第一篇:比例尺教学设计
《义务教育课程标准实验教科书 数学》(人教版)六年级下册第47、48页,练习八第1-3题。
【设计理念】
数学程标准指出,“数学课程不仅要考虑数学自身的特点,更就遵循学生学习数学的心理规律”。学生数学概念的获得要在观察、比较、概括、归纳等数学活动中才能形成。对于“比例尺”这样的数学概念,抓住其外延和内涵设计有效的数学活动是促进学生发展的主要途径。
【学情与教材分析】
“比例的应用”是在学生已经学习了比和比例的意义、比例的基本性质之后的一个教学内容。“比例尺”是运用数学解决生活问题的一个典型范例之一。本节课,要通过在生活中的应用,把握比例尺的内涵——图上距离与实际距离的比,认识两种不同的比例尺——数值比例尺和线段比例尺。比例尺的内涵是教学的一个重点,学生在学习时,对于比例尺的本质——比例尺是一个比,往往容易因为名称的误导产生歧义,对于由比例尺的规定形式——前项或后项为1,而产生的计算上的易错点,都是教学中需要特别关注的。
【教学目标】
1.在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。
2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。
3、感受数学在解决问题中的作用,培养亲近数学的良好情感。
【教学准备】多媒体课件 【教学重点】理解比例尺的意义
【教学难点】把线段比例转换成数值比例尺
【教学过程】
一、激发兴趣,引入比例尺
(脑筋急转弯)师:同学们,你们一定去过漳州,那你们坐车从华安到漳州大约需要多长时间?(1个多小时),可是有只蚂蚁却只用了4秒钟。你知道是怎么回事吗?
生猜:蚂蚁可能在从华安到漳州的地图上爬。
师:对了。蚂蚁爬的是地图上的图上距离,(板书:图上距离)而我们坐车所行的是从华安到漳州的实际距离。(板书:实际距离)
师:看,在这幅地图上(出示第一幅地图)从华安到漳州蚂蚁只用了4秒钟,(出示第二幅地图)在这幅地图上蚂蚁用4秒钟还能到达吗?(出示第三幅地图)在这幅地图上呢?
师:为什么同样是从华安到漳州,有的只需4秒钟就能到达,而有的却到达不了呢?(地图有大有小)
请同学们观察这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?(让学生思考片刻后才说,可先让学生说)是因为人们在制作这三幅地图时所用的比例尺不同,这就是我们今天要学习的内容:比例尺(板书课题)
【设计意图:脑筋急转弯意在激趣引出地图,对学生都比较熟悉的地图,通过“这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?”这个问题来引导学生思考,通过三张地图大小不一样,而表示的实际距离却相同,引起学生认知冲突,聚焦依据比例不同,表示的大小也不相同,从而引出比例尺,引导学生从生活中学习有关比例尺的内容。】
二、自主学习,认识比例尺
1、什么叫比例尺?它是尺吗?是比例吗?请同学们打开课本48页,自学48页的内容。
2、揭示比例尺的意义。
你们从书上了解到什么叫比例尺?(嗯,是个比 板书于课题后)前项是什么?后项呢?(在板书的图上距离与实际距离中加入“:”)那就是说只要用图上距离比实际距离就能求出比例尺,还能写成什么形式?
你能说说这些比例尺的意义吗?
请同学们仔细观察这几个比例尺上的数字的变化以及这几幅地图的大小变化,你又有什么发现,同桌交流一下
比例尺前项都是1,后项数字越大,图上1厘米所表示的实际距离越长,所画出的图形就越小,后项数字越小,图上1厘米所表示的实际距离越短,所画出的图形就越大
【设计意图:学生自学可能因为自身学习能力的差异而产生不同的效果,如何让不同学力的学生在自学中都能真正学有所获?问题引领是一个比较有效的方法。因此,我设计了以上三个问题,聚焦比例尺的内涵,帮助学生清晰把握。】
3、练习:
知道了什么是比例尺,如果我想求一幅图的比例尺,那要怎么办呢?老师给你们数据你们会求出一幅图的比例尺吗?
①、一张桌子画在图纸上的高度是8厘米,实际高度是80厘米,求这幅图纸的比例尺是多少?
②、一栋楼房东西方向长40m,在图纸上的长度是50cm.这幅图纸的比例尺是多少? ③、在一幅地图上,量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是160千米,这幅地图的比例尺是多少?
注意:单位统一
要化简
结果不带单位(因为它表示的是两个量之间的关系)
【设计意图:在学生理解比例尺的意义之后马上呈现三道不同梯度的习题,一是让学生进一步理解掌握比例尺的实际意义,二是让学生正确计算比例尺,了解比例尺在实际生活中的各种用途。并能用自己的语言正确说明比例尺所表示的具体意义。】
4、认识放大比例尺
观察这三个比例尺,你有什么发现?(前项为1)也就是说图上距离比实际距离小,其实现实中还能见到这样的比例尺(课件出示一些精密零件的图纸)
看,把比例尺读出来,你有什么发现?(选一个说意义)
小结:比例尺根据它的作用可分为缩小比例尺和放大比例尺。(板书)通常情况下,为了计算的方便,把比例尺写成前项或后项是1的比。
5、认识线段比例尺
刚才我们认识的比例尺都是用数字来表示的,它们都叫做数值比例尺。请同学们再来看这幅比例尺(出示线段比例尺)它与数值比例尺有什么不同?
学会看线段比例尺。图上每一段都是长1厘米,每一厘米都相当于实际多少千米?
