第一篇:因数和倍数的教学案例
因数和倍数教学案例
课前准备:课前交流,渗透因数和倍数相互依存的关系。
教 学片段一:
师:今天王老师给大家带来了一张照片,不过我先不给你们看,先让你们来猜猜。照片有两个爸爸两个儿子。请你猜猜照片上至少几个人?
生:3个。
师:你是怎么想的?
生:儿子的爸爸是一个爸爸,爸爸的爸爸又是一个爸爸,所以有两个爸爸。爷爷的儿子是一个儿子,爸爸的儿子又是一个儿子,所以有两个儿子。
师:正像同学所说的,爸爸或儿子是不能随便叫的,是相对与另一个人而言的。得说清楚谁是谁的爸爸,谁是谁的儿子。
师:看来人和人之间是具有一定关系的。那数和数之间是否也具有一定关系呢?这节课我们就要研究数和数之间的关系。
[设计意图:这样通过生活中人与人之间的关系,迁移到数学中的数和数之间的关系,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又潜移默化地帮助学生理解了因数与倍数之间的相互依存关系。在教学中,也达到了预期的效果,学生对因数和倍数相互依存的关系理解得比较深刻。](2)数形结合,培养学生的发散思维能力。教学片段二:
师:先请大家闭上眼睛,我们一起来想象。有一个长方形,它的长和宽都是整数,它的面积是12,那长和宽可能是多少呢?想好了就可以把眼睛睁开。生1:长是6,宽是2。生2:长是4,宽是3。生3:长是12,宽是1。师:长是7行吗?为什么?
生:不行,因为找不到一个整数与7相乘得12。
7不行,长是8行吗? 生:不行。
[设计意图:学生对于长方形的面积=长×宽这个知识非常熟悉,在已有知识的基础上,让他们想长和宽的情况,并通过“反正法”: 长是7行吗?为什么?让学生充分地想象和思考,从而渗透“整除”的含义,这时数和形也在学生头脑中有机结合。同时借助多媒体手段将长方形面积与长、宽的关系更直观、形象地表现出来。这个过程也正好渗透了找一个数因数的方法,便于学生理解和掌握概念。这样较好地把握了教学的起点,学生由已知走向未知的课堂,不仅为后面教学的展开做好了铺垫,而且培养了学生的发散思维能力。(3)重组教材,逐步有序地找出一个数的因数和倍数。教学片段三:
师:刚才我们找出了12的因数。再换一个大点儿的数,你还行吗? 生:行。
师:好,下面请同学们打开信封拿出一号练习纸,用彩笔写出15的因数,一会儿把你的方法和大家分享一下,开始吧。师:写完了吗?谁来给大家说说。
生:我是根据乘法算式找出来的,因为3乘5等于15,1乘15等于15,所以15的因数有1,15,3,5。
师:这个同学是根据什么找出15的因数? 生:是根据乘法算式一对一对找出来的。
师:我们班同学真不简单,都发现了找因数的方法了。再来一个大点儿的数,还行吗? 生:行。
师:拿出2号练习纸写出18的因数,看谁写得快。师:写完了吗?先看这个同学写的(1,18,2,9,3,6)。师:在座的同学有谁知道他是怎么想的吗? 生:他是根据乘法算式找出来的。
师:他说的和你想的一样吗?还有谁也是这样想的?
师:这么多同学啊。再看这个同学的(3,6,2,9),你是怎么想的? 生:我也是根据乘法算式找的,在找的时候忘记了1和18了。
什么办法能保证不遗漏呢?
