥AB于E,OE=,则弦CD的长为__________厘米.
26.(福州市)若圆锥底面的直径为厘米,线线长为5厘米,则它的侧面积为__________平方厘米(结果保留π).
27.(河南省)如图,AB为⊙O的直径,P点在AB的延长线上,PM切⊙O于M点.若OA=a,PM=a,那么△PMB的周长的__________.
28.(长沙市)在半径9厘米的圆中,的圆心角所对的弧长为__________厘米.
29.(四川省)扇形的圆心角为120,弧长为6π厘米,那么这个扇形的面积为_________.
30.(贵阳市)如果圆O的直径为10厘米,弦AB的长为6厘米,那么弦AB的弦心距等于________厘米.
31.(贵阳市)某种商品的商标图案如图所求(阴影部分),已知菱形ABCD的边长为4,∠A=,是以A为圆心,AB长为半径的弧,是以B为圆心,BC长为半径的弧,则该商标图案的面积为_________.
32.(云南省)已知,一个直角三角形的两条直角边的长分别为3厘米、4厘米、以它的直角边所在直角线为轴旋转一周,所得圆锥的表面积是__________.
33.(新疆乌鲁木齐)正六边形的边心距与半径的比值为_________.
34.(新疆乌鲁木齐)如图,已知扇形AOB的半径为12,OA⊥OB,C为OA上一点,以AC为直径的半圆和以OB为直径的半圆相切,则半圆的半径为__________.
35.(成都市)如图,PA、PB与⊙O分别相切于点A、点B,AC是⊙O的直径,PC交⊙O于点D.已知∠APB=,AC=2,那么CD的长为________.
36.(苏州市)底面半径为2厘米,高为3厘米的圆柱的体积为_________立方厘米(结果保留π).
37.(扬州市)边长为2厘米的正六边形的外接圆半径是________厘米,内切圆半径是________厘米(结果保留根号).
38.(绍兴市)如图,PT是⊙O的切线,T为切点,PB是⊙O的割线交⊙O于A、B两点,交弦CD于点M,已知:CM=10,MD=2,PA=MB=4,则PT的长等于__________.
39.(温州市)如图,扇形OAB中,∠AOB=,半径OA=1,C是线段AB的中点,CD∥OA,交于点D,则CD=________.
40.(常州市)已知扇形的圆心角为150,它所对的弧长为20π厘米,则扇形的半径是________厘米,扇形的面积是__________平方厘米.
41.(常州市)如图,AB是⊙O直径,CE切⊙O于点C,CD⊥AB,D为垂足,AB=12厘米,∠B=30,则∠ECB=__________;CD=_________厘米.
42.(常州市)如图,DE是⊙O直径,弦AB⊥DE,垂足为C,若AB=6,CE=1,则CD=________,OC=_________.
43.(常州市)如果把人的头顶和脚底分别看作一个点,把地球赤道作一个圆,那么身高压2米的汤姆沿着地球赤道环道环行一周,他的头顶比脚底多行________米.
44.(海南省)已知:⊙O的半径为1,M为⊙O外的一点,MA切⊙O于点A,MA=1.若AB是⊙O的弦,且AB=,则MB的长度为_________.
45.(武汉市)如果圆的半径为4厘米,那么它的周长为__________厘米.
三、解答题:
1.(苏州市)已知:如图,△ABC内接于⊙O,过点B作⊙O的切线,交CA的延长线于点E,∠EBC=2∠C.
①求证:AB=AC;
②若tan∠ABE=,(ⅰ)求的值;(ⅱ)求当AC=2时,AE的长.
2.(广州市)如图,PA为⊙O的切线,A为切点,⊙O的割线PBC过点O与⊙O分别交于B、C,PA=8cm,PB=4cm,求⊙O的半径.
3.(河北省)已知:如图,BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,若AD︰DB=2︰3,AC=10,求sinB的值.