用线段来表示图上距离与实际距离的关系,这叫做线段比例尺
区别:形式不同,但都表示图上距离与实际距离的倍数关系
小结:比例尺根据表现形式的不同分为数值比例尺和线段比例尺。(板书)
6、把上面的线段比例尺改写成数值比例尺
(1)这个线段比例尺它表示图上1厘米相当于实际50千米,那你们会将它改写成数值比例尺吗?
(2)1厘米:50千米= 1厘米:5000000厘米 =1:5000000(3)根据数值比例尺标出线段比例尺
小结:线段比例尺和数值比例尺是比例尺的两种基本形式.它们之间可以进行转换.把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就可以了.【设计意图:在具体情景中,通过操作、观察、思考、归纳等学习活动中理解放大比例尺、线段比例尺的意义以及线段比例尺和数值比例尺两种比例尺基本形式之间的转换,并准确理解比例尺的书写特征。】
三、巩固练习,灵活运用
(一)填一填
1、在比例尺是1:2000的地图上,图上距离1厘米表示实际距离()厘米或()米
2、在比例尺是1:250000的地图上,图上距离1厘米表示实际距离()千米。
3、在比例尺是1:4000000的地图上,图上距离是实际距离的(),实际距离是图上距离的()倍,把这个数值比例尺该成线段比例尺是
(二)辨一辨
1、所有的比例尺的前项都是1。()
2把一个电脑零件放大到原来的100倍画在图纸上,应选用1:100的比例尺。()
3、比例尺就是一把尺子。()
4、一幅地图的比例尺是1:50000厘米。()
5、一幅图的比例尺是8:1,这幅图所表示的实际距离大于图上距离。()
(三)、选一选
1、用图上距离5厘米,表示实际距离200米,这幅图的比例尺是()
5:200
B.C.1:4000厘米
2、长4厘米的零件,画在图纸上是40毫米,这幅图的比例尺是()
1:10
B.10:1
C.1:1
D.1
3、线段比例尺
改成数值比例尺是()
A.1:23
B.1:2300000
C.1:2300000km 【设计意图:通过填一填、辨一辨、选一选等不同形式的练习让学生体会比例尺在生活中的应用,能够解决实际问题。同时通过具体情景,感受数学与生活的紧密联系】
四、课后延伸 选择合适的比例尺画图
红光小学有一块长方形草坪,长85米,宽30米,把这块草坪按一定的比缩小,你能在纸上画出这个长方形草坪的平面图形吗?(1:1000、1:500 1:10000)
结论:一幅图的比例尺由纸张的大小来决定。
【设计意图:让学生选用比例尺解答,以此培养学生思维的灵活性.这样让孩子在获得知识的同时,培养了能力,让学生真真切切的感受到生活中有数学,生活中处处有数学,提高了学生学数学用数学的意识。】
五、谈学后体会。这节课你学到了什么?
【设计意图:让学生回顾学习过程,反思评价,再一次体验学习经历,促进学生对知识的掌握。】
比例尺教学设计
一、教学目标:
1、让学生在实践活动中体验生活中需要比例尺。
2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义,并且知道什么是图上距离,什么是实际距离。
3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
二、教学重点:
1、正确理解比例尺的含义。
2、利用比例尺的知识,解决生活中的实际问题。
三、教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
四、教学准备:多媒体课件,地图,简易建筑图纸。
五、教学过程:
(一)激趣导入
1、教师:今天,老师要测试一下同学们的反应能力,你们准备好了
吗?请看大屏幕?(课件出示“单位转换”)
2、学生集体回答。(个别难题,教师引导计算,并且提问学生:你是怎么想的?注意学生的鼓励表扬)
3、创设情境
(1)师:今天我们班的两位同学产生了一场争论,你们想知道是怎么回事吗?
(2)学生情景表演。(师播放动画)
(3)通过刚才的观看,你们会支持哪一位同学呢?你有什么办法把操场画进本子吗?
生:按照一定的比例缩小。
(4)教师:你的想法很对,那你打算在本子上用多长的距离表示操场的长80米,用多长的距离表示操场的宽60米?
生1:用8厘米表示80米,用6厘米表示60米。(板书)
(5)其他同学认为他说的对吗?我们一起来表扬他。
4、师:现在,在我们的黑板上出现了两组量,这两组量中,哪组是我们画在图上的距离?(8厘米和6厘米)哪组是实际生活中的距离?(80米和60米)
5、小结:我们把画在图上的距离叫图上距离,把实际生活中的距离叫实际距离。(板书)
6、师:当我们用8厘米表示80米时,实际上把80米缩小了多少倍?(自由回答)我们一起来看看他们的比是多少?
(引导:比的前项和后项单位要统一,再划成最简整数比)
板书:8cm:80m=8cm:8000cm=1:1000
7、继续引导,并板书:6cm:60m=6cm:6000cm=1:1000
8、师:这里的1:1000说明我们用图上距离1cm表示了实际距离多少厘米?(1000厘米)
9、小结:像这种图上距离与实际距离的比,就叫比例尺。我们今天要学习的就是比例尺。(板书:比例尺)
(二)探索发现
1、揭示比例尺的意义。(课件播放)
教师补充板书:图上距离/实际距离=比例尺 公式转换:实际距离=图上距离÷比例尺(板书)
图上距离=实际距离×比例尺
2、补充说明比例尺的特点:比的前项与后项单位要统一,并且是最简整数比。例如:1:100或1/100 说明用图上距离1cm表示实际距离100cm。
3、小组比赛,说一说:以上比例尺分别说明了什么意思?
举例:1:200说明用图上距离1cm表示实际距离200cm。
(分组回答)
4、师:仔细观察,这些比例尺有什么相同之处?