生:可以按顺序找,先想1×几等于18再想2×几等于18,再想3×几等于18,所以有1,18,2,9,3,6。
师:问问大家这种方法行吗?你看这个同学找的多有顺序啊!先想1×几等于18,再想2×几等于18,再想3×几等于18,往下还有吗?这样按照一定的顺序一对对地找出来就能保证不遗漏。
[设计意图:教材上,探究因数这部分的例题比较少,只有一个:找18的因数。根据学生的实际情况,我重组了教材,先让学生根据乘法算式“一对对”地找出15的因数,在此基础上再让学生探究18的因数。通过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照一定的顺序一对对地找因数,既能找全又不遗漏。进而又借助体态语言——打手势,让学生说出20和24的因数,达到了巩固练习的目的。这样设计由易到难,由浅入深,符合了学生的认知规律。而在探究倍数时,我则大胆地放手,让学生自主探索找一个数倍数的方法,给学生提供了广阔的思维空间。这样通过多种形式的教学,既激发了学生的学习兴趣,又极大地提高了课堂教学的实效性。](4)角色转换,让学生亲身体验数和数之间的联系。
此外,我和学生都进行了角色转换,因数和倍数这节课研究的是数和数之间的关系,知识内容比较抽象。课上我采用了“拟人化”的教学手段,每人一张数字卡片,学生和老师都变成了数学王国里的一名成员。当学生想回答问题时都会高高地举起自己的号码,整节课都沉浸在自己的角色体验中,都把自己当成了一个数。通过对自己这个数的认识,举一反三,从而理解了数与数之间的因数和倍数关系,既充分激发了学生的学习兴趣,又十分有效地突破了教学难点。教例反思:
通过设计调整,这节课解决了原来设计所存在的问题,而且也出现了几个比较鲜明的亮点:
1.数形结合,让学生带着已有知识走进数学课堂。
“数形结合”是一种重要的数学思想。对教师来说则是一种教学策略,是一种发展性课堂教学手段;对学生来说又是一种学习方法。开课教师引导学生进行空间想象:“面积是12的长方形可能是什么样子的”? 让学生自主体验数与形
同时借助多媒体手段将长方形面积与长、宽的关系更直观、形象地表现出来。这个过程正好渗透了找一个数因数的方法,便于学生理解和掌握概念。这样设计较好地把握了教学的起点,使学生带着已有知识走进数学课堂,为后面教学的展开做好了铺垫。
2.收放有度,处理好讲授与探究的关系。
讲授与探究是不相矛盾的,接受与发现对学生来说都是有益的学习方法。在数学知识领域,有许多内容是人为规定的,这时教师就要发挥“传道”的作用。比如本节课初步教学因数和倍数的概念时,教师采用了讲授的方法,帮助学生初步建立概念。“师傅领进门,修行在个人”。这时学生只是停留在“鹦鹉学舌”的思维状态中,关键是由表及里地理解因数和倍数的关系以及找因数、倍数的方法。因而后面的教学,教师可以大胆放手,通过几个具体数的研究,让学生逐步有顺序、有规律地找出它的全部因数、倍数,进而用自己的语言概括找因数、倍数的方法。这个过程不是一蹴而就的,而是学生在独立思考及与同伴的交流中逐步完善的。教学中教师经常说的一句话是“把你的方法与大家共同分享。”这样就将学生推到学习的前台,自主地去体验、感悟,并获得学习成功的成就感。
3.探究因数和倍数的规律,渗透比较的数学方法。
俗话说:“有比较才有鉴别。”通过12,15,18,20,24,16,5,1这几个具体数的研究之后,让学生对比发现:一个数因数的个数是有限的,最小是1,最大是其本身。然后通过研究几个数的倍数,让学生对比因数的规律,发现倍数存在的规律:一个数的倍数是无限的,最小的就是其本身。这样通过形象而又直观的比较,使学生深刻感受到二者的不同,不仅有利于学生掌握,而且在潜移默化中渗透了“比较”的数学思想方法。
4.趣味活动,让学生感受数学学习的无穷魅力。
只有让学生亲身感受到数学知识内在的智趣因素,数学学习的无穷魅力才能深深地打动学生。本课的练习设计紧紧把握概念的内涵与外延,设计有效练习,拓展知识空间。如让学生用所学知识介绍自己、通过数字卡片找自己的因数、倍数朋友等,使学生在游戏中感受、体验、探索、发现,有效培养了学生的自主探究能力和创新思维能力。
5.数学文化的体现,促进了学生的可持续性发展。
6不仅有趣,而且数学家还把它称为完美数呢!”“它是最小的完美数!”这样的完美数还有很多,介绍“496”、“8128”、“33550336”、“8589869056”……一些完美数。“有兴趣的同学可以课下查资料,看看这些数又如何完美呢?”这样设计不仅激发了学生的极大兴趣,而且不断自我学习,促进了他们的可持续发展。整堂课从“问题情境——建立概念模型——应用拓展知识”,不断地呈现给学生有趣而富有挑战性的学习内容,学生对找一个数因数和倍数的方法掌握比较扎实,对于因数和倍数的特点区分清楚,对于一稿教案中的问题和不足都得到了很好的解决,课堂教学效果较好,实现了三维目标的有效达成。
第二篇:倍数和因数教学案例
倍数和因数教学案例
杨岔小学 马占兵
一、认识倍数和因数
师:一起看大屏幕,数一数,几个正方形?(12)
第一个问题是如果老师请你把12个正方形摆成一个长方形,会摆吗?行不行?能不能就用一道非常简单的乘法算式表达出来? 生:1×12 师:猜猜看,他每排摆了几个,摆了几排? 生:12个,摆了一排。
师:(屏幕显示摆法)是这样吗?第二种摆法我们只要把他旋转一下就跟第一种怎么样?(一样)。我们可以把他忽略不计。还可以怎么摆?同样用一道乘法算式表达出来?
