第一篇:南水北调水质智能监测分析系统设计初探
南水北调水质智能监测分析系统设计初探
徐永兵,孙水英,袁 东
(山东省水利勘测设计院,济南,250013)
摘要:南水北调东线工程是一项旨在缓解山东、天津等北方省市水资源短缺的国家战略性调水工程,调水水质影响着整个工程的成败。本文就水质智能监测分析系统的设计进行了分析与研究,提出在已建项目的基础上,充分利用先进的物联网技术、大数据技术、WebGIS技术,建立一个高起点、见效快、实用性强、创新型的专业水质监测分析系统,能够提升水质监测管理级别,深化水质监测管理;能够对水质监测数据进行快速、综合分析,充分挖掘水质监测数据价值,优化水质分析评价,并能够借助移动终端、微信公众平台等新型介质通过地图、图表等多种形式展示数据成果;通过深入对比分析不同监测指标的变化情况,分析水质变化的原因,实现辅助决策支持。
关键词: 南水北调;东线工程;水质监测;智能化;辅助决策
0.引言
南水北调东线工程是一项旨在缓解山东、天津等北方省市水资源短缺的国家战略性调水工程[1]。2016年3月1日实现对威海市首次供水,标志着南水北调东线一期工程规划供水目标全部实现。调水水质关系到整个调水工程的成败,山东段已对输水沿线渠道、河道、湖泊、各支流汇入输水河道的水质进行监测[2]。为了充分挖掘发挥水质监测数据的价值,实现安全调水的辅助决策功能,就需要在对各监测断面水质监测数据智能分析的基础上,开展水质智能监测分析系统的建设。
1.建设现状与需求分析
1.1.建设现状
东线山东段现有2个移动监测实验室和1个固定监测实验室,并已实现对关键断面的水质自动监测,现有二级坝、南四湖出口、东平湖入口、东平湖北出口、东平湖穿黄工程出口、鲁北段聊城与德州交界处、济南以东段与引黄济青交界处等7处水质自动监测站。水质监测主要指标包括:常规五参数(水温、酸碱度、电导率、浊度、溶解氧)、高锰酸盐、氨氮、总磷、总氮、叶绿素等[3]。1.2.系统功能需求
(1)对水质监测数据的综合对比与分析
通过对水质监测实时数据和历史数据进行综合对比与统计分析,找出水质变化的原因,掌握水质变化的规律。
(2)实现安全调水的辅助决策功能
在突发水体污染事件时,分析出污染源的大体位置和污染成分,预测下游测水质指标
范围,自动生成污染水体的解决方案。
(3)水质监测分析数据展示
通过移动终端查看水质监测分析数据,查看地图、图表等多样化水质监测数据趋势展示,同时能够建立互动性信息平台,实现信息的交流和共享。
2.系统设计原则
(1)实用性原则
必须坚持快见效,见实效,以管理、业务、服务需求为出发点和原动力,紧密结合项目实际情况进行设计开发,确保系统实用、高效和方便,贯彻面向最终用户的原则,建立友好的用户界面,使用户操作简单直观,易于学习掌握。
(2)先进性原则
采用符合当今潮流和发展趋势的主流技术,被公众认可的优质开发和应用平台,采用先进成熟的软件架构、设计理念和开发手段,选用技术先进、成熟稳定的基础支撑软件,充分预见未来技术发展趋势,保证系统在不替换现有设备、不损失前期投资的情况下能方便地升级和扩容。
(3)开放性原则
尽可能地利用已有的设备、软件及信息资源,对于未来可能增添的新的子系统、新的数据库、新的功能、新的用户都要留有接口,系统可以随形势的发展而不断成长扩大。
3.建设的目标与任务
3.1.建设目标
水质监测智能监测分析系统基于指标和元数据体系,整合重构各类水质监测相关数据资源,形成水质数据资源体系,实现水质监测一张图、水质综合分析、移动综合展示和微信公众平台四大应用,实现南水北调东线一期工程山东段水质监测数据的资源化、价值化和智慧化,充分挖掘水质监测数据价值,深化水质监测管理,实现辅助决策支持。3.2.建设任务
(1)梳理水质监测分析相关的各类数据,提取指标,通过元数据体系,构建水质数据资源体系,构建水质数据中心,提供数据的采集、整合、管理和服务。
(2)构建水质监测一张图,实现以地理结构为框架,以水质监测数据为基础、以统计数据为依据的实现查询、分析、展示功能,以“一张图”的形式全方位、多角度展示水
质监测统计情况。
(3)构建水质综合分析系统,对水质监测数据进行深入分析,实现关键断面水质快速分析、水质预警预报、多断面综合分析、缓冲区统计分析,实现辅助决策支持。
(4)构建移动综合展示系统,通过移动终端展示水质监测成果,能够让管理者通过移动终端及时获取各类水质监测指标信息、综合统计信息及其它相关信息。
(5)构建微信公众平台,实现信息的发布、订阅、上传、共享,实现信息的有效互动。
4.系统总体设计
水质监测分析平台通过梳理完善南水北调东线一期工程山东段水质指标体系,构建水质资源基础框架及元数据管理体系,形成水质数据资源体系,以指标驱动应用,实现水质综合分析,并通过地图、图表等多样化可视化方式进行数据展示。平台以数据为核心,盘活水质监测数据资源,实现数据资源化、价值化、智慧化。
图 1 系统总体架构框图
硬件网络层:提供数据采集手段以及通信基础设备保障,构成必要的硬件和网络环境,可以利用现有硬件和网络设备。
数据资源层:存储所有数据及信息,是所有应用的数据资源支撑,完成数据资源和信
息资源的标准化、结构化、有序化,形成水利数据资源体系。
支撑平台层:作为整个系统的公共支撑与服务平台,是系统的数据交换中心、信息交流中心和GIS地理服务中心,为各类业务应用系统提供公共技术支撑,实现各业务应用统一的标准规范、公共平台、统一用户权限,可利用现有的应用支撑平台实现。
应用系统层:所有面向最终用户的应用系统,直接为用户提供服务。
用户接入层:主要各级机构的管理人员,接入层提供通过电脑、手机等多种方式提供给用户,具有良好的人机交互界面和在线帮助功能。
5.应用系统建设
水质监测分析平台包括水质监测一张图、水质综合分析、移动综合展示、微信公众平台四大应用。5.1.水质监测一张图
水质监测一张图不仅包括常见的地图基本操作功能,还对资源进行综合展示,提供地理信息系统特有的空间查询分析功能,并结合统计数据实现各类指标的专题统计展示。
(1)自动监测站展示
资源显示:能够显示自动监测站的整体情况(如数量、名称等)及在地图上的分布情况。
信息显示:在地图上漫游到自动监测站,显示详细信息,同时能够查看到自动监测站的实时数据、历史数据。
快速定位:实现资源显示与地图的关联,能够快速定位到自动监测站所处的地点,可查看到资源的详细信息。
(2)移动监测站展示
资源显示:能够显示移动实验室的设备配置情况。信息显示:展示实时监测分析数据和历史数据等。
快速定位:实现资源显示与地图的关联,能够快速定位到移动实验室所处的地点,可查看到资源的详细信息。
(3)固定实验室展示
资源显示:能够显示固定实验室的整体情况(如数量、名称及设备配置等)及在地图上的分布情况。
信息显示:在地图上漫游到固定实验室,显示详细信息,同时还可展示实时监测分析
数据等。
快速定位:实现资源显示与地图的关联,能够快速定位到固定实验室所处的地点,可查看到资源的详细信息。5.2.水质综合分析
(1)水质监测查询统计