4.(北京市海淀区)如图,PC为⊙O的切线,C为切点,PAB是过O的割线,CD⊥AB于点D,若tanB=,PC=10cm,求三角形BCD的面积.
5.(宁夏回族自治区)如图,在两个半圆中,大圆的弦MN与小圆相切,D为切点,且MN∥AB,MN=a,ON、CD分别为两圆的半径,求阴影部分的面积.
6.(四川省)已知,如图,以△ABC的边AB作直径的⊙O,分别并AC、BC于点D、E,弦FG∥AB,S△CDE︰S△ABC=1︰4,DE=5cm,FG=8cm,求梯形AFGB的面积.
7.(贵阳市)如图所示:PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,求:
(1)⊙O的面积(注:用含π的式子表示);
(2)cos∠BAP的值.
参考答案
一、选择题
1.B 2.B 3.D 4.D 5.C 6.C 7.A 8.C 9.D 10.B 11.A 12.B 13.C 14.D 15.D 16.A 17.B 18.C 19.C 20.B 21.C 22.A 23.A 24.B 25.B 26.D 27.D 28.C 29.A 30.B 31.A 32.A 33.B 34.C 35.A 36.D 37.B 38.B 39.B 40.B 41.C 42.D 43.A 44.C 45.B 46.C 47.A 48.B 49.C 50.C
二、填空题
1.50 2.2π 3.18π 4. 5.5 6.5 7.30° 8.9 9.25 10.h=r 11.4 12.3或4 13.60°或120° 14. 15.1:2 16.30 17.80π或120π 18.100° 19.
20.π 21.1:4 22.1 23.288 24.4 25.2 26.15π 27. 28.3π 29.27π平方厘米 30.4 31.
32.24π平方厘米或36π平方厘米 33. 34.4 35. 36.12π 37.2,38. 39. 40.24,240π 41.60°,42.9,4 43.4π 44.1或 45.8π
三、解答题:
1.(1)∵ BE切⊙O于点B,∴ ∠ABE=∠C.
∵ ∠EBC=2∠C,即 ∠ABE+∠ABC=2∠C,∴ ∠C+∠ABC=2∠C,∴ ∠ABC=∠C,∴ AB=AC.
(2)①连结AO,交BC于点F,∵ AB=AC,∴ =,∴ AO⊥BC且BF=FC.
在Rt△ABF中,=tan∠ABF,又 tan∠ABF=tanC=tan∠ABE=,∴ =,∴ AF=BF.
∴ AB===BF.
∴ .
②在△EBA与△ECB中,∵ ∠E=∠E,∠EBA=∠ECB,∴ △EBA∽△ECB.
∴,解之,得EA2=EA·(EA+AC),又EA≠0,∴ EA=AC,EA=×2=.
2.设⊙的半径为r,由切割线定理,得PA2=PB·PC,∴ 82=4(4+2r),解得r=6(cm).
即⊙O的半径为6cm.
3.由已知AD︰DB=2︰3,可设AD=2k,DB=3k(k>0).
∵ AC切⊙O于点C,线段ADB为⊙O的割线,∴ AC2=AD·AB,∵ AB=AD+DB=2k+3k=5k,∴ 102=2k×5k,∴ k2=10,∵ k>0,∴ k=.
∴ AB=5k=5.
∵ AC切⊙O于C,BC为⊙O的直径,∴ AC⊥BC.
在Rt△ACB中,sinB=.
4.解法一:连结AC.
∵ AB是⊙O的直径,点C在⊙O上,∴ ∠ACB=90°.
CD⊥AB于点D,∴ ∠ADC=∠BDC=90°,∠2=90°-∠BAC=∠B.
∵ tanB=,∴ tan∠2=.
∴ .
设AD=x(x>0),CD=2x,DB=4x,AB=5x.
∵ PC切⊙O于点C,点B在⊙O上,∴ ∠1=∠B.
