高中数学必修一函数的单调性教学设计

时间:2019-05-12 23:41:47下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学必修一函数的单调性教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学必修一函数的单调性教学设计》。

第一篇:高中数学必修一函数的单调性教学设计

函数的单调性

北京景山学校 许云尧 【教学目标】

1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.

2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.

3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.

【教学重点】 函数单调性的概念、判断及证明.

【教学难点】 归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 【教学方法】 教师启发讲授,学生探究学习. 【教学手段】 计算机、投影仪. 【教学过程】

一、创设情境,引入课题 课前布置任务:

(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考. 问题:观察图形,能得到什么信息?

预案:(1)当天的最高温度、最低温度以及何时达到;

(2)在某时刻的温度;

(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.

问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等.

归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 〖设计意图〗由生活情境引入新课,激发兴趣.

二、归纳探索,形成概念

对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知

问题1:分别作出函数变化时,函数值有什么变化规律? 的图象,并且观察自变量

预案:(1)函数

在整个定义域内 y随x的增大而增大;函数

在整个定义域内 y随x的增大而减小.

(2)函数在上 y随x的增大而增大,在上y随x的增大而减小.

(3)函数 在上 y随x的增大而减小,在上y随x的增大而减小.

引导学生进行分类描述(增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.

问题2:能不能根据自己的理解说说什么是增函数、减函数? 预案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数

在某个区间上随自变量x的增大,y越来越小,我们在该区间上为增函数;如果函数说函数在该区间上为减函数.

教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识. 〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.探究规律,理性认识

问题1:下图是函数和减函数吗? 的图象,能说出这个函数分别在哪个区间为增函数

学生的困难是难以确定分界点的确切位置.

通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.

〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性. 问题2:如何从解析式的角度说明

在为增函数?

22预案:(1)在给定区间内取两个数,例如1和2,因为1<2,所以为增函数.

(2)仿(1),取很多组验证均满足,所以(3)任取,所以

在,因为为增函数.

在为增函数.

在,即对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量.

〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念

问题:你能用准确的数学符号语言表述出增函数的定义吗?

师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)巩固概念 判断题:

① ②若函数 ③若函数数.

在区间

和(2,3)上均为增函数,则函数

在区间(1,3)上为增函④因为函数在区间上是减函数.上都是减函数,所以在

通过判断题,强调三点:

①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).

③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数.

思考:如何说明一个函数在某个区间上不是单调函数? 〖设计意图〗让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展

例 证明函数

在上是增函数.

1.分析解决问题 针对学生可能出现的问题,组织学生讨论、交流.

证明:任取 ,设元

求差

变形,断号

∴ ∴

∴函数

2.归纳解题步骤

在上是增函数.

定论

引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.

练习:证明函数

问题:要证明函数

在区间

上是增函数,除了用定义来证,如果可以证得对

在上是增函数.

任意的,且有可以吗? 引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在

〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.

四、归纳小结,提高认识

学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.

1.小结

(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.(3)数学思想方法和思维方法:数形结合,等价转化,类比等. 2.作业

书面作业:课本第60页习题2.3 第4,5,6题. 课后探究: 上是增函数.(1)证明:函数在区间上是增函数的充要条件是对任意的,且

有.

(2)研究函数 的单调性,并结合描点法画出函数的草图.

《函数的单调性》教学设计说明

一、教学内容的分析

函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据.

对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点.

二、教学目标的确定

根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.

三、教学方法和教学手段的选择

本节课是函数单调性的起始课,采用教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.

四、教学过程的设计

为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.

(3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.

第二篇:必修一《函数的单调性》教学设计

必修一《函数的单调性》教学设计

必修一《函数的单调性》教学设计

本节课是北师大版必修1,§3《函数的单调性》新授课的微课程教学设计。

课程标准:

通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义。

教学目标:

1.理解函数单调性的定义,掌握其图象特征;

2.能够根据函数的图象,读出函数的单调区间;

3.会用定义法证明函数的单调性;

4.能够判断抽象函数的单调性.教学重点:

函数单调性的定义,及单调函数的图象特征。

教学难点:

数形结合的数学思想方法在函数单调性中的应用。

教学过程:

第1个环节:复习函数单调性的定义。

一般地,设函数f(x)的定义域内的一个区间A上:

如果对于属于A内某个区间上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2).那么就说f(x)在这个区间上是增函数.如果对于属于A内某个区间上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2).那么就说f(x)在这个区间上是减函数.给出函数单调性的定义,强调定义中的“任意”二字,指出函数的单调性是一个整体的概念,在给定的区间内的所有的 均要满足单调性的数学表达式。

【设计意图】对函数单调性的定义进行学习,特别是要领会定义中的“任意”二字。

第2个环节:单调函数的图象特征。

给出3个具体的例子,剖析函数单调性的图象特征。

然后给出一个函数的图象,读出单调递增和单调递减区间,将抽象的定义具体化。

在本环节,要重点突出的两个问题:

(1)单调区间区间端点的“开”和“闭”的问题;

因为函数的单调性是一个整体的概念,在区间端点讨论单调性是毫无意义的。但是要注意,如果函数在区间端点处没有定义,则区间端点必须是“开”的,有定义则“可开可闭”。

(2)单调区间不能写成并集的形式。

两个集合的并集相当于是进行集合的运算,结果是一个集合,而显然函数在[0,4]∪[14,24]图象不是一直下降的,所以不能写成并集的形式。

【设计意图】数形结合提升学生对函数单调性的认识,会根据图象读出函数的单调区间。

第3个环节:用定义法证明函数的单调性。

给出一个具体的例题,讲解单调性证明的步骤。

例:证明函数f(x)=3x+2在R上是增函数.步骤:

(1)任取定义域内某区间上的两变量x1,x2,设x1<

(2)判断f(x2)– f(x1)的正、负情况;

(3)得出结论.证明:

在R上任取x1,x2,设x1<

△y= f(x2)– f(x1)

=(3x2+2)-(3x1+2)

=3(x2-x1)0

∴ f(x)=3x+2在R上是增函数.强调符号的判断是最重要的一个环节,特别是要将最终的式子化简成因式相乘和相除的形式,然后逐一判断符号。

【设计意图】强调单调性判断或证明的步骤。结合具体的证明步骤学习如何用定义法证明函数的单调性。

第4个环节:抽象函数的单调性的判断。

研究两个问题:

(1)函数y=f(x)与y=f(x)+c(c为常数)具有相同的单调性。

借助一个函数的图象进行学习,深化理解。

举例:

如:函数y=x2 与y=x2-1具有相同的单调性.(2)函数y=f(x)与y=c f(x)(c为常数)的单调性之间的关系。

举例:

如:函数y=x2与y=-x2的单调性.分析:在(-∞,0)单调性相反,(0,+ ∞)单调性相反.如:函数y=x2与y=2x2的单调性.分析:在(-∞,0)单调性相同,(0,+ ∞)单调性相同.对这两个问题,只要求借助于具体的函数单调性归纳得出,不要求给出严格的证明。对学生的要求是记住结论,能够使用这两个结论进行简单函数单调性的判断即可。

【设计意图】将许多函数单调性的判断简单化,克服每题从定义出发,进行证明的弊端,从而提升能力。

第5个环节:课堂小结。

1.函数单调性的定义是什么?

2.单调函数的图象特征是什么?

3.函数单调性的判断有哪两种方法?

4.本节课你学习了哪些数学思想方法?

【设计意图】总结回顾本节课学过的知识。

评价设计:

本微课程的设计具有以下特色:

(1)突出学生自主学习能力的提升。

微课程的设计旨在让学生通过自主学习,让学生在课前预习、上课听讲、课后复习等环节得到提升,因此特别注重举例,例子虽然简单,却能激发学生思考。

(2)注重数形结合思想方法的培养。

对函数单调性的学习,定义是抽象的,如果仅从定义出发,学生会“照葫芦画瓢”,而结合图象学习,学生对单调性的认识会上升到一个新的层次。

(3)重视学生的数学学习发展。

在讲解完函数单调性的概念之后,引入抽象函数单调性的学习,不要求证明,只要求会应用。结合具体的函数来学习,体现的是归纳的思想和由特殊到一般的方法。

第三篇:高中数学必修1--函数单调性教学心得

函数单调性

“函数单调性”是高中数学必修1教材中函数的一个重要性质,是研究比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用,是后面学习反函数、不等式、导数等内容的基础,又是培养逻辑推理能力的重要素材。它常伴随着函数的其他性质解决问题。对学生来说,函数的单调性早已有所知,然而没有给出过定义,只是从直观上接触过这一性质。学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味。因此,在设计教案时,加强对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西。本节内容的教学重点为函数单调性的概念形成及判断。教学难点是用定义法证明函数单调性的方法步骤。