水质监测查询:可根据指标查询水质监测站监测的水质情况。可按照水质级别指标,也可按照物理指标、化学指标、生物指标进行对各个水质监测站点进行查询。
特征值统计:按时段统计站点的监测项目的样品总数、检出率、超标率、实测范围、最大值超标倍数、最大值出现日期和时段平均值。特征值统计有年统计、任意时段统计和自定义统计。
水质统计:包括水质评价基本情况统计、水质统计和水质类别统计等。
超标统计:统计包括干线超标站点统计、行政区超标站点统计、单项超标站点统计和单项超标率统计。
(2)关键断面水质快速分析
饼形分析:以饼形图分析此断面的各个水质污染指标占比,进而分析出那个污染是主要污染。
趋势分析:各个水质污染物数据以趋势展现,可根据此趋势对比分析出各个污染源情况以及哪个污染源上升最快,哪个污染源相对稳定,哪个污染源在逐渐降低。
报表分析:单独水质污染物报表分析:分析不同时段的此污染物对应的污染程度。多水质污染物报表分析:分析不同污染物在相应的时段污染情况。
图形分析:以不同的颜色标注的同一个断面图上的不同污染物,进而直观得看出断面的水质情况。
(3)水质预警、预报
水质预警预报是在一定范围内,对一定时期的水质状况进行分析、评价,确定水质的状况和水质变化的趋势、速度,以及达到某一变化限度的时间等,预报不正常状况的时空范围和危害程度,按需要适时地给出变化或恶化的各种警戒信息及相应的综合性对策。
(4)多断面综合分析
通过对比分析不同断面监测指标的变化情况,分析水质变化的原因,并提出相应的措施,实现辅助决策支持。
多断面图形分析:多断面同一污染源图形展示分析,直观分析出此种污染源在不同断面的分布情况,是否因为新的污染进入进而造成某一断面此种污染上升。
多断面不同污染物图形展示分析,以可视化友好的方式展现不同污染物在不同断面的分布情况。
多断面历史回溯分析:基于多断面多污染源历史回溯,能够查询分析水质在不同时刻不同断面的情况。
多断面趋势分析:多断面多水质指标趋势分析,分析出不同水质指标在不同断面的变化速度和相应的趋势,是指标在不断下降还是在加快上升,下游断面的水质指标在上升还是在下降,为调度运行提供决策支持。5.3.移动综合展示
移动综合展示通过移动终端的形式为各级管理人员提供服务,能够及时展示水质监测的整体情况、运行状态、指标监测情况、综合统计情况及动态信息。
地图浏览:可进行地图浏览,能够对闸泵站、监测站等进行查询,也可以根据位置查看周围的各类信息。
工程概况:通过列表、图片和图表等多种方式直观展示闸泵站、监测站概况信息。运行状态:通过地图、图片、图表、文字等多种可视化展示工程运行状态的实时信息,能够及时看到更新的信息和统计情况,监督工程的运行管理工作,如查看水质监测站各个设备是否在运行,运行次数,已投入运行时间,设备故障情况,故障频率,故障次数。
指标监测:直观展示水质监测分析重要指标信息,包括指标数据、上升下降趋势等,如水质级别、常规五参数等等,对于异常指标能够进行提醒。
综合统计:对指标数据进行查询,可根据兴趣选择任意指标、时间进行统计,提供地图和图表等多种方式展现综合统计结果。5.4.微信公众平台
水质监测微信公共平台针对关心调水水质的用户及管理人员提供信息服务,构建信息互动平台。主要包括:
信息推介:重要信息实时推送到用户端,可对用户分类推送,针对不同的用户关心信息种类不同,进行区别推送。对领导层推送宏观主要数据和信息,对操作用户推送运行情况等操作人员关心的信息。对用水用户推送相应区段用户关心的水质情况。
定制服务:不同的使用者可进行水质信息定制,比如某个用户只关心其中两个站点的
COD数据,可进行定制,系统进行定时推送。
信息上传:用户可通过微信客户端,上传文字、图片、音频、视频等。
6.总结
山东段水质智能监测分析系统是在已建项目的基础上,充分利用先进的物联网技术、大数据技术、WebGIS技术,建立一个高起点、见效快、实用性强、创新型的专业水质监测管理系统,提升水质监测管理级别,深化水质监测管理;对水质监测数据进行快速、综合分析,充分挖掘水质监测数据价值,优化水质分析评价,并能够借助移动终端、微信公众平台等新型介质通过地图、图表等多种形式展示数据成果;通过深入对比分析不同监测指标的变化情况,分析水质变化的原因,实现辅助决策支持。该系统的建设具有十分重要的现实意义,建议南水北调建设管理单位尽快推进该系统的建设。
参考文献:
[1]徐永兵,孙水英.MOSAIC SCADA在南水北调闸(泵)站监控系统中的应用 [J].水利信息化,2015(5):39-43.[2]矫桂丽,朱丽丽,祖晶.南水北调东线山东段水质监测站点的布设[J].水利规划与设计,2013(6):48-50.[3]徐永兵,孙水英.南水北调东线一期工程南四湖水资源监测系统设计思路与技术要点[C].中国水利学会水资源专业委员会2015年年会暨学术研讨会会议论文集,2015.[4]陈翔,雷晓晖,蒋云钟.南水北调中线决策会商与应急响应系统设计研究[J].水利信息化,2015(2):5-9.Study on system design and analysis of intelligent monitoring of water quality in the south to North Water Diversion Project
XU Yongbing,SUN Shuiying,YUAN Dong(Shandong Survey and Design Institute of Water Conservancy,Jinan 250013,China)Abstract: The eastern route of South to North Water Diversion Project is a designed to ease the Shandong, Tianjin and other provinces and cities in the north of the shortage of water resources of national strategic adjustment of water project, the water quality of water diversion affect the success or failure of the whole project.The intelligent monitoring of water quality analysis system design to carry on the analysis and the research, proposed in the construction project based on, make full use of advanced network technology, data technology, WebGIS technology, the establishment of a high starting