∵ ∠P=∠P,∴ △PAC∽△PCB,∴ .
∵ PC=10,∴ PA=5,∵ PC切⊙O于点C,PAB是⊙O的割线,∵ PC2=PA·PB,∴ 102=5(5+5
x).解得x=3.
∴ AD=3,CD=6,DB=12.
∴ S△BCD=CD·DB=×6×12=36.
即三角形BCD的面积36cm2.
解法二:同解法一,由△PAC∽△PCB,得.
∵ PA=10,∴ PB=20.
由切割线定理,得PC2=PA·PB.
∴ PA==5,∴ AB=PB-PA=15,∵ AD+DB=x+4x=15,解得x=3,∴ CD=2x=6,DB=4x=12.
∴ S△BCD=CD·DB=×6×12=36.
即三角形BCD的面积36cm2.
5.解:如图取MN的中点E,连结OE,∴ OE⊥MN,EN=MN=a.
在四边形EOCD中,∵ CO⊥DE,OE⊥DE,DE∥CO,∴ 四边形EOCD为矩形.
∴ OE=CD,在Rt△NOE中,NO2-OE2=EN2=.
∴ S阴影=π(NO2-OE2)=π·=.
6.解:∵ ∠CDE=∠CBA,∠DCE=∠BCA,∴ △CDE∽△ABC.
∴
∴ ===,即,解得 AB=10(cm),作OM⊥FG,垂足为M,则FM=FG=×8=4(cm),连结OF,∵ OA=AB=×10=5(cm).
∴ OF=OA=5(cm).
在Rt△OMF中,由勾股定理,得
OM===3(cm).
∴ 梯形AFGB的面积=·OM=×3=27(cm2).
7.ÞPA2=PB·PCÞPC=20Þ半径为7.5Þ圆面积为(或56.25π)(平方单位).
Þ△ACP∽△BAPÞÞ.
解法一:设AB=x,AC=2x,BC为⊙O的直径Þ∠CAB=90°,则 BC=x.
∵ ∠BAP=∠C,∴ cos∠BAP=cos∠C=
解法二:设AB=x,在Rt△ABC中,AC2+AB2=BC2,即 x2+(2x)2=152,解之得 x=3,∴ AC=6,∵ ∠BAP=∠C,∴ ∴ cos∠BAP=cos∠C=
第三篇:九年级数学圆教学设计5
圆
教学设计
(一)明确目标
首先师生一起来复习上节课点的轨迹的概念及两层含义和常见的点的轨迹前三种.
复习提问:
1.什么叫做点的轨迹?它的两层意思是什么?请结合讲过的常见点的轨迹解释两层意思.
2.上节课我们讲了常见的点的轨迹有几种?请回答出其内容.
上节课我们学习了常用点的轨迹的三种,我们教科书中有五种常见的轨迹.本节课我们来进一步学习常见点的轨迹的后两种.教师板书“点的轨迹之二”.
(二)整体感知
首先引导学生学习点的轨迹的定义,解释由定义得到的两层意思,提问学生来解释上节课常见的三个轨迹的两层意思.
圆是图形——这个图形是轨迹.
它符合的两层含义:圆上每一个点都符合到圆心O的距离等于半径r的条件,反过来到定点O的距离等于r的每一个点都在圆上.所以圆是到定点的距离等于定长的点的轨迹.
接着教师引导学生解释线段垂直平分线,角的平分线的两层意思,然后正确地回答出这两个点的轨迹.
在复习圆、线段的垂直平分线、角的平分线的基础上可进一步了解其它的两个点的轨迹、由于第四、第五个点的轨迹学生比较生,这样还要指导学生复习点到直线的距离,特别是在两条平行线内取一点到这两条直线的距离都相等,这一点的取法应在教师的指导下来完成.