生:三四十二 师:这一次每排摆了几个,摆了几排?(屏幕显示摆法)同样第二种摆法也可以省。还有吗? 生齐:2×6 师:张老师来猜测一下同学们脑子里怎么想的,有同学可能想每排摆6个,摆2排。也有同学可能想每排摆2个,摆6排。(屏幕显示摆法)同样第二种摆法也可以省。
师:还有不同的想法吗?每排能摆5个吗?12个同样大小的正方形能摆3种不同的乘法算式,千万别小看这些乘法算式,今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上把3是12的因数,以往我们把他叫约数,现在叫因数,3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。师板书:因数和倍数 师:这儿还有两道乘法算式,先自己说一说谁是谁的因数?谁是谁的倍数?行不行? 师:谁先来? 生说略 师:刚才在听的时候发现1×12说因数和倍数时有两句特别拗口,是哪两句啊?
生:12是12的因数,12是12的倍数。师:虽然是拗口了点,不过数学上还真是这么回事,12的确是12的因数,12也是12的倍数。为了研究方便,以后来探讨因数和倍数的时候所说的数都是什么数啊? 生:自然数 师:而且谁得除外。生:0 师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。3、5、18、20、36 生说略。
二、探索找因数倍数的方法
师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才张老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完? 生1:
3、18 师:还有谁? 生2:36 师:3、18、36都是36的因数,只有这3个吗?
生1:1 生2:4 生3:6 师:其实要找出36的一个因数并不难,难就难在你有没有能力把36的
所有因数全部找出来?能不能?张老师作一下详细说明,因为这个问题有点难度,你可以独立完成也可以同桌完成,下面你选择你喜欢的方式,可以合作,也可以单干,想一想怎么不遗漏,注意了,当你找出了36的所有因数,别忘了填在作业纸上,如果能把怎么找到的方法写在下面更好。学生填写时师巡视搜集作业。
师:张老师找到了3份不同的作业,大家仔细观察这三份作业,可有意思了。我把他命名为A、B、C师板书。A:2、4、13、12、18、36 B:1、2、4、3、6、9、12、18、36 C:1、36、2、18、3、12、4、9、6 师:关于A这种方法你有什么话要说?(学生纷纷举手)能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?(学生沉默)一点都没有我们值得肯定的地方吗?你先来。
生1:都对的 师:有没有道理?看来要找一个人的优点挺困难的。生2:写全了 生大声说:没有!
师:正好触及了大家的公愤,看来要找一个人的优点不太好找了,是吧?其实这个同学挺不容易的,他已经找出不少了,对不对?说说有什么问题?
生:没有写全,少了3、6、9。师:大伙来思考一下,6、9这两个因数是36的因数吗?看来这个同学是没有找全,没有找全仅仅是因为粗心吗?是因为什么?
生:36÷4,只写了4,没写9 师:他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找? 生齐:两个两个找。
生2:先把1写在头,36写在尾,然后再把2写中间,这样依次写下去,这样比较美观。师:张老师提炼出两个字:“顺序”,好象还不仅仅是因为粗心的问题,没有按照一定的顺序。师:第二个同学有没有找全,有没有更好的建议送给他。
生:他应该把4、3调换一下。
师:做了一个微调就不仅仅是美观的问题,更带给我们一种寻找的有序。第三个同学是最没有顺序的,什么1、36,2、18了,你们觉得有道理吗?
师:你想提出抗议吗?你们觉得有顺序吗?(有)你自己来说?