point, quick, practical strong, innovative professional water quality monitoring and analysis system.The system can enhance the management level of water quality monitoring, water quality monitoring and management deepen.The system can rapidly and comprehensive analysis of the monitoring data of water quality, fully tap the value of water quality monitoring data, optimize water quality analysis and evaluation.System to use mobile terminal, micro channel public platform and other new media to demonstrate the results of the data through the maps, diagrams and other forms,through in-depth comparative analysis of different indicators for monitoring the changes and reasons for changes in water quality analysis, aided decision support.Key word:South-to-north water diversion;East line project;Water quality monitoring;Intelligent;Assistant decision 作者简介:
徐永兵、1981年02月、男、工程硕士、工程师、水利信息化、***、xu_yongbing@sina.com
第二篇:水质无线监测系统方案
上海正伟数字技术有限公司
水质无线监测系统方案
上海正伟数字技术有限公司授权网络免费发布
www.xiexiebang.com
一、概述
环境监测是环境保护工作的重要组成部分,是环境管理的基础和技术支持。随着我国工业化和城市化的迅速发展,环境保护也相应大力发展起来。这样就迫切需要加快全国环境管理基础能力的建设,提高环境监测能力和环境监督执法管理水平。
排污口水环境实时自动监测系统的研制在我国刚刚起步,欧美一些发达国家在这方面已趋向成熟,例如美国等一些工业发达国家,几乎在每个排污口都安装了有关监测仪器,对污水处理设施的运行情况以及排污流量、PH值、DO、电导、烛度、温度等值进行自动监控,在监控中心可以随时知道排污口染物的排放情况。在韩国已有50%的企业做到了对以下四项指标的实时自动监控:污水处理设备运行情况、流量、PH值和溶氧。
我国目前大部分地区的水环境监测主要是以化学化为主。即人工定期(或不定期)的现场采样、化验、水质分析。这样工作量大且具有随机性,不能准确反映整个水量水质的变化过程,因而不能做到为水环境评价和环境治理的可靠依据。
由于我国经济发展过程中出现越来越多的水环境污染问题,近年来国家已充分重视和加强对环境污染的治理。为了配合这项工作,改进水环境监测手段和方法已显得尤为重要。上海正伟数字技术有限公司在充分调研、考察、征询客户意见等基础上,研制开发了集自动化、即时化、智能化于一体的经济实用的水质量无线监测系统。该系统可以对排污口污水的PH值、DO、温度、电导和排污流量进行实时监控,通过GPRS/CDMA无线终端将数据传送到监控中心和环境管理部门,工作人员可以在监控中心或办公室进行远程监测,随时得到即时数据报告,实现远端无人值守。
二、系统组成、工作原理
系统主要是由一个监测中心,若干个固定监测站和专用GPRS/CDMA无线终端组成。监测中心对各个监测站进行控制指挥,各监测站收集各种污染参数,两者间的控制信号和监上海正伟数字技术有限公司
测数据通过GPRS/CDMA无线终端传送完成。监测中心既是各监测站的指挥中心,又是监测站监测数据的汇集、处理的存储的数据库。各监测站可设置为自动向监测中心发送信息;也可设置为平时处于待机状态,在收到监测中心的指令后才开始启动工作,将信息发送给监控中心。各监测站有数据采集。命令识别、数据发送的功能。
监测中心由功能较齐全的计算机外围设备如显示器、打印机、绘图机等组成。各监测站由各种采集参数的探头、PAC可编程自动控制器和GPRS/CDMA无线终端组成。
三、系统方案说明:
在水质系统中,常常需要对众多的排污口污水的PH值、DO、温度、电导和排污流量进行实时监控实时监测,大部分监测数据需要实时发送到管理中心的后端服务器进行处理。由于监测点分散,分布范围广,而且大多设置在环境较恶劣的地区,通过电话线传送数据往往事倍功半,通过GPRS/CDMA/EDGE无线网络进行数据传输,成为水质监测部门选择的通信手段之一。污染源监测设备可将采集到的污染数据和告警信息通过GPRS/CDMA无线网络同时发送到多个水质监测部门,实现对排污单位或个人的及时管理,可以大大提高环保部门的工作效率。
系统结构图:
上海正伟数字技术有限公司
系统方案组成 水质监控中心
监控中心服务器通过ADSL或电话拨号接入Internet,或申请配置专线,通过光纤、DDN 等数据专线直接和移动中心机房的GPRS/CDMA 网络连接。监控中心服务器上安装相关监控系统软件。监控系统软件包括监控中心服务器、数据库服务器两个部分。
1、监控中心服务器实现实时监控、数据管理分析、业务管理等功能;
2、数据库服务器进行数据存储、备份;
具体实现时,监控中心服务器、数据库服务器可以安装在一台服务器中,也可以安装在 不同服务器中。软件系统特点:
1、纯JAVA系统设计:采用JAVA技术进行设计开发,具有强大的稳定性、安全性、兼容性、可扩展性;
2、先进的B/S结构:系统使用先进的B/S结构,用户只需要使用浏览器就可以通过环保内 部的网络完成污染源管理和污染源监控功能。使用BS 结构不仅极大的方便了环保部门 相关人员的使用,而且为环保局未来向公众公公布环境数据提供了方便。
3、管理决策支持:基于完整的、实时的业务数据,智能的决策支持系统可以为管理者提供 丰富的决策支持信息,实现业务运营的有效管理。
4、功能扩展性:整个系统具有极强的开放性和可伸缩性,可以方便的与各类数据分析软件连接,为环保局和其他政府部门共享信息提供了方便。上海正伟数字技术有限公司
GPRS/CDMA无线传输终端
水质监控仪器通过RS232 串口直接与正伟环保专用GPRS/CDMA无线传输数传设备(智能型GPRS/CDMA调制解调器)连接,并由其建立无线数据连接与监控中心进行双向数据通信。水质监控仪器包括污水流量计、COD(含氧量)/BOD(生物耗氧量)、PH 探头等测量仪可根据系统实际监控地点的需求选择对应测量仪器。