(三)重点、难点的学习与目标完成过程
在学生学习常见的五种轨迹的后两种轨迹没有感性、直观的印象之前,教师首先帮助学生复习已有的知识:点的轨迹的定义、定义的两层意思、前三个常见的轨迹等,这种复习不是简单的重复,而是让学生结合所学的三个轨迹来解释定义中的两层意思.这样对后两个点的轨迹的教学起到了奠基的作用. 提问:已知直线l,在直线l外取一点P,使P到直线l的距离等于定长d,这一点怎么取,具有这个性质的点有几个?在教师的指导下学生动手来完成.由师生共同找到在已知直线l的两侧各取一点P、P′,到直线l的距离都等于d.教师再提出问题,现在分别过点P、P′作已知直线l的平行线l1、l2,那么直线l1、l2上的点到已知直线l的距离是否都等于已知线段d呢?学生的回答是肯定的,这时反过来再问,除直线l1、l2外平面上还是否有点到已知直线l的距离等于d呢,学生一时并不一定能答上来,经过学生讨论研究,最终学生还是能正确回答的,这就是说到已知直线l的距离等于定长d的点只有在直线l1、l2上.
这时教师引导学生归纳出第四个轨迹,教师把轨迹4板书在黑板上: 轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于d的两条直线.
现在我们来研究相反的问题,已知直线l1∥l2,在l1、l2之间找一点P,使点P到l1、l2的距离相等,这样一点怎样找?有前面问题的基础在教师的指导下都能找到点P,再过点P作l1的平行线l,这时提出问题:
1.直线l上的点到直线l1、l2的距离是否都相等;
2.到平行线l1,l2的距离都相等的点是否都在直线l上?有前一个问题的铺垫和前四个基本轨迹的启发,学生很快地回答出第五个轨迹的两层意思,而且回答是非常肯定的.总结归纳出第五个轨迹:
轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线.
接下来为了使学生能准确的把握轨迹
4、轨迹5的特征,教师在黑板上出示一组练习题:
1.到直线l的距离等于2cm的点的轨迹;
2.已知直线AB∥CD,到AB、CD距离相等的点的轨迹.
对于这两个题教师要求学生自己画图探索,然后回答出点的轨迹是什么,学生对于这两个轨迹比较生疏回答有一定的困难,这时教师要从规律上和方法上指导学生怎么回答好一些,抓住几处重点词语的地方:如轨迹4中的“平行”、“到直线l的距离等于定长”、“两条”,或轨迹5中的“平行”、“到两条平行线的距离相等”、“一条”.这样学生回答的语言就不容易出现错误.
接下来做另一组练习题: 判断题:
1.到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线.
()
2.和点B的距离等于2cm的点的轨迹,是到点B的距离等于2cm的圆.
()
3.到两条平行线的距离等于5cm的点的轨迹,是和这两条平行线的平行且距离等于5cm的一条直线.
()
4.底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线.
()
这组练习题的目的,训练学生思维的准确性和语言表达的正确性. 这组习题的思考,回答都由学生自己完成,学生之间互相评议,找出语言的问题,加深对点的轨迹的进一步认识和规范化的语言表述.
(四)总结扩展
本节课主要讲了点的轨迹的后两个.从知识的结构上可以知道:
从方法上能准确地回答点的轨迹和能把所要回答的轨迹问题辨认出属于哪一个常用的基本轨迹.
从能力上学生通过旧知识的学习,学生自己能归纳出五个基本轨迹,使学生学习数学知识的能力又有了新的提高.
对于基本轨迹的应用还要逐步加深,特别是在今后学习立体几何、解析几何时要用到这些知识.所以常见五个基本轨迹要求学生必须掌握.
(五)布置作业 略 板书设计
第四篇:九年级数学上册《圆的轴对称性》教学反思
本节课学生对垂径定理都很好的掌握,亮点在于练习设计有梯度,本节例题学生掌握很好。哲人说,但凡走过,必留下痕迹。那么我们的数学课堂又该给学生留下些什么呢?