生:他们那样还要头对尾头对尾的,像这样直接就可以写了。
师:有没有听明白,也是同样一对一对出现的。生:大小没有排,B大小排完后从小到大很舒服。
师:你看你那个舒服吗?
生:舒服 师:正是因为你的质疑,他把方法说了出来。他用了什么?
生:乘法口诀 师:非常感谢同学们给出的发言,正是你们的发言让我们感受到了如何寻找一个数的因数,有没有问题。
师:虽然这个同学找到了尝试完了1,找到
36、尝试完了2,找到18、3、12、4、9、6,自然数有很多,那你的7、8没有试,你怎么知道找全了呢? 生1:找到开始重复就不找了
生2:我认为应该找到比较接近如5、6,7、8找到比较接近就可以了。
师:体会体会
1、学生:36、2、学生:18、3、12、4、9、6这两个因数在不断接近,接近到相差无几。
生:直接找更大数的所有的因数,这个同学很厉害,已经在用分解质因数的方法在找一个因数的个数了。
师:通过刚才的交流,有办法了吗?有没有方法不遗漏。试一个。20 生齐:1、2、4、5、10、20 再试一个:15,写在练习纸上。学生汇报
师:寻找一个数掌握的不错,这节课还要研究倍数呢。会找一书的倍数吗?找一个小一点的,3的倍数,谁来找一个。
生:
21、300 师:你能把3的倍数全部写下来吗? 生:不能。太多太多了。
师:那怎么办?写不完可以用省略号表示。试试看。学生练习纸上完成,汇报。师:同学们虽然找的答案差不多,但脑子里的方法各不相同。我想听听你是怎样找的? 生1:3×1、3×2 师:能理解吗?
生1:3+3=6、6+3=9 师:有理吗?不要小看加3了,当到数大的时候也比较方便。
生:略 师:寻找一个数的倍数的方法掌握了吗?试一试。7的倍数 学生练习纸上完成:50以内7的倍数。
师:谁来说说这一次你找了哪几个? 生:7、14、21、28 师:为什么不加省略号? 生:因为给了一个限制。
师:任何自然数的倍数是无限的。会寻找一个数的因数吗? 生:略
三、感受倍数和因数的神奇奥秘
师:透出一个信息,关于因数和倍数是不是蕴藏了很有意思的规律,下面这题就隐藏了一条规律。屏幕显示:老师这有9颗珠子全部放到十位和个位,1颗放十位,另外8颗放个位。这样就得到几?(18)要是不这样放,你还能得到其他的两位数吗? 生1:27 生2:36 师:把你知道的两位数跟同桌说一说。学生同桌说,师:如果把你们说的两位数按一定顺序排出来,就得到了这样的一排数,是这样吗?屏幕展示: 18、27、36、45、54、63、72、81 仔细观察9颗珠子拨的两位数,你发现了什么? 生:都是9的倍数
师:9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数都是(8的倍数)师:发现了什么?9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数(不一定都是8的倍数),7颗珠子、6颗珠子呢?其实这里的学问没有同学想的那么简单,张老师给大家布置一个小任务,自己在草稿本上画一画珠子,看看6颗5颗4颗拨出的两位数到底和珠子的个数有什么关系?这里蕴藏着非常丰富的规律,等待着同学们去发现。其实不仅在计数器上找到一些有趣的规律。
师:张老师问一个问题,好不好?1—100这100个数,思考一下,哪个数的因数最多?
生1:1 生2:99 师:还有谁要发表的?
生3:9 师问生2:为什么认为99的因数最多?
生:9是最大的。师:张老师公布一下答案: 60 师:可以一起找一找。可以负责任的告诉你,比99多多了。是不是数越大,因数就越多。你们知道一小时有多少分?(60分),一分=60秒,这里的60和刚才的60有关系吗?这里的60就和100以内的因数有关系,你们相信吗?特意给大家带来一本书。书的名字叫《数字王国》,学生读有关资料。
师:相信了吧,其实张老师一开始也是特别不相信,咱们历法上面的 1小时=60分,一分=60秒的进率竟然和100以内的数的因数有着这么大的关系,这本书详细记载着为什么一年有12个月,一天有24小时,同学们知道为什么用12、24作为进率,道理是一样的。数学中发现的规律 师:更有意思的在后面,张老师给大家介绍一个数,数学家把6称为“完美数”。想知道为什么吗?用最快的速度说一说6的因数?