生:比例尺的前项都是“1”。
师:为什么要写成前项是“1”,而不写成前项是别的数字呢? 生:这样可以清楚的看出图上距离代表实际距离多少厘米。师:真了不起,真是一针见血。
5、师:同学们现在看到的是老师的房屋平面图,你能从看到哪些呢?(课件出示房屋图,生自由回答)
生1:父母卧室„„
生2:比例尺1:100.6、师:你观察真仔细!比例尺1:100是什么意思?(学生讨论、汇报,教师引导)
学生1:图上 1厘米长的线段表示实际100厘米。学生2:表示实际距离是图上距离的100倍。
7、运用知识,尝试解决问题:
教师:现在请大家量一量,图中我的卧室,长是()厘米,宽是()厘米。()
算一算我的卧室,实际的长是()米,宽是()米,面积是()平方米。(生汇报,教师在课件上记录)
8、说一说:你是怎么算的?(板书:黑板左侧)
生1:先量出卧室的长4厘米,实际长=4厘米×100=400厘米=4米 生2:再量出卧室的宽5厘米,实际宽=5厘米×100=500厘米=5米 生3:卧室的实际面积是5×4=20平方米
9、师:谁能算一算我家的总面积是多少?10×11=110平方米
(三)解决问题、巩固提高
1、师:我打算在父母卧室北墙正中开一扇宽为2米的窗户,在平面图上应该画多长距离呢?
2、引导计算
(1)题目中,2米是什么距离?(实际距离)比例尺是多少?(1:100)
(2)根据实际距离和比例尺,我们应该如何计算图上距离? 板书:2米=200厘米 200×1/100=2(厘米)
3、师:笑笑在本子上用8厘米表示了我的卧室的长,图上1厘米表示了实际距离多少厘米?你是怎么算的?
板书:4米=400厘米
400÷8=50(厘米)
4、她画的平面图的比例尺是多少?(1:50)
5、(课件出示:北京到上海的情景)
师:题目中,已知哪些条件?(图上距离6厘米,比例尺1/17000000)
师:根据以上条件,北京到上海的实际距离是多少?
(生独立计算,集体回报)
(四)总结深化、拓展延伸
1、师:今天我们主要学习并认识了比例尺,知道图上距离与实际距离的比叫比例尺。今天所学的比例尺主要是把大的距离缩小,我们可以把它叫做缩小比例尺,为了计算方便,前项一般为1。但是有时我们也需要把一些小的东西放大,因此我们把这样的比例尺叫做放大比例尺,后项一般为1。
2、师:通过今天的学习,你们还学会了哪些?
六、板书设计
比例尺
图上距离:实际距离=比例尺 „„
2米=200厘米
实际长„„
8cm:80m=8cm:8000cm=1:1000
200×1/100=2(厘米)
实际宽„„
6cm:60m=6cm:6000cm=1:1000
4米=400厘米 图上距离=比例尺×实际距离
400÷8=50(厘米)
实际距离=图上距离÷比例尺
答:比例尺1:50
七、课后反思
《比例尺》是在学生已经掌握了化简比以及比例的知识的基础上进行教学的。我在设计教学环节时,仔细分析了教材的设计意图,同时又思考如何将概念教学恰到好处的与学生的生活实际联系起来。反思整个教学过程,我认为成功的关键有以下几点:
1、情境再现,建立数学与生活的紧密联系。
本课内容距离学生生活较远,虽然在今后的地理,制图等知识中,会有所体现,但是以目前六年级学生的生活经验来讲,却不会接触。所以,我将导入情境设置在学校的范围内,通过让学生表演谈话情境,引出问题:“你能把学校的操场画进本子吗?”利用这样的导入,很快拉近了本课教学与学生生活经验之间的距离。在讲授知识的时候,教师又以卧式的建筑图引出了计算练习,有一次加深了数学与生活的联系。
2、在动手操作中得出概念。
通过让学生设计制作校园平面图,亲身体验设计师的感觉,让他们在实践中体会如何确定比例尺的大小,如何计算数据,如何作图等。在汇报交流时,恰当的传授知识。这一环节让学生充分总结出比例尺的定义,认识缩小比例尺,针对学生们得到的很多结论,我将他们的作品一一展示给同学们看,课堂充满了探索的气息。
3、适当点拨,大胆放手。
新课标提倡把课堂还给学生,让学生成为课堂的主人。而教师只是教学活动的组织者、引导者和参与者,教师如何充当号者一角色呢?我认为,教师既然是引导者,教学中的讲解和点拨是必需的,教师既然是组织者、参与者,讲解和点拨又应是适时适度的。在将本课概念讲授清楚以后,教师大胆放手,引导学生通过独立思考,小组讨论的方式,自主完成任务,而教师的大胆放手也取得了很好的效果。在交流汇报的过程中,教师再进行一些适当地点拨,即实现了教学目标,又使教师的教学过程变得轻松自如。
4、对于学生的理解要及时给予肯定和评价。
以人为本是新课标的基本理念,在这一理念指引下,数学课堂教学中应重视数学学习的个性化发展,教师要尊重学生的学习,既要尊重学生的数学的不同理解,又要尊重学生的数学思维成果。
在教学中,求比例尺时,学生出现了多种求法,我就循着学生的思路展开教学,我和学生在认真倾听学生讲解的同时,对不同的方法加以肯定与评价,得出求比例尺的基本方法,并且说明,学生可以有自己不一样的解法,但要注意书里的规范与完整。
总之,要遵循学生学习心理规律,就要尊重学生的理解,让学生在不断的体验和感悟中总结和调整自己的学习,在掌握知识,提高能力的同时,学会学习。
数学学科教学设计 课题:《比例尺》
教学年级:六年级
设计人:金四小
王振婷
一、设计理念