北京师范大学数学科学学院曹一鸣教授这样评价一堂有价值的课:“一堂有价值的数学课,给予学生的影响应该是多元而立体的。有知识的丰厚、技能的纯熟,更有方法的领悟、思想的启迪、精神的熏陶。” 数学就是数学,简洁、抽象、严密是数学学科的本质,也是她美之所在,这也是她能如此吸引人的重要原因。
教学中,应始终坚持以人为本的教育理念,抓住数学学科的本质教学数学。本节课首先应留给学生的“轴对称图形和成轴对称”这一严谨的、合情合理的知识,同时还要让学生很好地体验数学源于生活、服务于生活,感受数学的奥妙,领悟数学学习的方法,学会数学地思考,学会用数学的思想和方法解决实际问题。总之,这次课堂展示活动活动使我更清醒地认识到:
一、能激活学生的数学思维的问题才是好问题。
我们不仅要努力精心设计这样的好问题,同时还要以这种良好的数学素养潜移默化地影响每一个学生,引导学生善于发现并提出问题,发展问题意识;
二、借助于各种恰当的教学手段。
通过观察、猜想、验证、实验、交流、推理等数学活动形式,引领学生从视觉、听觉、触觉、思维等全方位参与数学研究活动,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学本质理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展,这样的课才是好课。
第五篇:初中数学圆教学反思
初中数学圆教学反思
篇一:初中数学圆教学反思
段时间我们一直沉浸在对《圆》这一节课的研究中,通过不断地琢磨、仔细地推敲,反复地修改,对这节课的认识越来越深,教学设计的思路也越来越清晰,形成了以下的反思:
一、关于导入的设计
本节课的导入分四个层次进行,首先通过老师用线绳工具在空中旋转,让学生清晰地看到形成的轨迹是一个圆。接着介绍含有圆的图片,让学生找出圆;再让学生举例生活中见到的圆;最后通过摸一摸的游戏,让学生体会圆与其他平面图形的区别,从而认识圆是平面上的一种曲线图形。圆在日常生活中到处可见,学生对它也比较熟悉,在课的一开始我们就让学生在老师的演示和图片的观察中清晰地看到这是圆,借助这样的表象,让学生在头脑中搜索自己曾经见到过的圆,从而初步地感知圆。最后通过摸一摸的游戏活动,让学生感受圆与其他图形的不同,在比较中,进一步感知圆。通过这样有层次的感知活动,调动了学生的多种感官,激发了学生学习圆的兴趣。
二、关于对圆的认识和特征的处理
在研究圆的认识与特征这一知识点时,我们比较了两种不同的设计思路:第一种,把介绍圆的各部分名称和它的特征结合起来,即认识半径以后,马上研究同一圆中有无数条半径并且长度相等等特征;另一种:是先介绍圆的各部分名称再研究各部分之间的关系。我们觉得第一种方法比较传统,由于这一环节的知识点比较多,而且研究几个知识点的方法雷同,这样老师的讲解就比较繁琐,学生缺乏研究的兴趣。所以我们就选择第二种方法,先让学生通过自学书本,找到圆各部分的名称,并认识它们,能在自己画的圆中标出。接着通过小组合作讨论的形式,发挥学生学习的主动性,让他们通过有目的的探究活动,讨论交流半径的特征、直径的特征、半径和直径的关系以及圆是轴对称图形等相关知识。这样的设计避免了教师冗长的讲解,学生学习方式的单调,而且通过灵活多样的学习方式,促使学生有兴趣的,主动的进行探索。
三、关于数学史料的运用
本节课中我们两处引用到数学史料。这些凝聚着智慧的数学研究史料,我们不仅仅把它们作为引语或欣赏,而且还力求让史料成为学生发现问题、研究问题的素材、发挥其数学的文化价值。