生:1、2、3、6 师:把6划去,1+2+3=6,又回到了6本身,正是因为这样的数非常特别,所以数学家把这样特点的数称为是完美数。数学家找到了第一个完美数,就会去找第一个完美数,猜猜看,找到了没有?今天张老师不把答案直接告诉你们,我透露一下资料好不好?第二个完美数比20大,比30小,而且还是一个双数,好猜了吧。数学上的规律不是一下子直觉说出来的,那么这样先来说一说双数:22、24、26、28,猜猜看,可能是谁? 学生试这四个数。
师:写出所有的因数,然后把自己给去掉。
师:正确答案应该是22,我们一起来找一找,人们开始找第三个完美数,想知道第5个吗?师板书。为什么这么惊讶?同学们惊讶的背后张老师体会的过老,刚才找一个也花了一分多钟,要从几十亿数中找出这6个完美数,数学家们要付出多大的心血。你觉得什么力量使数学家们去不断努力?
生:好奇心 师:数学家们能透过枯燥的数学本身看到里面的东西,就像我们今天这堂课一样,透过数字蕴藏着大量丰富的规律。高斯曾经说过的把数学比作科学的皇后,数论是数学皇后头顶上的皇冠,我们研究的只是数论中的最最基本的一些小常识,换句话说这堂课我们没有摘取数学皇后头顶上的皇冠,我们摘取的只是皇冠上一小粒一小粒的珠子。
倍数和因数教学反思:
这是因数与倍数的案例,充满人性化的评价语,丰富多彩的文化信息,善于引导,让学生学会思考,让我颇受启发。我也尝试着按照这样的思路开始了我的课堂教学。基于时间的限制,我把“感受倍数和因数的神奇奥秘”这一块极富文化气息的内容放在了我的阅读课的教学中,很好地激发了学生的学习兴趣,让学生感受到了数学的奥秘。
老师的“能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?”还有,尽管学生是找错了,他这样说:“其实这个同学挺不容易的,他已经找出不少了,对不对?”……学生在潜移默化中感受到的是成功,是对数学学习的无限乐趣。相比之下,我的课堂上习惯性地少了些对学生学习的肯定,学生收获的成功不多,积极性不够。
老师敢于放手让学生自己找出36的因数和3的倍数,真正做到了“教育的引导者,引导学生去发现、思考。而我的课堂总是害怕学生这个不行,那个不行,所以不敢放手,学生也常在我设计的框框里思考,自然同样的教案我也没有上出这份精彩。
努力去做一个发现者、引导者!让我的学生在我的课上感受数学的乐趣,体会学习成功的快乐。
第三篇:《因数与倍数》教学案例
《因数与倍数》教学案例
刘标
【教学内容】人教版数学五年级下册P12一14,练习二。
教学目标:
1.通过动手操作和写不同的乘法算式,认识倍数和因数。
2.依据倍数和因数的含义和已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。
3.在探索中,培养学生抽象,概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。教学重点、难点分析:
由于学生对辨析、理清除尽和整除的关系、整除的两种读法等易混淆的概念,使学生明确了一个数是否是另一个数的倍数或因数时,必须是以整除为前提,因数和倍数是相互依存的概念,不能独立存在。所以本节课的教学我把重点定位于理解因数和倍数的含义。教学难点是自主探索并总结找一个数的倍数和因数的方法。教具学具准备:
1.学生每人准备12个大小完全相同的小正方形,一张写有自己学号的卡片。
2.教师准备多媒体课件。
教学过程:
一、操作空间,初步感知。
1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。
2.学生动手操作,并与同桌交流摆法。
3.请用算式表达你的摆法。
汇报:1×12=12,2×6=12,3×4=12。
【评析】通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。
二、探索空间,理解新知。
1.理解因数和倍数。
(1)观察3×4=12,你能从数学的角度说说它们之间的关系吗?