《数学课程标准》指出:有效的数学学习活动不能单纯地依赖于模仿与记忆,动手实践、自主探索与合作交流,可以促进学生自主、全面、可持续的发展,是学生学习数学的重要方式。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
二、教学背景分析
(一)教材分析
本单元是在学习了比的有关知识并掌握了一些常见数量关系的基础上,学习比例的有关知识及其应用。学生在六年级上学期学习了比的有关知识,体会比与分数有着密切联系,加强了知识间的内在联系,这些都是学习比例的必要基础。本单元比例知识属于“数与代数”领域,是小学数学研究数与代数的最后一个知识点,主要研究数量与数量之间的关系,是前面学习的一个综合应用,是数与运算的发展。比例的知识还是进一步学习中学数学、物理、化学等知识的基础。可见,比例在后继学习中起着重要作用。
本单元主要包括比例的意义和基本性质,正比例和反比例的意义,比例的应用。比例尺以比例的意义和基本性质为基础,表示图上距离与实际距离的比,它可以作为比的应用。但实际上,图上距离与实际距离的比是成比例的,根据比例尺求图上距离与实际距离都可以列比例式来解,所以它也可以看作是比例的应用。通过这部分内容的学习,一方面巩固比和比例的有关概念,另一方面使学生体会比例在生产生活中的应用,提高应用所学知识解决实际问题的能力。
比例尺的学习包括认识比例尺,根据比例尺求图上距离或实际距离,应用比例尺画图。教材在认识比例尺时首先说明为什么要确定图上距离距离与实际距离的比,明确它的意义,并给出比例尺的概念,再结合两幅地图的比例尺介绍数值比例尺和线段比例尺,又通过一个机器零件的放大图纸,让学生认识把实际距离放大的比例尺如何表示。最后说明为了计算方便,通常把比例尺写成前项或后项是1的比。
(二)学生分析
比例尺是在学生学过比和比例的意义及基本性质的基础上进行教学的。比例尺在日常生活中有着广泛的应用,学生对于常见的平面图和地图并不陌生,但对“比例尺”这个概念可能会有些生疏和抽象。
基于对教材分析和学生分析,我认为在教学时要借助学生已有的知识基础和生活经验,创设画学校位置图的问题情境,让学生在思考问题的过程中,产生真实的需要,在解决问题的过程中,得到充分的体验,在解决问题之后,感受到应用知识解决问题的快乐!在这个过程中还渗透给学生一种用数学的眼光看生活的意识。这节课我在设计上给予了学生较大的探索空间,以动手实践,自主探究与合作交流为学生学习的主要方式。学生通过动手操作,进行自主探究,在充分的交流过程中,学生感知产生比例尺的需要,理解比例尺的意义,初步体会到比例尺在生活中的应用价值,从而达到教学目标。在整个的过程中,充分体现学生是课堂的主人,教师是探究活动的组织者、引导者、合作者。
三、教学目标
1.通过具体情景理解比例尺的意义,会求平面图的比例尺,能读懂不同形式的比例尺。
2.通过实践活动,经历比例尺产生的必要性的过程。3.初步体会到比例尺在生活中的应用价值。
四、教学过程
(一)生活引入
同学们,咱们学校准备在四月底一年级招生,为了让家长充分的了解学校,请你当个小解说员,先向家长介绍一下学校的周边环境,说说各地在学校的什么位置?
出示方位图
生介绍
师:这幅图画的准确吗?谈谈你的看法。生谈自己的想法
师:这幅图没有表示出距离的远近,怎样画更准确呢?
【设计意图】以学生身边熟知的事情引入新课,呈现不准确的方位图,产生画图需要。
时间分配:2分钟
(二)新课
1.学生根据信息画图,感受比例关系(1)尝试画图 出示信息
学校西方约200米处是金二小 学校北方约600米处是模东小区
师:根据给出的两条信息,自己在数学作业纸上画一画。生试画(2)汇报展示
学生可能回答如下: ① 图中1cm表示实际200米
金二小到学校画1cm,模东小区到学校画3cm 师:这幅图中,模东小区到学校为什么要画3cm? 生说想法 ② 图中2cm表示实际200米
金二小到学校画2cm,模东小区到学校画6cm(3)产生疑问,达成共识
师:刚才不是说模东小区到学校要画3cm吗,他这幅图怎么画6cm? 生解释说明 师小结:
第一幅图用图上1cm表示实际200m 第一幅图用图上2cm表示实际200m 所以,在第二幅图中模东小区到学校600m需要用6cm表示 图上4cm表示实际200m行不行,5cm呢? 实际距离可以用不同的图上距离来表示(4)再画图,感受合理性 出示信息
学校东方约100米处是体委楼 学校南方约100米处是九中分校
师:根据信息把另外两个地方又快又准的画出来。生试画,汇报
师小结: 现在从图中不仅可以看出各地在学校的什么方向,而且在距离的表示上更准确了。
【设计意图】学生在画学校位置图的过程中,产生真实的需要,在解决问题的过程中,得到充分的体验,感受比例关系。时间分配:15分钟
2.在图中表示实际距离,生成比例尺
现在老师给出了信息,咱们知道各地与学校的实际距离是多少。如果现在把你画的图给家长看,他怎样知道实际距离是多少?你有什么好办法让人一眼看明白。
生可能回答: ① 标出数据 出示北京市地图
画一个标一个,都标上怎么样? 生评价:会有很有数据,特别乱。②写出图上1厘米表示实际200米 ③写出图上距离与实际距离的比 生评价:简单,清楚
师:这幅图怎么标?怎么想的? 生回答:1:20000
追问:1:20000表示什么意思? 生回答
第二篇:比例尺教学设计
比例尺教学设计
教学目标
1.使学生理解比例尺的意义并能正确地求出平面图的比例尺.