首先在学生对圆有了一些初步的感知以后,联系古希腊的一位数学家曾说过:在所有的平面图形中,圆是最美的。以此引发学生研究圆与其他平面图形的不同。在探究圆的特征结束之后,借助多媒体呈现墨子的一句话:圆,一中同长。让学生用掌握的一些知识解释这句话的含义。这样不仅让学生了解了古代关于圆的史料记载,还可以巩固对圆的特征的认识。引用《周髀算经》中关于圆的记载,圆出于方,方出于矩,拓展对圆的认识。在播放录象,理解意思以后,进一步引导思考:如正方形的边长是16厘米,你能从中获得关于圆的哪些信息?让学生进一步关注圆与正方形之间的关系,为后继学习埋下伏笔。
四、关于媒体的处理
随着以计算机和网络为核心的现代技术的不断发展,多媒体技术辅助教学越来越多的运用于小学数学课堂。这节课我们把多媒体和其他传统手段有效结合,力求找准最佳作用点进行有的放矢,起到画龙点睛的作用。
在导入新课时,为了让学生初步感知圆,先借助多媒体呈现生活中一些常见的带有圆形的实物图片,利用这些学生熟悉的,色彩鲜艳的图片,刺激学生的多种感官,激发学生用数学的眼光去观察事物的兴趣。接着运用动态演示,从实物中勾勒出圆,使学生清晰看到圆是有曲线围成的。
在教学画圆时,运用多媒体播放两段录像。第一段在学习用圆规画圆时播放,通过展示一个完整的画圆过程,为学生提供清晰地、正确的画圆方法,为学生独立用圆规正确画圆奠定基础;第二段在介绍用线绳画圆时播放,通过体育老师在操场上画圆的过程,重现生活场景,让学生体会到用线绳画圆的实用价值。
在研究圆的半径、直径的特征时,当学生通过画一画、折一折、量一量,知道在同一圆中半径可以有许多条,在此基础上运用多媒体动态演示:同一圆中,从圆心到圆上可以发散出无数条线段。通过强烈的视觉刺激,让学生体会到同一圆中半径有无数条,感受初步的极限思想。
在研究车轮为什么是圆的?车轴应装在哪里?这两个实际问题时,根据学生的交流情况,结合媒体的动态演示,让学生随着画面和声音效果的逐步展示,体会当车轮不是圆时或者车轴不在圆心位置时,车子行驶的感觉是不稳当的。从而体会到车轮要做成圆的,车轴要装在圆心位置的原理和实际应用价值。
五、关于细节的处理
1.在导入环节的摸一摸游戏中,为了使全体学生参与这个游戏。我们考虑装的器皿应该是透明的,而摸的同学蒙住眼睛。其他同学通过观察摸的过程,共同感受圆与其他平面图形的不同。另外为了让学生的探索活动不受到其他因素的干扰,我们在器皿中装的就是用硬纸板剪成的以前学过的平面图形和圆。
2.整节课的知识点比较多,而且知识的呈现是逐步完成的。为了完整地展示这一节课的重点,我们准备跟随课堂流程,在黑板上板演各个知识点,一步一步地完成板书。这样的设计避免了多媒体展示的不足,使得学生在全课小结之时,能根据板书,迅速在头脑中形成知识网络。
3.在探究圆的基本特征时,组织学生借助圆规画出任意大小的圆进行探索。在认识半径以后,学生通过量一量,量出半径的长度。在学生的交流反馈中,引导学生发现自己量出的所有的半径都是一样长的,但自己量出的半径和别人量出的半径长度是不一样的,从而体悟出只有在同一圆中,所有的半径长度才相等。
篇二:初中数学圆教学反思
圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。
一、以旧引新,渗透“转化”思想
新课标指出,教师是学生数学活动的组织者、引导者、合作者。教师要积极利用各种教学资源,创造性地使用教材,设计适合学生发展的教学过程。本节教学内容原先的教材是直接让学生操作把圆平均分成16份,用转化法推导出圆的面积。这样学生固然也能掌握圆的面积,但对知识的推导是只知其然不知其所以然。而新教材。让学生先根据旧知概括出求面积的两种方法,然后让学生大胆地猜想数方格能不能求出圆的面积。在发现数方格的方法很难求出圆的面积后,让学生根据方格图大胆地猜想出圆面积的范围。之后在教师的启发引导下,使学生获得用转化法可能求出圆的面积,在此基础上让学生通过自学、讨论、操作、探究得出圆面积的计算。这一过程的设计正体现了新课标所倡导的三维教学目标,由重结论向重过程转变。不仅重视学生数学知识的获得,更重视数学思想和数学方法的形成。使学生学得更有趣,更有价值。