我设计意图是--提高有效教学能力,促进学生有效学习。教学中我采取发现法、多媒体辅助教学。具体流程是:

首先创设情境、激发兴趣。研究实际生活中上下楼梯的问题,充分调动学生积极性,营造亲切活跃的课堂氛围;渗透建模思想,培养学生应用数学的意识,通过实例使学生感受单调性的内涵,缩短心理距离,降低理解难度。

其次,探索新知。引导学生经历直观感知、观察发现、归纳类比的思维过程,发展数学思维能力。针对函数图象,依据循序渐进原则,设计三个问题,学生直接回答的同时教师利用多媒体的优势,展示图象及动画,使学生理解增减函数定义。学生各抒己见,这时教师及时对学生鼓励评价,会激发学生探究知识的热情。这一过程教会学生与人合作,提供了灵感思维的空间,在对概念理解基础上,强化了单调区间这一概念。鼓励学生自主探索归纳类比三例,师生合作得出增减函数、函数单调性、单调区间的定义,然后设计判断对错题,达到细、深、全面的理解定义,学生经历了“再创造知识”的过程,利于发展创新意识。

再次,巩固新知,由感性到理性,引导学生逐步探究利用图象判断函数的单调性和根据定义判断或证明函数的单调性两种方法。体验了数学方法发现和创造的历程。探究时先以基本初等函数为载体,再深化扩展为函数的一般性质。从而理解掌握二次函数、一次函数、反比例函数的单调性。为后面的学习及综合应用奠定基础,同时培养学生的创新意识和逻辑思维能力。

上课时不贪图进度和难度。按照大纲要求,将概念引入、讲解、重点分析、举例巩固、课后练习。这堂课无论是自己或者学生都反映良好,概念清晰,学生在完成课后作业的时候也准确率较高。如何利用有限的课堂教学时间,使学生在准确理解“函数的单调性”的有关概念的基础上,掌握数形结合的思想方法,加深对概念的认识,为进一步的转化为程序性知识做铺垫。我利用课本的引例,即利用二次函数和三次函数的图象,让学生直观地看到“单调递增”或“单调递减”的现象,然后就单刀直入地提出了“函数的单调性”这个概念,解释一下要点“任意”、“都有”、“定义域”、“区间”,为了让学生对概念理解的更透彻,突出重点,后续学习更加顺利,我还加入了一次函数和反比例函数。这样的安排,一方面是考虑到学生实际情况(直观现象容易为其所接受),一方面也是尽最大可能地利用课本承前启后。学生在描述上述三个函数图象的时候较为顺利,此时我引导学生观察一次函数的图象,描述其的特征:从左往右图象上升。然后顺势提出让学生观察其余两个函数的图象,是否有类似的现象。学生1:二次函数图象上升;学生2:二次函数图象下降;学生3:二次函数图象下降后上升。学生1和学生2在学生3回答后感觉自己似乎错了,但又说不请理由。此时,教师指出:在同一个观察任务中必须按照一定的标准,观察的顺序应沿x轴的正方向即“从左向右”,即可得到正确答案。学生在理解错误原因过程中亦得到了正确的研究方法。通过观察,大家发现了上述三个函数存在从左往右看图象上升或下降的现象,及时提出课题“函数的单调性”,并指出以上函数的单调性及增减函数的名词。直观上承认这一性质以后,我放弃了以前直奔主题的做法,结合学生常常接触上下楼为情景。由学生仿照刚才的分析,解释图象的“单调”特征。继而提出:图象特征如何转化为数学语言?经过思考,通过图象直观的影响,教师的启发,学生归纳总结函数单调性的定义。到此,学生通过自身的探索终于接近目的地,自己给出了“增函数”的定义。我让学生打开书本,与书上的定义进行比较,肯定他们的成果,并提示采用书本更为精确的用语。这个定义的给出,与以往我生硬地将课本定义直接给出大相径庭,由学生容易接受的直观图象开始,先形成“单调性”是函数的一种现象、“增(减)函数”是什么样的这样的印象,由学生自主探索接近、得到定义,学生对此印象深刻,理解深入,而且激发了学生的自信心:原来自己也可以写数学定义。兴奋点启动以后,后续的学习就顺利多了,“减函数”,“单调区间”的定义很快给出,突破了难点。最后指出“函数的单调性”本质上反映了函数随自变量的变化函数值相应地发生变化的性质。这个结论的提出,在一定的高度上对“函数的单调性”作出了最本质的概括,学生通过学法指导,收到了我预期的效果。