2.使学生能够应用比例知识,根据比例尺求图上距离或实际距离. 教学重点
理解比例尺的意义,能根据比例尺正确求出图上距离或实际距离. 教学难点
设未知数时长度单位的使用.
教学步骤
一、复习准备
(一)填空.
1千米=()米 1分米=()厘米
1米=()分米 1厘米=()毫米
30米=()厘米 300厘米=()分米
15千米=()厘米 40毫米=()厘米
(二)解比例.
10∶50=x∶40 1.3∶x=5.2∶20
45:x=18:26
2.8:4.2=x:9.6
二、新授教学
谈话导入:(出示准备好的地图、平面图)同学们请看,这些分别是祖国地图、本省地图和学校的平面图.在绘制这些地图和平面图的时候,都需要把实际的距离按一定的比例缩小,再画在图纸上;有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上.不管是哪种情况,都需要确定图上距离和实际距离的比.今天我们就来学习这方面的知识?出示课题:《比例尺》
板书课题:比例尺
(一)教学例题1
例.设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离.求图上距离和实际距离的比.
1.读题后发现信息:
这道题告诉了我们什么?要求什么?
教师板书:图上距离∶实际距离
2.思考.
(1)要求图上距离与实际距离的比,能不能直接用题中给出的两个数列式?为什么?应该怎么办?
(2)是把厘米化成米,还是把米化成厘米?为什么?应该怎样化?
教师板书:10米=1000厘米
3.求出图上距离和实际距离的比.
教师板书:10∶1000=1∶100
答:图上距离和实际距离的比是1∶100.
4.揭示比例尺的意义.
教师说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,所以就给它起了个新的名字?比例尺.(教师在“图上距离∶实际距离”的后面板书:=比例尺)有时图上距离和实际距离的比也可以写成分数形式.
板书:
图上距离是比的前项,实际距离是比的后项,比例尺是图上距离比实际距离得到的最简单的整数比.
教师强调:
(1)比例尺与一般的尺不同,它是一个比,不应带有计量单位.
(2)求比例尺时,前、后项的长度单位一定要化成同级单位.
(3)比例尺的前项,一般应化简成“1”.如果写成分数的形式,分子也应化简成“1”.
5.练习
北京到天津的实际距离是120千米,在一幅地图上量得两地的图上距离是2厘米,求这幅地图的比例尺.
(二)教学例题2
例.在比例尺是1∶6000000的地图上,量得南京到北京的距离是15厘米.南京到北京的实际距离大约是多少千米?
教师提问:题目中告诉了我们什么已知条件?要求什么?
根据比例尺的意义,已知比例尺和图上距离,能不能用解比例的方法求出实际距离呢?怎样求?
(因为,已知图上距离为15厘米,比例尺为,要求的实际距离不知道,可用 表示,所以可列比例式)
1.讨论:这个比例式中的指的是实际距离.题中要求的是南京到北京的实际距离为多少千米,根据本题的已知条件,所设未知数应用什么单位?为什么?
2.订正并追问:
(1)为什么要设南京到北京的实际区高为 厘米?
(2)这个比例式表示的实际意义是什么?
(3)解这个比例式的依据是什么?
(4)在求出 x=90000000后,为什么还要化成900千米?
3.反馈练习.
先说出下图中的比例尺是多少;再用直尺量出图中河西村与汽车站间的距离是多少厘米,并计算出实际的距离大约是多少千米.
(三)教学例3 例.一个长方形操场,长110米,宽90米.把它画在比例尺是1:1000 的图纸上,长和宽各应画多少厘米?
教师提问:题目中告诉了我们什么已知条件?求什么?先求什么?
(1)先求长的图上距离.
解:设长应画x 厘米.
110米=11000厘米 x:11000=1:1000
x=11(2)求宽的图上距离.
教师说明:在这道题中,要分别求出图上距离的长和宽,同一个问题里不同的未知数,要用不同的字母来表示.因为前面图上距离的长用表示了,这里就不能再用它来表示宽的图上距离了.因此,我们设宽应画厘米.
解:设宽应画y 厘米.
90米=9000厘米
y:9000=1:1000
y=9 答:长应画11厘米,宽应画9厘米。
三、课堂小结
这节课我们学习了比例尺,知道了图上距离与实际距离的比叫做这幅图的比例尺.并能根据比例尺求出图上距离或实际距离.应注意的是,在计算中,图上距离与实际距离的单位必须是相同的.
四、巩固练习
(一)判断下列这段话中,哪些是比例尺,哪些不是?为什么?
把一块长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了2.5厘米.
1.图上长与实际长的比是().
2.图上宽与实际宽的比是1∶400().
3.图上面积与实际面积的比是1∶160000().
4.实际长与图上长的比是400∶1().
(二)在比例尺是1∶5000000的中国地图上,量得上海到杭州的距离是3.4厘米,计算一下,上海到杭州的实际距离大约是多少千米?
五、课后作业.
我们学校操场的长是200米,宽是100米。同学们,你们能自己确定比例尺,把操场的平面图画下来吗?请把图画在下面,并标上比例尺。
六、板书设计
比例尺
例1.设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离.求图上距离和实际距离的比.