二、自主探究,感受知识形成“过程”
数学学习的本质是“再创造”。数学学习的过程不是让学生被动地吸收教材和教师给出现成结论,而是一个由学生亲自参与、生动活泼的、主动的和富有个性的过程。因此,在数学学习过程中,应给学生搭建探究的舞台,强化过程意识,以激励学生再创新。课堂的生命活力正是来自于对事件或事实的感受、体验,来自于对问题的敏感、好奇,来自于情不自禁的、丰富活跃的猜想、假设、直觉,来自于不同观点的碰撞,争辩,更来自于探究体验中的时而山穷水尽,时而柳暗花明的惊险和喜悦。只有经历这样的感悟、体验的过程,才能得到能力的锤炼,智慧的升华。
在凸现圆的面积的意义以后,通过对比复习的平面图形的面积推导方法,让学生大胆猜测圆的面积怎样推导。学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,学生动手剪拼好后,进行观察对比,发现如果把一个圆形平均分成的份数越多,这个图形就越接近平行四边形或长方形。这个环节的设计也是“极限”思想渗透的最好体验。再对比圆形和这个拼成的图形之间的关系。通过剪、拼图形和原图形的对比,将圆与拼成图形有关的部分用彩色笔标出来,形成鲜明的对比,并为后面推导面积的计算公式作了充分的铺垫。
通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形、平行四边形的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。
三、分层练习,体验运用价值
结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式。第二,提高练习收集了身边的实际内容,融入了解决实际问题的情境之中,求自动喷水器旋转一周后的喷灌面积就是求半径是5米的圆的面积,使学生感受到学习的知识是有价值的,是有作用的。第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用能力。在每一道练习题的设置上,都有不同的目的性,教师注重了每个练习的指导侧重点。
篇三:初中数学圆教学反思
一、联系生活,体现生活数学。
数学来源于生活,并应用于生活。
我引导学生说出身边的物体哪些是圆形的,让学生初步了解圆形的。课末引导学生开展游戏活动选择汽车,不但调动了学生的积极性,加深了学生对圆的认识,而且拉近了数学与生活的距离,使学生深刻体会到身边有数学,伸出手就能触摸到数学,从而对数学产生亲切感,增强学生对学习数学的兴趣和提高学生应用数学的能力。
二、自主探索,培养创新精神。
在教学中,学生是学习的主体,教师要设计一些具有探索性和开放性的问题,给学生提供自主探索的机会,引导学生开展合作型的探究性活动,让学生在观察、实验、讨论、交流、合作学习中,理解新知识,使所有学生都能获得成功感,树立自信心。如教学圆心、直径、半径,不急于传授,通过引导学生动手操作折圆,发现圆中心的一点,比一比、量一量、画一画,发现圆的一些特征;通过观察、比较,自主看书,发现同圆中,所有半径都相等,所有直径也相等,半径是直径的一半,直径是半径的2倍,教师适时引导,使学生懂得归纳知识的一般方法,同时学会了观察、实验、操作、发现等学习方法,并伴随新知识的获得,体验到了成功的快乐,增强了克服困难的勇气和毅力。