第四篇:高一必修一函数单调性教学设计

激发兴趣,自主探索,模式构建---函数的单调性教学设计

陕西省三原县北城中学 慕建斌

一、教材分析

本节选自《普通高中课程标准实验教科书·数学(必修一)》(北师大版),第二章《函数》的第三节“函数的单调性”(第一课时).函数的单调性是函数最重要的性质,从初中开始学习函数就已经予以渗透,到高一刚开始学习函数,首先学习的函数性质就是函数单调性,因为对任何一个函数都必须研究函数的单调性,而且函数单调性是解决函数问题、方程问题、不等式问题最有力的工具,同时也是函数与导数研究的最重要工具.本节课是以具体函数一次函数、二次函数、反比例函数等为基础,抽象归纳出函数单调性的定义,并为高三利用导数研究函数的单调性奠定基础.本节课的设计基于以下考虑:一是如何把握这个过渡阶段的学习,在初中阶段对函数的增减性有了初步的感性认知,但在高中阶段就得升华为定量分析;二是如何处理好用数学符号语言来刻画函数单调性的概念;三是函数的单调性是学习不等式、极限、导数等其他数学知识的重要基础,也是常用方法之一.因此,本节课主要培养学生将图像语言转化为符号语言的能力、逻辑推理能力和数形结合思想的渗透.二、学情分析

本节课是在高一第一学期进行的,初中阶段已经学习了一次函数、二次函数、反比例函数,并认识了是函数单调性的语言描述,本节课重点是将这种语言描述如何转化为数学符号语言.但是,学生对知识的归纳、概括能力差,主动迁移能力较弱,数形结合的意识与思维还需要进一步培养.三、教学目标

结合本节课在教材中的地位及学情分析,可将本节课的教学目标定位如下:

1、通过实例,使学生理解单调性的概念,并能依据函数单调性的定义证明简单函数的单调性;

2、培养学生发现问题与解决问题的能力,通过观察—猜想—推理—证明的思想方法,进一步渗透数学思想;

3、与实际结合,引发学生对数学的欲望,激发学生的动手能力.依据本节课的教学目标可将本节课的重点和难点定为: 重点:函数单调性概念的形成、及其实质的理解.难点:如何将文字语言转化为数学语言符号.四、教学设计

(一)复习旧知识,引出新问题

问题1 初中已经学习过一次函数、二次函数等,请同学们画出一次函数yx2,二次函数yx的图像,观察图像说明图像从左到右是如何变化的?

2意图 通过函数图象,让学生直观认识函数是递增的、递减的图像特征.追问 由描点法画函数图象的过程可知,由于自变量的变化才引起函数值的变化,函数图像从左到右是上升的或者下降的,反映函数值随着自变量的变化怎样变化?

意图 通过图像直观感知函数值y随着自变量x的增大而增大(或减小)的过程.追问 函数yx2中,函数值y随自变量x是如何变化的? 意图 在区间(,0)内,y随x的增大而增大,在区间(0,+)内,y随x的增大而减小,体现单调性是对于区间而言的.问题2 函数值y随自变量x的增大而增大(或减小)只是语言描述,而数学符号语言是最简洁、最清楚地反映事物的本质属性,如何用准确的数学符号来反映这一现象?

意图 提出新问题,引出本节课的主题

(二)归纳探索,形成概念

问题3 首先,在x轴上,从左到右自变量在增大,如何用数学符号反映?