系统功能 实时监控
对企业监测点的排污量、设备运行等情况进行实时监控,并以人性化的界面显示有关数据; 数据接收
数据接收方式有两种,一种是监测点通信控制器定时向中心返回监测数据(一般按1个小时 返回,也可以通过用户设置);一种是通过中心向监测点通信控制器发送查询指令,监测点 通信控制器返回当前监测的实时数据; 报警处理
当监测到排污超标、检测设施非正常关闭等事故时,软件能自动识别事故类型,并及时向环 境监理部门发送报警信息,使环境监理部门能够以最快的速度及时对企业的违规行为进行纠 正、制止,从而保证了环境监理信息传递的顺畅、完整; 统计分析
a)对所选择污染源监测点的监测数据进行各种分析,以曲线图、直方图和表格等形式进行 显示。可选择行业、区域、时间段等条件。包括污染源分析、污染源对比分析、综合分析、综合对比分析和监理报告资料分析等;
b)污染源分析可根据条件对污染物排放量和污水排放量进行分析; c)污染源对比分析可根据条件对某一污染源进行按月分析和按年分析;
d)综合分析可根据条件对污染物、污染类型(水)和治理设备(运行时间)进行分析; e)综合对比分析可根据条件对污染物、污染类型(水)和治理设备(运行时间)进行按月分析和按年分析; 数据存储
本设备能自动监测、记录、存储、传送数据,实时采集各类环保测量仪器的输出信号,并将测量数据通过无线远程发送至环保监控中心,同时将数据保存在本机大容量数据存储器上海正伟数字技术有限公司
中。参数设置
1、可按照设置的时段采集一组数据,并实时发送至环保监控中心。GPRS/CDMA 网络是全球分布最广的无线网络,使用GPRS/CDMA 的优势在于实时、无线、远程、误码率极低、安装简便无需布线等特点。
2、可按照设置的时段采集一组数据,并保存在本机内部大容量数据存储器中;
3、可以通过串行接口对系统各项运行参数进行设置。对每个通道的采样数据进行物理量的换算对应,从而使终端保存或发送的数据都是符合现场测量指标的数据;
4、可通过串行接口访问机内大容量存储器中的数据。将终端保存数据保存到计算机数据库中,以备分析备案;
5、可按照条件设置系统各通道的报警条件,触发报警,并可实时将报警信号发送至监控中心。
四、无线水质监测系统的优势
中国移动或者中国联通GPRS/CDMA系统可提供广域的无线IP连接。在移动或联通通信公司的GPRS/CDMA业务平台上构建水质监测采集传输系统,实现水质监测采集点的无线数据传输具有可充分利用现有网络,缩短建设周期,降低建设成本的优点,而且设备安装方便、维护简单。经过比较分析,我们选择中国移动的GPRS/CDMA系统作为水质监测采集传输系统的数据通信平台。
GPRS/CDMA无线水质监测系统具备如下优势:
1、实时性强:
GPRS/CDMA具有实时在线特性,系统无时延,无需轮巡就可以同步接收、处理多个或所有监测点的各种数据。可很好的满足系统对数据采集和传输实时性的要求。
2、可对各监测点仪器设备进行远程控制:
通过GPRS/CDMA双向系统还可实现对仪器设备进行反向控制,如:时间校正、状态报告、开关等控制功能,并可进行系统远程在线升级。
3、建设成本少低:
由于采用GPRS/CDMA公网平台,无需建设网络,只需安装好设备就可以,建设成本低。
4、监控范围广: 上海正伟数字技术有限公司
构建水质监测采集传输系统要求数据通信覆盖范围广,扩容无限制,接入地点无限制,能满足山区、乡镇和跨地区的接入需求。由于水质信息采集点数量众多,分布在全国范围内,部分水质信息采集点位于偏僻地区,而且地理位置分散。
5、具有良好的可扩展性: 由于目前GPRS/CDMA网络已覆盖国内绝大部分地区,基本不存在盲区,可实现大范围的在线监控,满足水质信息采集传输系统对覆盖范围的要求。
6、系统的传输容量大:
水质监测中心站要和每一个水质信息采集点实现实时连接。由于水质数据信息采集点数量众多,系统要求能满足突发性数据传输的需要,而GPRS/CDMA技术能很好地满足传输突发性数据的需要。
7、数据传送速率高:
每个水质信息采集点每次数据传输量在10Kbps之内。GPRS网络传送速率理论上可达171.2kbit/s,目前GPRS实际数据传输速率在40Kbps左右,完全能满足本系统数据传输速率(≥10Kbps)的需求。
8、通信费用低:
采用包月计费方式,运营成本低。
五、安全措施:
由于水质监测系统的特殊性,本系统需要极高的系统安全保障和稳定性。安全保障主要是防止来自系统内外的有意和无意的破环,网络安全防护措施包括信道加密、信源加密、登录防护、访问防护、接入防护、防火墙等。稳定是指系统能够7×24小时不间断运行,即使出现硬件和软件故障,系统也不能中断运行。以GPRS为例,数据中心可通过公网使用VPN接入到移动GPRS网,采用VPN方式成本比较低,企业不用租用专线,还可以利旧使用原有的VPN设备,移动终端需要安装具有VPN二次虚拟拨号的功能的软件。通过VPN方式,客户端在连接应用服务器前,要经过Radius服务器的认证整个数据传送过程得到了加密保护,安全性比较高,可充分保障速度和网络服务质量。另外,数据中心也可以采用APN接入方式,租用专线接入到移动公司的GGSN设备上,这种成本高,安全性高、稳定可靠。对于安全性要求上海正伟数字技术有限公司
非常高的系统,可考虑在专用APN接入的基础上再加上VPN接入方式的混合接入方式,进一步提高系统的安全性。
1、VPN虚拟专网模式:企业内部网络中配置VPN服务器,移动终端加载具有VPN二次虚拟拨号的功能的客户端软件。采用VPN安全技术,用户通过接入企业内部虚拟专网的方式与Internet进行隔离,可对整个数据传送过程进行加密保护,有效避免非法入侵。
2、用SIM卡的唯一性:对用户SIM卡手机号码进行鉴别授权,在网络侧对SIM卡号和APN进行绑定,划定用户可接入某系统的范围,只有属于指定行业的SIM卡手机号才能访问专用APN,移动终端与数据中心采用中国移动分配的专门的APN进行无线网络接入,普通手机的SIM卡号无法呼叫专门的APN。
3、对于特定用户:可通过数据中心分配特定的用户ID和密码,其他没有数据中心分配的用户ID和密码的用户将无法登录进入系统,系统的安全性进一步增强。
4、数据加密:通过VPN对整个数据传送过程进行加密保护。
5、网络接入安全鉴定机制:采用防火墙软件,设置网络鉴权和安全防范功能,保障系统安全。
六、系统成本
七、结论:
采用有线方式,租用静态IP目前费用比较高约800~1500元/月。采用GPRS/CDMA无线方式,系统流量费用目前有包月制和按数据量两种收费方式,GPRS按流量计算0.01元K,而包月制20元/月有50M流量,可满足水质监测局目前水质数据采集系统的实际数据量,估计日后其费用会逐步降低。对于水质监测局等用户来说,由于通信费用较低,享受到了实惠。另外,由于接入设备可以移动,当水质观测站和水质信息采集点搬迁时设备可随之迁移并可继续使用,可以保护用户原有投资,适合于水质信息采集工作的特点。