师根据学生的表达完成以下板书:
3是12的因数
12是3的倍数
4是12的因数
12是4的倍数
3和4是12的因数
12是3和4的倍数
(2)用因数和倍数说说算式l×12=12,2×6=12的关系。
(3)观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括O)。
2.求一个数的因数。
(1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。
学生汇报。
师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。
出示要求:
①可独立完成,也可同桌合作。
②可借助刚才找出12的所有因数的方法。
③写出36的所有因数。
④想一想,怎样找才能保证既不重复,又不遗漏。
教师巡视,展示学生几种答案。
生1:1,2,3,4,9,12,36。
生2:1,36,2,18,3,12,4,9,6。
生3:1,4,2,36,9,3,6,12,18。
(2)比较喜欢哪一种答案?为什么?
用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)
师:有序思考更能准确找出一个数的所有因数。
完成板书:描述式、集合式。
(3)30的因数有哪些?
【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。
3.求一个数的倍数。
(1)3的倍数有:——,怎样有序地找,有多少个?
找一个数的倍数,用l,2,3,4……分别乘这个数。
(2)练一练:6的倍数有:,40以内6的倍数有:一o
【评析】由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。
4.发现规律。
观察上面几个数的因数和倍数的例子,你对它们的最大数和最小数有什么发现?
根据学生汇报,归纳:一个数的最小因数是I,最大因数是它本身;一个数的最小倍数是它本身,没有最大的倍数。
【评析】通过观察板书上几个数的因数和倍数,放手让学生发现规律,既突出了学生的主体地位,又培养了学生观察、归纳的能力。
三、归纳空间,内化新知。
师生共同总结:
(1)因数和倍数是相互的,不能单独存在。
(2)找一个数的因数和倍数,应有序思考。
四、拓展空间,应用新知。
1.15的因数有:——,15的倍数有:——。
2.判断。
(1)6是因数,24是倍数。()
(2)3.6÷4=0.9,所以3.6是4的因数。
()
(3)l是l,2,3,4……的因数。
()
(4)一个数的最小倍数是2l,这个数的因数有l,5,25。()
4.选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。
5.举座位号起立游戏。
(1)5的倍数。
(2)48的因数。
(3)既是9的倍数,又是36的因数。
(4)怎样说一句话让还坐着的同学全部起立。
五、课堂小结;
我们一起来回顾一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
第四篇:《倍数和因数》教学案例与反思
德胜小学
教学目标:
1、使学生结合具体情境初步理解倍数和因数的含义,初步理解倍数和因数相互依存的关系。
2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。
3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。
教学重点:理解因数和倍数的含义。
教学难点:探索并掌握找一个数的倍数和因数的方法。
教学过程:
一、认识倍数和因数
1、操作活动。
(1)小黑板出示要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法表示出来。
(2)整理:全班交流,分别板书4×3=1212×1=126×2=123、学习“倍数”和“因数”的概念
(1)谈话:刚才同学们通过不同的摆法摆出了不同的长方形,而且还写出了3个不同的乘法算式,今天,我们就一起来研究乘法算式中,数与数之间的关系。(出示:倍数和因数)
(2)根据4×3=12,你能说出谁是谁的倍数吗?12是4的几倍?12是3的几倍?你能说出谁是谁的因数吗?
板书:12是4的倍数,12是3的倍数
4是12的因数,3是12的因数
(3)根据6×2=12,你能说出哪个数是哪个数的倍数,哪个数是哪个数的因数吗?根据12×1=12呢?
(4)练一练:从3×6=1836÷4=9中任选一题说一说。
为什么4和9是36的因数?
4、小结:根据乘法或除法算式我们可以确定谁是谁的因数,谁是谁的倍数。为了方便,在研究倍数和因数时,所说的数一般指不是0的自然数。
二、探索找一个数的倍数的方法
1、谈话:在刚才的谈话中,我们知道了12是3的倍数,18也是3的倍数
提问:3的倍数只有这两个吗?
你还能再写出几个3的倍数?
你是怎样想的?
你能按照从小到大的顺序有条理地说出3的倍数吗?
你能把3的倍数全都说完吗?
可以怎样表示?
2、议一议:你有没有发现找3的倍数的小窍门?(在找3的倍数时,可以按从小到大的顺序,依次用1、2、3……与3相乘,每次乘得的积都是3的倍数)
3、试一试:
(1)2的倍数有
(2)5的倍数有
4、想一想:观察上面几个例子,你发现一个数的倍数有什么特点?
5、练一练:想想做做
2三、探索求一个数的因数的方法
1、提出问题:你能找出36的所有因数吗?