意图 自变量x取两个值x1、x2,当x1x2时,表示自变量在增大.问题4 若自变量x在x1、x2处的函数值分别为f(x1)、f(x2),那么自变量在增大,引起函数值在增大(或减小),如何用数学符号表示?

意图 当x1x2时,则f(x1)f(x2)(或f(x1)f(x2))

问题5 在函数yx2中,自变量x从2增大到1,而相应的函数值则从-4增大到-1,能否说明函数yx在(2,1)是递增的?

意图 进一步说明函数的增减性是相对于区间而言的,同时也为自变量在区间内取值是任意的做铺垫.函数yx在区间(,220)上是递增的,在区间(0,)上也是递减的,但在其定义域内不能说是递增的或递减的.追问 自变量取两个具体的值时,函数值在增大(或减小),不能反映函数是递增的(或递减的),那么,如果自变量取三个、四个、„„甚至无数个值,函数值都是递增的(或递减的),是不是就能说明函数是递增的(或递减的)?

意图 自变量和因变量的区别就是取无数个值,函数都是递增的(或递减的),都不能说明函数是递增的(或递减的),比如对于函数f(x)x而言,若当

210.8……20.3时,有0f(1)f(0.8)…f(0.3)f(0.1),但是函数f(x)x在区间(1,0.1)上不是递增的.问题6 由上述问题及追问可知,自变量取两个值、三个值、四个值、甚至无数个值,函数值都在增大,却不能说明函数是递增的,那么自变量x应该怎样取值,才能保证满足上述条件时,函数f(x)是递增的(或递减的)?

意图 自变量的取值必须是区间内的任意两个数.这就类似于直线在垂直于平面内的无数条直线,都不能说明直线垂直于这个平面,只有直线垂直于平面内的两条相交直线,则直线就一定垂直于这个平面.这也是为后续学习这些内容做铺垫.问题7 结合上述问题的认识,你认为函数是递增的(或者递减的),需要抓住哪些关键因素?

意图 递增(或递减)是针对定义域内的某个区间;自变量x的取值必须是任意两个数x1、x2;当x1x2,则f(x1)f(x2)(或f(x1)f(x2)).问题8 函数是递增的、递减的应该如何定义更准确?

意图

在学生对增函数、减函数定义中的几个关键因素的必要性认识清楚后,自然得到增函数、减函数的定义,而且在今后利用其定义在解决问题时,对其关键因素也就认识到位、应用到位了.(三)实例应用,加深理解.问题9 函数yf(x)的图像如图所示,请写出该函数的增区间和减区间.意图

由于函数的单调性是针对区间而言的,因此先通过函数图像,让学生直观认识函数的单调区间,这也是函数图像和性质应用中的一个基本问题看,已知函数图像认识函数的单调区间.同时也为已知函数的单调性描绘函数图像做铺垫.问题10 说出函数f(x)=意图

函数f(x)=1的单调区间,并用单调性的定义加以证明.x1在整个定义域内不是减函数,进一步说明单调性是针对区间而言x的,同时熟悉函数单调性的定义,培养学生的逻辑推理能力,这也是进入高中阶段第一次进行代数推理.变式练习:证明函数f(x)=x+1在区间(0,1)上是减函数,在区间(1,+∞)上是增x函数.

意图:进一步加强单调性的定义,特别是在作差变形时,只有化为两个因式之乘积,才容易判断其值的正负,这也是利用函数单调性定义证明的关键.(四)归纳总结,提升层次

问题10 函数单调性定义中关键因素是什么?利用函数单调性定义证明时,作差之后的变形需要注意什么?

意图 对函数单调性定义中的关键因素的进一步熟悉,同时再利用函数单调性定义证明时,作差变形是关键.培养学生自己的知识体系,从开始就能有一定的构建能力.(五)作业布置,不断强化