10米=1000厘米
10∶1000=1∶100
图上距离∶实际距离=比例尺或
例2.在比例尺是1∶6000000的地图上,量得南京到北京的距离是15厘米.南京到北京的实际距离大约是多少千米?
解:设南京到北京的实际距离为x 厘米
15:x=1:6000000
x=15×6000000
x=90000000
90000000厘米=900千米
答:南京到北京的实际距离大约是900千米.
第三篇:比例尺教学设计
“比例尺”的教学设计
教学目标:
1.学生理解和掌握图上距离、实际距离和比例尺三者之间的关系:图上距离∶实际距离=比例尺。掌握求比例尺、实际距离、图上距离的计算方法。
2.让学生学会使用电子地图,包括会使用电子地图上的放大、缩小、漫游、测距等工具,根据需要找到目的点。通过查看电子地图了解所居住地周围的环境,学会使用网上的电子地图解决实际问题。课前准备:
学生熟悉以上两个网站,会运用网站中放大、缩小、漫游、测距、我的天下等工具。
课件、细线、尺子 教学过程:
一、通过实例了解放大、缩小、比例。
看同一张底片洗印出的两张照片,先看小的,再看大的。你发现什么?(两张照片是同一张底片洗印出来的,只是其中一张洗印得较小,另一张洗印得较大。)为什么照片洗印的大小不同,图象的形状却没改变?(照片放大时是按比例放大的。)在日常生活中通常要把实物绘制成图,总要按一定的比例缩小或放大。什么时候需要把物体按比例放大画成图形?(如种表零件图、细胞构造图、分子结构图等)什么时候需要把物体按比例缩小画成图形?(地图、风景照片)特殊地,也可在图上反映实物的实际大小。
我们的祖国中华人民共和国有960万平方公里的土地,整个形状象一只报晓的雄鸡,把它画下来就是这个样子,出示电子地图中的中国地图。告诉学生:在绘制地图和其他平面图的时候,需要把实际距离按一定的比例缩小,再画下来。
二、上网学习
1.学习什么叫比例尺。
⑴下面将要在地图上查找我们学校,谁能详细、准确地说出学校在我们祖国的什么地方?(中国华南广东省深圳市南山区南头桃园路)我们在地图上查找我们学校的时候就要从大范围到小范围逐一往下查找,请两人小组上网查找,看哪组最先在图行天下网站中找到我们学校。
学生打开电子地图: 图行天下http:// 各组学生在电子地图上查找到我们学校的位置,再各自找到自己家的大概位置。各自用尺子量一量从自己家到学校的图上距离有多远?而实际大概有多远呢?教学生利用“测距”工具测定学校到自己家的实际距离。
根据教师提出的问题两人小组上网学习并把测量、计算结果在Word中打出来,便于老师检查。
① 利用“测距”工具测定地图上10厘米的实际距离是多少?
② 算一算图上距离与实际距离的比是多少,写成前项是“1”的最简单的整数比?这个比表示什么?
⑵.多组学生汇报学习结果,同时老师把学生的回答调到大屏幕上。学生回答的过程中要注意学生计算得是否正确。图上距离是10厘米,而测定的实际距离的单位是米,先要把实际距离化成用米作单位的数,再求比。
引导学生说出:图上距离∶实际距离=比例尺
师:比例尺与一般的尺不同,这是一个比,不应带计量单位。为了计算简便,通常把比例尺写成前项为1的比。比例尺的表示方法有如下几种:1∶100、1/100和线段比例尺。
如1∶100的意义是图上1厘米表示实际距离100厘米。不同的图的比例尺的大小不一样。1.根据比例尺和图上距离求实际距离。
(1)教师打开电子地图:城市通,调出幅深圳地图。让学生学会看线段比例尺:本地图的比例尺是多少?表示什么意思?想想在地图中标出比例尺有何作用?(可利用比例尺计算两地间的实际距离)
请学生两人小组操作,打开电子地图:城市通 http://map.chinaquest.com/default.asp?city_id=20
找到所熟悉的地区的地图(如学校附近或自己家附近的地图),调整比例尺。要求:根据教师提出的问题两人小组上网学习,并把测量、计算结果在Word中打出来,便于老师检查。
①.地图上的比例尺是多少?任意选定你熟悉的两个地方,量出图上距离是几厘米?
②.计算两地间的实际距离。
(2)让学生回答学习结果,同时老师把学生的回答调到大屏幕上。方法一:根据图上距离∶实际距离=比例尺,可以用解比例的方法求出实际距离。方法二:用图上距离×比例尺的后项求出实际距离。两种方法比较,方法二更简便。2.设计南山地铁路线图。
学生打开电子地图: 图行天下http:// 中的南山地图,算出图中的比例尺。
深圳地铁1号线一期工程已于2001年春节全面开工,从罗湖至侨城东。2004~2008年结合地铁一期建设,将一号线从竹子林向南头检查站方向延伸,以后南山地铁也会很方便。现在请大家设计南山地铁路线,地铁总长15千米,图上距离应是多少?学生动手计算。
根据比例尺和实际距离求图上距离,方法有两种:
方法一:根据图上距离∶实际距离=比例尺,可以用解比例的方法求出图上距离。
方法二:用实际距离÷比例尺的后项。
设计要求:在电子地图上“我的天下”中标出地铁的起点、终点和途经路线。把2~3名学生设计的地铁路线图调出来让全体学生看看是否合理。
三、学习比例尺对我们的生活有什么意义?