采用GPRS/CDMA构建水文数据采集系统,不仅能很好地满足水质信息采集监测的需求,而且,做为网络运营商的移动或联通通信公司也将因此获得业务稳定的集团用户,随着用户上海正伟数字技术有限公司
数量的增加,移动或联通通信公司的营收也随之增加,调动了运营商的积极性,符合网络建设和网络应用同步发展的要求。
公司简介
上海正伟数字技术有限公司(Shanghai Zhengwei Digital Technology Corporation Limited),是一家注册于上海高新技术开发区内的专业的技术研发型公司,公司专注于嵌入式系统领域的技术创新和产品开发,专业提供嵌入式网络领域、无线网络领域和嵌入式计算系统领域的软硬件产品及服务。
公司拥有资深的设计师和专业的管理者,并具有从博士到专科不同学历的良好人才结 构。公司与众多厂家、研究所在器件供货、产品经销、技术创新等方面形成了良好的合作伙 伴关系。
凭借其技术、人才、管理优势,本着“踏实创新,追求卓越”的企业精神,正伟数字锐 意进取,勇于创新,已成为领先的嵌入式网络领域设备和服务提供商。
“正人正事,伟心伟业”是公司永恒的信念和追求 版权申明
本文档为上海正伟数字技术有限公司产品说明文档,版权所有,任何人未经书面同意不 得复制、篡改、引用本文档的全部或者部分内容。
本公司保留对该文档内容的解释权。
本公司保留在未事先通知本文档使用者的情况下,更改产品规格及更改文档版本的权利。
第三篇:水质分析监测实践报告
水质分析检测实习实习地点:
山东利源海达环境工程有限公司是以清华大学、山东大学、天津大学及济南大学为技术依托,具有多项自主知识产权和国家专利的高科技股份制企业。
公司注册资金1680万元,现有正式员工80人,其中博士2人,硕士7人,各类工程技术人员56人。公司旗下设有投资运营公司、技术研发公司及工程试验中心,专业从事污水处理工程投资、运营、技术研发及推广等业务。公司机构设置有:市场营销部、技术支持部、工程项目部、运营投资公司、物资采购部、财务管理部、办公室及设备制造中心。公司以环境工程治理、能源管理为己任,集科研开发、规划设计、工程承包、安装调试、设备制造、售后服务于一体,具有环保专项设计、环保设施运营等资质。
公司与国内多家知名专业科研院所和高校在环境工程领域结成优势互补的联合体,互为依托,资源共享,依靠强有力的研发力量,保证了技术的先进性和成熟性。公司作为山东大学、济南大学在环境工程、给水排水工程专业实习基地,在水处理、废气处理、噪声、空气净化、固废无害化处理技术方面,达国内先进水平,且多项处理技术处于同行业领先地位。实习时间:
2016年3月8日-2017年3月5日 实习目的:
社会实践是环境工程专业学生的一门主要实践性课程,是学生将理论知识同生产实践相结合的有效途径,培养学生树立理论联系实际的工作作风,以及检测现场中将科学的理论知识加以验证、深化、巩固和充实,并培养学生进行调查、研究、分析和解决实际问题的能力,为后继专业课学习、实验研究和毕业设计打下坚实的基础。通过生产实习,拓宽学生的知识面,增加感性认识,把所学知识条理化系统化,学到从书本学不到的专业知识,并获得本专业国内外科技发展现状的最新信息,激发学生向实践学习和探索的积极性,为今后的学习和将从事的技术工作打下坚实的基础。实习要求:
严格按照实习计划规定进行,作好计划、实习过程、总结各个环节;实习期间,至少每周联系老师一次,联系方式以为面谈、邮件、电话、短信等为主;联系内容为技术咨询、疑难咨询、实习进展汇报、安全通告等;返校按期上交实习调研报告、实习总结和实习鉴定表。严格执行《程序性文件》和《质量手册》掌握环境检测的理论知识和安全知识。熟练掌握环境检测的检测方法和操作,能够单独完成环境检测的各个环节,对检测的整个过程形成具体的认识。实习内容:
5.1 理论知识的学习
刚进入实习单位的一周内,老师并没有让我接触实验仪器,只是带着我参观单位的主要仪器,并且耐心讲解仪器的使用方法,注意事项,安全性操作。通过学习,以前在脑海中比较神秘的仪器现在开始变得清晰,我对这些仪器的好奇心更加强烈,迫不及待的想动手操作仪器,但是按照老师的实习计划,我得先学好分析检测的理论知识和安全知识,这样才能是我在具体的实践中熟练上手和安全操作。于是在刚开始的一周内,我按照实习老师的计划开始了理论知识的学习。
在学习过程中,我了解了大量关于水质分析检测的方法,包括对各类重金属的检测,对挥发性有机物和持久性有机物的分析检测和对常规环境检测指标的检测方法,并且熟悉了很多分析仪器的使用方法和操作技能,包括气相色谱仪,液相色谱仪,紫外可见光分光光度仪,气质联用仪,COD检测仪,超纯仪,双道原子荧光光度计,离子色谱仪,原子吸收分光光度计等。
同时还进一步学习了学科性知识,如水质检测的目的是饮用水主要考虑对人体健康的影响,其水质标准除有物理指标、化学指标外,还有微生物指标;对工业用水则考虑是否影响产品质量或易于损害容器及管道。水质检测的指标包括色度、浑浊度、嗅和味、余氯、化学需氧量、细菌总数、总大肠菌群、耐热大肠菌群等。5.2 实践操作
通过一周的理论知识学习,我对水质分析检测有了更深刻的认识,对主要检测仪器有了进一步的理解,对水质分析检测方法有了全面的认识。我迫不及待的想用自己所学的知识与具体的实践相结合。在接下来的时间里,实习老师开始带领我开始具体的分析检测,刚开接触仪器的时候一股力气无法施展,有点摸不着头脑的感觉,还好实习老师经验丰富,知道像我这种刚开始实习的新学员都存在这种问题,于是我不再急躁,而是虚心接受老师的教导,仪器也开始慢慢的熟悉了,经过一段时间的学习主要的仪器我已经能熟练掌握了。
下面就是我具体学到的主要分析检测方法:
纺织,印染,造纸,食品,有机合成工业的废水中,常含有大量的染料,生物色素和有色悬浮微粒等,因此常常是使环境水体着色的主要污染源。对于水样的检测,我们对其进行了pH值,浑浊度,水的硬度、COD,BOD5,细菌总数的测定,由于考虑的对数据的保密性工作,在此对数据不作分析,只对主要分析方法加以介绍如下:
5.2.1 COD的检测—重铬酸钾标准法
仪器主要包括:全玻璃回流装置,加热装置(电炉),酸式滴定管,锥形瓶,移液管,容量瓶等。
试剂主要包括:重铬酸钾标准溶液,试亚铁灵指示液,硫酸亚铁铵标准溶液,硫酸硫酸银溶液。
测定步骤
硫酸亚铁铵标定:准确吸取10.00 mL重铬酸钾标准溶液于250 mL锥形瓶中,加水稀释至110 mL左右,缓慢加入10 mL浓硫酸,摇匀。冷却后,加入3滴试亚铁灵指示液(约0.15 mL),用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。
测定:取20 mL水样,加入10 mL的重铬酸钾,插上回流装置,再加入30 mL硫酸硫酸银,加热回流2 h冷却后,用90.00 mL水冲洗冷凝管壁,取下锥形瓶。溶液再度冷却后,加3滴试亚铁灵指示液,用硫酸亚铁铵标准溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点,记录硫酸亚铁铵标准溶液的用量。