习题2—3 A组 2、4、5.B组1、2.五、教学设计反思

函数单调性是函数中最重要的性质,对于这节课的理解与掌握情况如何,将直接影响着对函数的进一步学习,同时,函数单调性又是学生第一次接触代数推理问题,所以,无论从哪个角度说,这节课都是非常关键,也非常重要的.基于以上考虑,为了让学生能够很好的理解本节课,采用问题发现式教学法,通过设计环环相扣的问题,让学生在分析问题、解决问题的过程中,对函数单调性定义及其关键要素的必要性的理解.如自变量的增大如何用数学符号表示,自变量增大引起函数值增大又如何用数学符号表示,对自变量取值为什么是“任意的”,单调性是相对区间而言的,等等,通过逐层深入的分析、讨论,让学生认识到知识的产生、发展过程,从而领会知识的实质.在练习巩固问题的设计上,先通过直观感知,让学生认识单调区间,在对其进行证明,特别是在利用函数单调性证明时,先是通过简单问题,让学生熟悉代数推理的思路,再逐渐增加试题难度,证明函数f(x)=x+1的单调性,主要是在单调性定义证明时,作差变形是x关键,只有化为因式之乘积,才容易判断其正负,这是对作差比较大小思路方法的复习,更重要的是体现数学解题方法的连贯性.

第五篇:函数单调性教学设计

函数单调性教学设计

关于函数的单调性习题课教学设计,本人在听了专家的讲解后感到受益匪浅,结合平时的教学,有些教学方面的心得如下,希望专家和同行批评指正。

本节课是高中数学新课程标准必修1的第2章函数里的函数基本性质中介绍的第一个性质。它既是在学生学过函数概念等知识后的延续和拓展,又是后面研究指数函数、对数函数、三角函数各类函数的单调性的基础,而且函数单调性在解决函数变化趋势、值域、最值、不等式等许多问题中有着广泛的应用。对整个高中数学教学起着重要的奠基作用。研究函数单调性的过程体现了数学的数形结合和归纳转化的思想方法,反映了从特殊到一般的数学归纳思维形式,这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。下面我就这部分内容的习题教学提出一些不成熟的做法。

教学目标:

(1)在知识方面,通过习题训练,使学生能加深对函数单调性概念的理解,进一步掌握判断并证明函数的单调性方法、学会应用函数的单调性解决相关问题。

(2)在能力方面,培养学生归纳、抽象以及推理的能力,提高学生创新的意识,并渗透数形结合的思想。

(3)在价值观和情感教育方面,让学生在解题的过程中体验数学美,培养学生乐于求索的精神,提高学生的数学修养,使其养成科学、严谨的研究态度。教学重点和难点:

本节课的教学重点是函数单调性的判定、证明及应用。其中的教学难点是函数单调性的应用和复合函数单调性的理解。教法和学法:

在教法上采用传统的讲练结合。在具体实施上,将采用计算机辅助教学的手段,为了贴切地服务于教学目标,课件的制作是为了能更好的讲练习题,提高课堂效率,用是PowerPoint软件。而学生在学习过程中不仅要训练知识技能,还要达到思维的训练,因此这节课要以学生为主体,给学生充足的活动空间。作为教师,我要做好启发和规范地指导,引领学生大胆地探索,并培养其严谨的数学品质。

教学过程设计:

大概分为复习回顾、例题讲解、规律小结、巩固练习四个版块,最后布置作业。下面为每部分的具体构思。

1、复习分为概念回顾和基础练习两部分,预计费时7到8分钟左右,其中概念为(1)函数单调性和单调区间的定义以及用定义证明函数单调性的步骤,(2)怎么判断函数单调性及单调区间——可以用定义法,也可以从图象上观察。形式主要由学生口答。基础练习部分选择了5道小题目,课件形式给出,请学生口答,内容涉及单调性的理解,一次函数、二次函数的单调性,最后一题让学生们画出图象,观察图象的“升降”写出单调区间,渗透数形结合的思想,都是小题目,难度小,用时少,但紧扣概念,也让学生迅速热身,无形中抓住了学生的课堂注意力。

2、例题选择方面:

关于例

1、试判断函数f(x)变式:讨论函数f(x)x(1x1)的单调性并证明; x21ax(1x1)的单调性。x21选择这个题目是为了让学生更好地掌握定义法证明函数单调性的方法和基本步骤,变式的选择是为培养学生分情况讨论的意识和能力,讲解过程中要注意证明的规范性,进一步培养学生严谨、规范的科学态度和品质。

关于例

2、求函数yx21的值域。x2函数单调性的一个很重要的应用是求函数的值域或最值,选择这道题,教会学生利用单调性来求函数值域的方法。让学生体会利用单调性求值域时的简捷有效。丰富学生的知识体系。