2、四人小组合作完成3、交流整理找一个数的因数的方法。
4、试一试(既要一组一组地找,又要按次序排列)
15的因数
16的因数
5、比一比:根据上面几个例子,你发现一个数的因数有什么特点?和同桌说一说
6、练一练:想想做做
3四、课堂总结。
1、这节课,你有什么收获?
五、巩固提高
1、判断
(1)12是倍数,3是因数
(2)6既是2的倍数,又是3的倍数。
(3)25以内4的倍数有:4,8,12,16,20,24……
(4)6的最小倍数是12,12的最小因数是6。
2、看谁反应快
游戏准备:学生按学号编成连续的自然数。(课前)
游戏规则:凡是学号符合以下要求的,请站起来,看谁反应快?
(1)谁的学号是5的倍数
(2)谁的学号是24的因数
(3)谁的学号是30的因数
(4)谁的学号是1的倍数
反思:
在教学过程中出现了一个问题:是在提问:“根据4×3=12,你能说出谁是谁的倍数吗?12是4的几倍?12是3的几倍?你能说出谁是谁的因数吗?”时,发现学生根本不能回答,本来以为学生在三年级的时候应该对这部分的内容有所了解,能顺利回答,但是在课后与三年级的教师交流后发现没有这方面的内容安排。由此,我想:新课程实施了五年,我其实还是门外汉,还不能很好地适应新课程的要求,新课程的教材编排具有连续性,而老版本经常是一个知识点安排在一起,注重深度。看来教师不光要关心自己年级的教材内容,还得知道整个教材编排体系,知道各个年级知识点之间的联系。这样才能更好地完成教学任务,使学生得到应有的发展而不是降低要求的发展或者是被强行提高要求的发展。
第五篇:倍数和因数
倍数和因数
【教学内容】第70-72页的例题和相应的试一试,想想做做1-3 【教学目标】 【基础性目标】
1.让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。【提高性目标】
2.让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会数学内容的奇妙、有趣,产生对数学的好奇心。【教学重点】
理解倍数和因数的意义,掌握找一个数的倍数和因数的方法。【教学难点】
理解倍数和因数的意义,掌握找一个数的倍数和因数的方法。【教学准备】教学光盘 【教学过程】 板块一:
(一)教学内容:教学倍数的意义,找一个数的倍数
(二)教学目标:目标
(三)教学过程:
一、导入 谈话:回忆一下,我们学过了哪些数?(学生自由发言)刚才有的同学谈到我们学习了自然数,你能举例说一说哪些数是自然数吗?(指名回答)对,o、l、2、3、4……都是自然数。这个单元我们将从一个特定的角度来对除了0之外的自然数进行研究,研究这些数的特征和相互关系,这个单元的题目就是倍数和因数。(板书课题)
二、教学倍数和因数的意义
1.那么什么是倍数和因数呢?我们还要从最熟悉的事只有一个自然数是两个自然数的乘积的时候,才能谈上它们之间具有倍数和因数的关系。
2.做“想想做做”第1题。(1)指名读题。
(2)指名口答,共同评议。
3.板书:24÷4=6。谈话:我能说24是4和6的倍数,4和6都是24的因数吗?(学生自由发言,可能引起争论,最后统一到根据24÷4=6,可以得到4×6=24,实际上24是6和4的乘积,所以24是4和6的倍数,4和6都是24的因数)
三、教学找一个数的倍数
1.谈话:下面我们研究如何找一个数的倍数。请大家找3的倍数。想想用什么办法找,能找多少个?在小组内讨论找的方法,然后动手找。2.谈话:谁来说一下你是怎样找3的倍数的?你找到了多少个? 学生发言时教师板书:3×1=3 3×2=6 3×3=9 3的倍数有3、6、9、12、15、18…… 提问:能写完吗?为什么? 3.提问:谁能总结一下找一个数的倍数的方法?(用这个数分别与1、2、3……相乘)4.谈话:你能不列式计算直接写出2的倍数和5的倍数吗? 学生独立书写。
指名回答,教师板书:2的倍数有2、4、6、8、10、12…… 5的倍数有5、10、15、20、25、30……
5.提问:观察上面的三个例子,你有什么发现?在小组内讨论。指名汇报,相机出示以下结论:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。【设计意图】
找一个数的倍数相对比较容易,在比较中让学生感受有顺序的找可以避免重复遗漏,强化数学思维有序性的培养。为下面找一个数的因数打下比较好的伏笔。板块二:
(一)教学内容:教学找一个数的因数
(二)教学目标:目标1、2
(三)教学过程:
1.谈话:下面我们研究如何找一个数的因数。你能找出36的所有因数吗?边想边写出来。
指名说出自己找的结果,学生很可能找不全.或顺序很乱。
2.谈话:刚才同学们找到了36的一些因数,感觉到往往找不全,而且小一个大一个地没有规律。那么怎样找才能不重复、不遗漏呢?我们一起研究。
先这样想,根据因数的意义,我们知道()×()=36,括号内的数就是36的因数。
如果第一个括号里填1,那么怎样算出第二个括号里的数(指名回答,板书:36÷1=36)这样一次找到了36的几个因数?是哪两个?