测定水样的同时,取20.00 mL重蒸馏水,按同样操作步骤作空白实验。记录滴定空白时硫酸亚铁铵标准溶液的用量。
计算:CODCr(O2,mg/L)=8×1000(V0-V1)•C/V 注意事项
① 使用0.4 g硫酸汞络合氯离子的最高量可达40 mg,如取用20.00 mL水样,即最高可络合2000 mg/L氯离子浓度的水样。若氯离子的浓度较低,也可少加硫酸汞,使保持硫酸汞:氯离子=10:1(W/W)。若出现少量氯化汞沉淀,并不影响测定。
② 本方法测定COD的范围为50-500 mg/L。对于化学需氧量小于50 mg/L的水样,应改用0.0250 mol/L重铬酸钾标准溶液。回滴时用0.01 mol/L硫酸亚铁铵标准溶液。对于COD大于500 mg/L的水样应稀释后再来测定。
③ 水样加热回流后,溶液中重铬酸钾剩余量应为加入量的1/5-4/5为宜。
④ 用邻苯二甲酸氢钾标准溶液检查试剂的质量和操作技术时,由于每克邻苯二甲酸氢钾的理论CODCr为1.176 g,所以溶解0.4251 g邻苯二甲酸氢钾(HOOCC6H4COOK)于重蒸馏水中,转入1000 mL容量瓶,用重蒸馏水稀释至标线,使之成为500 mg/L的CODcr标准溶液。用时新配。
⑤ CODCr的测定结果应保留三位有效数字。
⑥ 每次实验时,应对硫酸亚铁铵标准滴定溶液进行标定,室温较高时尤其注意其浓度的变化。
干扰及其消除 酸性重铬酸钾氧化性很强,可氧化大部分有机物,加入硫酸银作催化剂时,直链脂肪族化合物可完全被氧化,而芳香族有机物却不易被氧化,吡啶不被氧化,挥发性直链脂肪族化合物、苯等有机物存在于蒸气相,不能与氧化剂液体接触,氧化不明显。氯离子能被重铬酸盐氧化,并且能与硫酸银作用产生沉淀,影响测定结果,故在回流前向水样中加入硫酸汞,使成为络合物以消除干扰。氯离子含量高于1000 mg/L的样品应先作定量稀释,使含量降低到1000 mg/L以下,再行测定。如将COD看作还原性物质的污染指标,则除氯离子之外的无机还原物质的耗氧全包括在内。如将COD看作有机物的污染指标的话,则需将无机还原物质的耗氧除去。对于Fe2+、S2-等无机还原物的干扰,可根据其测定的浓度,由理论需氧量计算出其需氧量,从而对已测的COD值加以校正。Fe2+和S2-的理论需氧量值分别为0.11g/g和0.47g/g。对的干扰一般采用氨基磺酸去除,其加入量为10 mg氨基磺酸/mg对Cl-的干扰一般采用HgSO4去除,其加入量为0.4 gHgSO4/20 mL水样。
5.2.2 BOD5的检测—重铬酸钾标准法
对于不含或少含微生物的工业废水,在测定BOD5时应进行接种,以引入能分解废水种有机伍的微生物。当废水中存在难于被一般生活污水中的微生物以正常速度降解的有机物或含有剧毒物质时,应接种经过驯化的微生物。
(1)、实验仪器设备和材料
仪器:恒温培养箱、5—20L细口玻璃瓶、1000-2000ML量筒、玻璃搅棒、溶解氧瓶、虹吸管。
试剂:磷酸盐缓冲溶液、硫酸镁溶液、氯化钙溶液、氯化铁溶液、盐酸溶液、氢氧化钠溶液(0.5mol/L)、亚硫酸钠溶液(C1/2 Na2SO3=0.025mol/L)、葡萄糖-谷氨酸标准溶液;
稀释水:在5-20L玻璃瓶内装入一定量的的水,控制水温在20℃左右。然后用无油空气压缩机或薄膜茇,将此水暴气2-8h,使水中的溶解氧接近于饱和,也可以鼓入适量纯氧。瓶口盖以两层经洗涤晾干的纱布,置于20℃培养箱中放置数小时,使水中溶解氧含量达8mg/L左右。临用前于每升水中加入氯化钙溶液、氯化铁溶液、硫酸镁溶液、磷酸盐缓冲溶液各1mL,并混合均匀。
接种液: 当分析难于降解物质的废水时,在排污口下游3-8Km 处取水样作为废水的驯化接种业。如无此种水源,可取中和或经适当稀释后的废水进行连续暴气、每天加入少量该种废水,同时加入适量表层土壤或生活污水,使能适应该种废水的微生物大量繁殖。当水中出现大量絮状物,或检查其化学需氧量的降低值出现突变时,表明适用的微生物已进行繁殖,可用做接种液。一般驯化过程需要3-8 d
11、接种稀释水:取适量接种液,加于稀释水中,混匀。每升稀释水中接种液加入量生活污水为1-10 mL;表层土壤浸出液为20-30mL;河水、湖水为10-100mL 接种稀释水的PH值应为7.2,BOD5值以在0.3-1.0mg/L之间为宜。接踵稀释水配置后应立即使用。
(2)、实验步骤 水样的预处理
1、水样的ph值若超出6.5-7.5范围时,可用盐酸或氢氧化钠稀溶液调节至近于7,但用量不要超过水样体积的0.5%。若水样的酸度或碱度太高,可改用高浓度的碱或酸液进行中和。
2、水样中含有铜、铅、锌、铬、砷、氰等有毒物质时,可使用经驯化的微生物接种液的稀释水进行稀释或增大稀释倍数,以减小毒物的浓度
3、含有少量游离氯的水样一般放置1-2h,游离氯即可消失 对于游离氯在短时间不能消散的水样,可加入亚硫酸钠溶液,以除去之。其加入量的计算方法是:取中和好的水样100ml,加入1+1乙酸10ml,10%(m/V)碘化钾溶液1ml,混匀。以淀粉溶液为指示剂,用亚硫酸钠标准溶液消耗的体积及其浓度,计算水样中所需加亚硫酸钠溶液的量。
4、从水温较低的水浴中采集的水样,可遇到含有过饱和溶液氧,此时应将水样迅速升温至20℃左右,充分振摇,以赶出过饱和的溶解氧。
5、从水温较高的水浴或废水排放取得的水样,则应迅速使其冷却至20℃左右,并充分振摇,使与空气中氧分压接近平衡。
(3)水样的测定
不经稀释水样的测定:溶解氧含量较高、有机物含量较少的地面水,可不经稀释,而直接以虹吸法将约20℃的混匀水样转移至两个溶解氧瓶内,转移过程中注意不使其产生气泡。以同样的操作使两个溶解氧瓶充满水样,加塞水封。
立即测定其中一瓶溶解氧。将另一瓶放入培养箱中,在20±1℃培养5d后,测其溶解氧。
5.2.3 水体pH值—玻璃电极法
天然水的pH值多在6~9范围内,这也是我国污水排放标准中的pH控制范围,pH值是水化学中储藏用的和最重要的温度下进行,或者校正温度,通常采用玻璃电极法和比色法测定pH值。比色法简便,但受色度,浊度,胶体物质,氧化剂,还原剂及盐度的干扰。玻璃电极法基本上不受以上因素的干扰,然而,pH在10以上时,产生的“钠差”,读数偏低,需选用特制的“低钠差”玻璃电极,或使用于水样的pH值相近的标准缓冲溶液对仪器进行校正。
﹙1﹚原理:以玻璃电极为指示电极,饱和甘汞电极为参比电极组或电池。在25摄氏度理想条件下,氢离子活度变化10倍,使电动势偏移59.6 mV,根据电动势的变化测出pH值。
﹙2﹚仪器:各种型号的pH值计或离子活度计,玻璃电极,甘汞电极或银-氯化银电极,磁力搅拌器,50 mL聚乙烯或聚四氟乙烯烧杯
﹙3﹚试剂:pH标准缓冲溶液,饱和氯化钾溶液 ﹙4﹚步骤
A)按照仪器使用说明书准备