关于例

3、已知函数f(x)是定义在(0,)上的增函数,且f()f(x)f(y)

xy(1)求f(1)的值

(2)若f(3)1,解不等式f(x5)2

这是一道抽象函数的题目,对于求出f(1)、f(9)分别是0和2用的是赋值法,这是抽象函数中常用的方法,不等式变为f(x5)f(9),应用函数单调性,将抽象函数函数值的大小关系,转化为自变量之间的大小关系,即x59,提醒学生注意函数定义域!

x50选择这个抽象函数的例子,目的就是让学生体会并掌握怎么样利用单调性转化函数和自变量的大小关系。

关于例

4、已知f(x)是R上的减函数,g(x)x24x,求函数h(x)f(g(x))的单调增区间。

最终的那个函数明显是个复合函数,函数g(x)图象的对称轴是x2,开口向下,在[2,)上递减,又f(x)也递减,所以[2,)是个增区间。

本题小结:两个函数单调性相同则复合后是增,相反则复合后是减。

3、关于这部分的课堂小结:

我们可以应用函数的单调性求函数值域、解不等式,以及证明一些代数命题。

4、关于巩固练习题目方面的选择:

这部分选两题,类型在例题中已出现,其中第一个要先证明函数的单调性,再求值域。而第二题则先要判断单调性,再进行证明,确定了单调性之后再应用到三角形的问题中,使学生在解题的过程中体会在一些代数不等式证明中如何应用函数单调性的。

这部分让学生自己做,用投影仪和板书结合,规范其书写和论证。

5、关于作业布置方面:

结合本节课的讲解内容,为进一步巩固教学成果,在作业题型选择上,本人力求做到紧扣和深化上课内容。一共有三大题,第一题是求单调区间,其中要用图形,数形结合;第二题要利用例4的小结“两个函数单调性相同则复合后是增,相反则复合后是减。”;第三题是抽象函数题,与课上的例3类型一样,让学生课后练习巩固。

以上是我对这部分习题教学方面的一些思考,希望得到专家的指正!

下载高中数学必修一函数的单调性教学设计word格式文档
下载高中数学必修一函数的单调性教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    苏教版高中数学函数的单调性教学设计2[★]

    课题:函数的简单性质(一)——函数的单调性无锡市第三高级中学成钰一、本节内容在教材中的地位与作用:《函数的单调性》系苏教版高中数学必修一2.1.3.1的内容,该内容包括函数的单......

    函数单调性

    函数单调性概念教学的三个关键点 ──兼谈《函数单调性》的教学设计 北京教育学院宣武分院 彭 林 函数单调性是学生进入高中后较早接触到的一个完全形式化的抽象定义,对于仍......

    函数的单调性教学设计

    《函数的单调性》教学设计 设计理念 新课程背景下的数学教学既要注重逻辑推理,又要关注直觉思维的启迪,不仅要让学生学会,更要让学生会学,要让学生学习的过程成为其心灵愉悦的主......

    函数的单调性教学设计

    函数的单调性教学设计 戴氏教育高中数学组杜剑 【教材分析】 《函数单调性》是高中数学新教材必修一第二章第三节的内容。在此之前,学生已学习了函数的概念、定义域、值域及......

    函数的单调性(教学设计)

    【教学目标】 1.知识与技能:从形与数两方面理解函数单调性的概念,掌握利用函数图象和定义判断、证明函数单调性的方法步骤。 2.过程与方法:通过观察函数图象的变化趋势上......

    函数的单调性”教学设计

    函数的单调性”教学设计 南京师大附中 陶维林 一、内容和内容解析函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如函数单调增表现为“随着x增大,y也增......

    函数的单调性教学设计

    函数的单调性教学设计 江苏省苏州第十中学吴锷 【教材分析】 《函数单调性》是高中数学新教材必修一第二章第三节的内容。在此之前,学生已学习了函数的概念、定义域、值域及......

    必修1函数单调性说课稿

    必修1《1.3.1 函数的单调性》说课稿 酒泉中学 马长青 一. 教学内容分析 1.本课定位与内容 本节课选自《普通高中课程标准实验教科书数学必修1》A版第一章第三节函数的基本性......