如果第一个括号里填2,那么怎样算出第二个括号里的数?(指名回答,板书:36÷2—18)这样又找到了36的哪两个因数? 你能接着写出几个这样的除法算式吗?(学生回答后教师板书:36÷3=1236÷4=936÷6=6)从36÷6这道除法算式中找到了36的几个因数? 还要再写除法算式吗?为什么? 现在你能按从小到大的顺序说出36的所有因数了吗?指名到黑板前指着算式中的数说答案,教师板书:36的因数有1、2、3、4、6、9、12、18、36。
3.谈话:在小组里讨论一下,我们可以用什么办法找一个数的因数。4.谈话:你能找出15的因数和16的因数吗?如果用除法找,算式可以写出来,也可以想在心里,不写出来。学生独立做题后,指名回答,教师板书:
15的因数有:l、3、5、15。16的因数有:1、2、4、8、16。
5.提问:观察上面的三个例子,你有什么发现? 学生自由发言,教师相机出示以下结论:
一个数最小的因数是1,最大的因数是它本身。一个数的因数的个数是有限的。【设计意图】
教学的开始主要是对找一个数因数的方法进行指导,无论是乘法还是除法算式都能找到一个数的两个因数。然后以小组的形式,引导象找倍数一样有顺序的去找一个数的因数,尽可能找全。教学的层次有坡度,能照顾到绝大多数学生。板块三:
(一)教学内容:巩固练习
(二)教学目标:目标2、3
(三)教学过程:
一、组织练习
1.做“想想做做”第2题。(1)让学生自己读题填表。(2)提问:表中的“应付元数”都是4的倍数吗?为什么? 2.做“想想做做”第3题。(1)让学生自己读题填表。
(2)提问:题中的排数都是24的因数吗?每排人数呢?为什么排数和每排人数都是总人数的因数?(3)提问:通过以上两题的练习,你对倍数和斟数有什么新的认识?(倍数和因数在生活中被广泛应用)3.做“想想做做”第4题。(1)学生各自在书上填写。
(2)展示部分学生的答案,全班共同校对、评议。(3)发现做错的学生,找出错误原因。
4.游戏每人发一张卡片,标有1—30的数。(正好30名同学)a.要求:全体活动起来:7的倍数站起来。30的因数站起来。1的倍数站起来。
得出:任何非0的自然数都是1的倍数,反过来1是任何非0的自然数的因数。
b.小组内说说数与数之间的倍数和因数关系。
c.这里要注意了,我们在研究倍数和因数时,都是指非0的自然数。
二、全课总结
提问:这节课你学到了哪些知识?掌握了哪些方法?你理解了哪些结论? 【设计意图】
这节课的容量比较大,所以后面的练习我没有选择都做,主要是后面的游戏需要花一定的时间。这个游戏的设计主要想通过几的倍数、几的因数站起来这样一个全体同学互动活动,充分调动学生参与学习、主动学习的积极性。并渗透了任何非0的自然数都是1的倍数,1也是任何非0的自然数的因数。【课堂练习设计与布置】
【必做题】课本第72页“想想做做”第1题。【选做题】《补充习题》第53页 【板书设计】 倍数和因数
4*3=123*1=3()*()=36 2*6=123*2=636÷1=36 1*12=123*3=936÷2=18 一个数最小的倍数是它本身36÷3=12 没有最大的倍数36÷4=9 一个数倍数的个数是无限的36÷6=6 一个数最小的因数是1最大的……
因数是它本身,一个数因数的个数是无限的。