B)将水样与标准溶液调到同一温度,记录测定温度,把仪器温度补偿旋纽调至该温度处。选用与水样pH值相差不超过2个pH单位的标准溶液校准仪器。从第一个标准溶液中取出两个电极,彻底冲洗,并用滤纸边缘轻轻吸干。再浸入第二个标准溶液中,其pH值约与前一个相差3个pH单位。如测定值与第二个标准溶液pH值之差大于0.1 pH值时,就要检查仪器,电极或标准溶液是否有问题。当三者均无异常情况时方可测定水样。
C)水样测定:先用蒸馏水仔细冲洗两个电极,再用水样冲洗,然后将电极浸入水样中,小心搅拌或摇动使其均匀,待读数稳定后记录pH值。
5.2.4 水体中浑浊度的检测
浑浊度是由于水中含有泥沙、粘土、有机物、浮游生物和微生物等悬浮物质所造成的。浑浊度的单位是用“度”来表示的,就是相当于1 L的水中含有1 mg的SiO2时,所产生的浑浊程度为1度,或称杰克逊。浊度单位为JTU,1JTU=1 mg/L的白陶土悬浮体。现代仪器显示的浊度是散射浊度单位NTU,也称TU。1TU=1JTU。
浑浊度的检测方法:
浑浊度是一种光学效应,是光线透过水层时受到阻碍的程度表示水层对于光线散射和吸收的能力。它不仅与悬浮物的含量有关,而且还与水中杂质的成分、颗粒大小、形状及其表面的反射性能有关。因此可以通过水的透光率来换算水的浊度。
国家标准:浑浊度在10度时,人们可察觉水质浑浊。如果浑浊度高可导致某些有害物质(如多氯联苯、苯并(a)芘等)、细菌、病毒的含量增高。国标要求生活饮用水的浑浊度不超过3度,特殊情况不超过5度。
空余时间里,指导老师还给我们讲了其他项目的检测原理及仪器的知识,也教我们怎么用。实习感想
在本次实习中,在导师的指导下,我充分掌握了水中污染物各项指标的检测方法,并通过延伸学习,对污水处理整套工艺运行情况及设备构筑物的安装等问题进行了全面细致的把握理解,使我对环境工程专业建立了感性认识,让我学到课堂上学不到的知识,学到了更加明确实用的操作技术和应用理论。实习使我更加明白如何充分灵活运用自己的课堂知识进行实际操作、锻炼自己的实践操作能力;使我能够走出课堂,在现实生活中寻找水质监测的应用实例。本次实习,促使我们在很多方面得到了大步锻炼和提高:运用所学知识与应用实践相统一的能力;合理实践的能力和实际操作中的灵活性、科学性意识;对相关水质监测设备的应用能力;污水处理工艺流程的认知和了解。与此同时,实习也让我意识到污水处理的重要性。如今,经济的增长对环境的压力日趋加大,工业废水、生活污水等污染着河道湖泊、甚至土壤地下水。通过检测对水样各指标加以分析试验,为水处理工艺提供了不可或缺的资料。
在实习期间,我们互相支持鼓励,一起解决难以解决的问题,使得实习生活变得不会枯燥无味。这种精神的培养不仅给我的职业道路指明了前进的方向,也使我体会到团队精神在工作中的重要性。
污水指标实验各个方面都要仔细,这就提醒我们考虑问题要全面谨慎、处理问题细心。在工作中,方法对于问题的处理是至关重要的。
总的来说,这次实习经历使我学到了在校园、课堂、书本上学不到的东西,也是我懂得了很多人生道理,我要感谢老师给我这次实习的机会,感谢指导老师让我对自己有了更为深刻的认识。
第四篇:智能小车嵌入式系统设计分析
前言
智能小车是在动态不确定环境下对人工智能的考验,是以各种工控目的为载体的高科技对抗,是培养信息、自动化领域科技人才的重要手段,同时也是展示高科技水平的生动窗口和促进科技成果实用化和产业化的有效途径。智能小车的研究融入了机器人学、机电一体化技术、通讯与计算机技术、视觉与传感器技术、智能控制与决策等多学科的研究成果,反映出一个国家信息与自动化技术的综合实力。所以本论文对智能小车的研究意义重大。
-0
一、总体设计方案
1.总体方案
智能小车可在自主行驶和人工控制两种模式之间切换,并实现自动避障。通过PWM输出驱动步进电机来实现小车的行驶,改变PWM的周期、占空比、正反则可以实现前进、后退、转弯、加速、减速等行为。通过红外探头检测前方障碍实现自动避障。外接红外线接收器,可以通过自制的红外线遥控来控制小车的行为。
2.平台选取
EasyARM1138开发板
开发板搭载Luminary LM3S1138芯片,为32位ARM Cortex – M3内核(ARM v7架构),50Mhz运行频率。拥有7组GPIO,可配置为输入、输出、开漏、弱上拉等模式。4个32位Timer,每个都个拆分为2个独立子定时器。6路16位PWM,通过CCP管脚能产生高达25Mhz的方波。
自制车架
3456789 SYSCTL_SYSDIV_10);// 分频结果为20MHz */
TheSysClock = SysCtlClockGet();// 获取系统时钟,单位:Hz
}
int main(void){ jtagWait();/* 防止JTAG失效,重要!*/
SystemInit();
IR_Int_Init();
while(1){ if(IR_flag == 1){ IR_flag = 0;for(a = 18;a < 26;a++){ IR_code_8 = IR_code_8 << 1 + IR_code_32[a];}
if(IR_code_8 == 101){ SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);// 使能GPIOD端口
GPIOPinTypeGPIOOutput(GPIO_PORTD_BASE , GPIO_PIN_0);// 设置PD0为输入类型 //forword GPIOPinWrite(GPIO_PORTD_BASE , GPIO_PIN_0 , 0x00);// PD0输出低电平 }
IR_code_8 = 0;
//switch(IR_code_8)//{ //case /*00000*/101:SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);// 使能GPIOD端口
// GPIOPinTypeGPIOOutput(GPIO_PORTD_BASE , GPIO_PIN_0);
// 设置PD0为输入类型 //forword //
GPIOPinWrite(GPIO_PORTD_BASE , GPIO_PIN_0 , 0x00);// PD0输出低电平 //case /*0000*/1101://back //case /*0000*/1000://left //case /*0000*/1010://right //case /*0000*/1001://stop //case /*000*/10100://level_1 //case /*000*/10101://level_2 //case /*000*/10110://level_3 //default : //} //IR_code_8 = 0;} } }
/**************************************************************** ** Function name: GPIO_PORT_F_ISR