使我们能看懂地图,通过地图及地图上的比例尺可计算两地的实际和按比例作图等。
第四篇:比例尺教学设计
《比例尺》教学设计 教材依据:
北师大版小学数学教材六年级下册第二单元第六节《比例尺》第30~32页 设计思路: 指导思想:全面提高学生的素质,促进学生个性才能的发展。义务教育必须贯彻国家的教育方针,努力提高教育质量,使儿童、少年在品德、智力、体质等方面全面发展,为提高全民族的素质,培养有理想、有道德、有文化、有纪律的社会主义建设人才奠定基础
设计理念:通过本节课的教学,让学生充分意识到数学来源于生活,数学要为生活服务这样一个理念。在学生的自主探究、合作交流的过程中训练学生的思维能力、动手操作的能力。教材分析:《比例尺》这节课采取学生合作交流的学习形式,通过学生动手实践、操作,得出求比例尺、图上距离、实际距离的计算方法。在学习过程中,学生互相合作,得出结论,使学生体会到团队的力量,同时,培养学生的数学应用能力。
学情分析:这节课是在学生学习正反比例、图形的放缩的基础上学习的,比例尺学生可能在生活中遇见过,如地图上,但是学生并不知道它叫什么,有什么用,而且这节知识比较抽象,学习起来不容易提起学生的兴趣。教学目标: 知识与技能
1.使学生理解比例尺的意义,学会求平面图的比例尺,以及根据比例尺求图上距离和实际距离,并能应用它解决生活中的实际问题。
2.使学生通过观察、操作、思考等数学活动,发展学生的思维能力,解决实际问题的能力和实践操作能力。
3.结合问题情境,使学生体验到数学与生活的密切联系,能积极参与数学学习活动。培养学生热爱家乡、热爱祖国的思想感情。过程与方法
通过观察操作活动,让学生经历认识比例尺的过程,掌握其特征。情感、态度与价值观
培养学生养成认真计算的习惯,使学生感受到学习源于生活,培养学生积极思考的习惯。现代教学手段:
利用多媒体课件出示一些比例尺在生活中应用的图片,使学生理解比例尺的意义,并明白比例尺在日常生活中的应用十分广泛。重点难点
重点:结合具体情境理解比例尺的意义。难点:应用比例尺解决实际问题 教具学具
教具:直尺、地图、课件 学具:铅笔、直尺 教学过程
一、课前复习
3千米=()米 1分米=()厘米
1米=()分米 1厘米=()毫米
25米=()厘米 100厘米=()分米
10千米=()厘米 100毫米=()厘米 二.创设情境
1.同学们,我们几乎每天都在学校的中心广场上快乐的玩耍,游戏,可是你们知道广场的长与宽是多少吗?(长300米,宽200米)今天老师请同学们当设计师,请同学们将我们操场的占地面积画在你的练习本上,好吗?
2.学生独立画图,小组交流,展示小组代表作品。3.交流:为什么同一个广场,画的图的大小不同呢? 4.交流后,小组派代表发言。三.新授
1.在学生交流的基础上,让学生明白,在绘制平面图或地图的时候,都需要把实际的距离按一定的比例缩小,再画在图纸上.有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上.不管是哪种情况,都需要确定图上距离和实际距离的比.今天我们就来学习这方面的知识?(板书课题:比例尺)
2.出示课本情境图,笑笑家的平面图,结合图形让学生说说什么是比例尺。1∶100是什么意思?师组织学生小组交流。3.揭示比例尺的意义.
教师说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,所以就给它起了个新的名字?比例尺. 教师说明:
(1)比例尺它是一个比,不应带有计量单位.
(2)求比例尺时,前、后项的长度单位一定要化成同级单位.(3)比例尺的前项,一般应化简成“1”.如果写成分数的形式,分子也应化简成“1”. 为自己所画的广场图修改合适的比例尺。4.小组合作求出笑笑家的总面积。
(1)引导学生讨论出求实际占地面积必须真的实际的长和宽。(2)小组合作学习,说说没一种方法的思路及注意点。
(3)集体交流、讲评。讨论能不能先求图上的面积,根据实际面积=图上面积÷比例尺求实际面积呢? 四.巩固练习
(一)判断下列这段话中,哪些是比例尺,哪些不是?为什么?
把一块长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了2.5厘米.
1.图上长与实际长的比是1 ∶4().
2.图上宽与实际宽的比是1∶400().
3.图上面积与实际面积的比是1∶160000().
4.实际长与图上长的比是400∶1().
(二)在比例尺是1∶5000000的中国地图上,量得上海到杭州的距离是3.4厘米,计算一下,上海到杭州的实际距离大约是多少千米? 五.全课小结
自我评价这节课学的怎么样?有什么收获?同学之间相互交流各自的收获,逐渐完善自己的知识结构。六.板书设计 比例尺
比例尺=图上距离:实际距离 图上距离=实际距离×比例尺 实际距离=图上距离÷比例尺 教学反思:
教学后,我反复回忆了课堂的过程,反思了整个教学过程,感受如下:
一、在学生已有的经验上学习数学 新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。只有在学生的生活经验的基础上进行教学,学生才感到亲切,学得主动。通过课前展示的图片,学生对图片上的东西是按倍数缩小(放大)了这种生活常识有了深刻的体验,再让学生来画广场的平面图,可以说是水到渠成的。
二、存在问题。
当学生阅读自学完比例尺的定义后,我的强调说明,个别学生的理解不够透彻,在后面练习中出现下面两种错误:①比例尺带了单位;②图上距离和实际距离的位置调换。如果教学时,让学生自学交流后教师能提出下面两个问题让学生讨论:①比例尺有单位吗?②图上距离和实际距离能调换位置吗?学生交流讨论,能加深学生对比例尺的理解,避免或减少练习中出现上面两种错误。一节课是否上得好,并不是看这位老师上得有多精彩,而是看学生是否真正掌握了本节课的知识,并掌握一定的学习技能。“先学后教,以学定教”,进行有效教学。看来还得不断修炼自己,在备课时,多备学生,做好“学情预设”;课堂上,擦亮眼睛,多留心学生出现不同的情况,这往往是突破难点的关键。
第五篇:比例尺教学设计
比例尺教学设计(人教版六年级第十二册)教学目标:
知识与技能:通过组织学生画出的平面图,使学生体会到图上距离与实际距
离的比,知道图上距离比实际距离就是比例尺,知道比例尺的两种形式并能互化。过程与方法:学生通过小组观察、思考、动手、讨论等合作学习,进一步发展了画图能力以及互相合作、协调的能力。
情感、态度与价值观:结合学生认知规律,充分发挥信息技术与学科教学整合的功能,激发学生的求知欲望,在具体的探究过程中,培养学生的信息素养以及与人交流、沟通,互动、互助的学习品质。
重点和难点:理解比例尺的概念,能正确根据比例尺的意义解决问题。教学过程
一、设置教学情境,感受比例尺
(一)画画比比
1、估计黑板的长和宽:教室前的这块黑板同学们熟悉吗?
请你估计一下黑板的长和宽。
2、丈量黑板的长和宽:(板书:黑板实际长3.5米,宽1.5米)
3、画黑板:你能照样子把黑板画在本子上吗?(师巡视)
4、质疑:这么大的黑板,为什么能画在这么小的一张纸上呢?(长和宽按一定的比例缩小了。)
5、挑两个黑板图(一个画得不像一个画得较像)出示:
评价:①谁画得更像一点?
②分析图A画得不像原因可能是什么?(长和宽缩小的比例不一样。)
师生合作,算一下长和宽分别缩小了多少倍?得数保留整数。(屏幕显示)
图上长7厘米,长缩小:350÷7=50
图上长5厘米,长缩小:350÷5=70
宽1.5厘米,宽缩小:150÷1.5=100
宽2.5厘米,宽缩小:150÷2.5=60
师 点拨:从上面计算结果来看图A长和宽缩小的比例差距较大(即比例失调),所以看上去画得不像;而图B长和宽缩小的比例接近,所以看上去画得较像。
(二)再画再比
1、想一想怎样画得更像?(长和宽缩小的比例要保持相同。)
2、课件展示准确的平面图:
3、请你帮老师算算长和宽分别缩小多少倍?
图上长3.5厘米缩小:350÷3.5=100
宽1.5厘米缩小:150÷1.5=100
4、小结:当长和宽缩小的倍数相同时,黑板的平面图就十分逼真!由此可见,为了能反映真实的情况,画图时必须要有个统一的标准,这个统一的标准就是比例尺。(板书:比例尺)
二、结合实际,理解比例尺
(一)说一说
①讲授:课件中的长方形是按缩小100倍来画的,我们就说这幅图的比例尺是1﹕100。
②谁来说说比例尺1﹕100表示什么?(图上距离是实际距离的一百分之一;实际距离是图上距离的一百倍;图上距离1厘米表示实际距离100厘米等等)
③图A、图B长和宽比例尺各是多少?分别表示什么?
小结:一幅图一般只有一个比例尺,当长和宽的比例尺不一样时,所画黑板就会失真。
④用自己话说说什么叫做比例尺?怎样计算比例尺?
小结:图上距离与实际距离的比叫做比例尺;比例尺通常写成前项是1的比。
(二)算一算
①下图是我校附近的平面图(屏幕同时显示),水果批发市场距我校直线距离约300米,可在这幅图上只画了3厘米,这幅图的比例尺是多少?
评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?
②从1﹕10000这一比例尺上,你能获取那些信息?
板书:图上距离是实际距离的一万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等。
三、自学新知
师:今天学的比例尺就是书上48至49面的内容,请同学们打开书,认真看看,还有什么内容陈老师没讲到的呢。
1、学生看书自学,汇报。
2、认识数值比例尺和线段比例尺 师:有关比例尺的知识还有很多呢(1)出示:标有数值比例尺的中国地图 让生说比例尺1:100000000的意思(2)出示:机器零件图 说出图中2:1的意思
师:像1:100、1:100000000、2:1、、、、这些比例尺有什么特点?(生汇报,师小结为了计算方便,一般都把前项或后项写成是1的比。像这样用数字比的方式表示的比例尺叫做数值比例尺。)(3)出示:标有线段比例尺的北京地图
让生讨论比段比例尺的意思,并介绍线段比例尺。师:那怎样将线段比例尺变成数值比例尺呢?
3、线段比例尺改写数值比例尺
学习例1,学生分小组讨论尝试改写,汇报。师板书。师:谁能说说改写时要注意什么?(师生共同小结)
四、巩固练习
1、火眼金睛
(1)比例尺是一把尺子。()
(2)一幅图的比例尺是80:1,表示实际距离是图上距离的80倍。()(3)比例尺的后项一定比前项大。()
2、练习八的第1、2题。
学生完成后,让学生说说自己的想法。
3、完成练习八的第3题。学生完成后,指名学生汇报。
四、课堂总结,回顾比例尺。
师:通过这节课的学习,你能用“收获、启发、成功、遗憾”四个词谈谈你这节课的感受吗?