消除中断 不正 if(gap >=10 && gap <=20)//接收数据“1” { data = 1;code_flag = 1;} else if(gap >=2 && gap <=8)//接收数据“0” { data = 0;code_flag = 1;} else if(gap >=40 && gap <=50)//正常的其实高电平时间 { start_flag = 1;}
if(start_flag
&& //code_flag和start_flag均为1 { IR_code_32[i] = data;i++;
if(I >= 32){ IR_flag = 1;break;} } } } //} GPIOPinIntClear(IR_PORT,ulStatus);//-14 ** Descriptions: 延时100us ** input parameters: 无 ** output parameters: 无 ** Returned value: 无 ** Created by:
张伟杰
** Created Date: 2014.05.18 ****************************************************************/ void Delay_100_us(void){ unsigned ulValue;
SysTickPeriodSet(600);SysTickEnable();do { ulValue = SysTickValueGet();} while(ulValue > 0);
SysTickDisable();}
3.红外探头模块
#include
/* 定义按键 */ #define KEY_PORT SYSCTL_PERIPH_GPIOG #define KEY_PIN GPIO_PORTG_BASE , GPIO_PIN_5 #define keyGet()GPIOPinRead(KEY_PIN)
#define IR_PORT SYSCTL_PERIPH_GPIOF #define IR_PIN GPIO_PORTF_BASE , GPIO_PIN_1
// 定义全局的系统时钟变量
unsigned long TheSysClock = 12000000UL;unsigned IR_flag = 0;unsigned long IR_code_32[32];unsigned long IR_code_8 = 0;unsigned a;
int Time_Get();void Delay_100_us();
/**************************************************************** ** Function name: jtagWait ** Descriptions: 防止JTAG失效,KEY=PG5 ** input parameters: 无 ** output parameters: 无 ** Returned value: 无 ** Created by:
张伟杰
** Created Date: 2014.05.15 ****************************************************************/ void jtagWait(void){ SysCtlPeripheralEnable(KEY_PORT);/*
使能KEY所在的GPIO端口 */ GPIOPinTypeGPIOInput(KEY_PIN);/* 设置KEY所在管脚为输入 */ if(keyGet()== 0x00){ /* 如果复位时按下KEY,则进入 */ for(;;);/* 死循环,以等待JTAG连接 */ } SysCtlPeripheralDisable(KEY_PORT);/* 禁止KEY所在的GPIO端口 */ }
/**************************************************************** ** Function name: IR_Int_Init ** input parameters: 无 ** output parameters: 无 ** Returned value: 无 ** Created by:
张伟杰
** Created Date: 2014.05.18 ****************************************************************/ void IR_Int_Init(void){ SysCtlPeripheralEnable(IR_PORT);GPIOPinTypeGPIOInput(IR_PIN);GPIOIntTypeSet(IR_PIN,GPIO_LOW_LEVEL);GPIOPinIntEnable(IR_PIN);
IntEnable(INT_GPIOF);IntMasterEnable();}
-***3 SysTickPeriodSet(600);SysTickEnable();do { ulValue = SysTickValueGet();} while(ulValue > 0);
SysTickDisable();}
三、程序调试
调试PWM信号时,由于板上晶振为6Mhz,装载值和匹配值最大为65535,可以设置出需要的周期和占空比。如
TimerLoadSet(TIMER0_BASE , TIMER_BOTH , 60000);TimerMatchSet(TIMER0_BASE , TIMER_A , 6000);则对应的周期为6Mhz / 60K = 100Hz,占空比为0.6K / 6K = 1/10。配置PWM前要先配置GPIO口,定义为PWM输出,并选择Timer的输出模式为16位PWM,经过三重配置才能正确输出PWM信号。红外接收器解码过程重点是对红外码内间隔时间的判断。调试红外码时应当设当地设置flag帮助多个判断。当引导码时间参数符合标准时flag1置1,接收到正确的红外码,进入下一步。当用户码每个间隔符合标准的时间间隔时flag2置1,表示该一位码正确,进入一下步。当接收到32位数据后flag3置1,表示红外码结束,开始进行解码。解码部分用case语句进行判断。红外码用数组储存,使用的时候会方便一点。例如: for(a = 18;a < 26;a++){ IR_code_8 = IR_code_8 << 1 + IR_code_32[a];} 这样就可以随意获取某几位码进行下一步操作。
四、小结
本次课内实验把我带进了ARM的领域,通过动手编程和小组讨论,让我对项-25
第五篇:水质监测申请报告
关于xxx(地点)更新机井水质检测费用借款的申请
XX单位领导:
我公司于2016年4月,在(XXX地点)更新机井一眼,因业主单位要求施工方进行水质检测,并垫付资金,现申请向公司财务借款1500元。
妥否,请批示。
XX设备物资有限公司 2016年10月31日