第一篇:基于有机半导体材料的有机场效应晶体管化学传感器
基于有机半导体材料的有机场效应晶体管化学传感器
摘 要:化学传感器是基于有机半导体材料的有机场效应晶体管的一个重要的应用方向。本文介绍了有机场效应晶体管化学传感器的工作原理和优点,总结了近年来有机场效应晶体管化学传感器的发展过程、优化方法,以及此类器件在气体传感、液体传感等领域的不同应用方向。并对有机场效应晶体管化学传感器在将来的阵列化、多功能、柔性化等方向的发展趋势做了展望。
关键词:有机半导体;有机场效应晶体管;化学传感器;柔性电子器件
中图分类号:O62 文献标识码:A
有机半导体是基于有机共轭分子的一类具有半导体电学特性的有机物,根据其分子类型可以分为小分子有机半导体和聚合物半导体。科研工作者们围绕基于有机半导体材料的电子器件展开了大量的研究,认为有机半导体将开辟电子器件的新时代――有机电子器件时代。目前为止,大量的有机半导体材料被发现,已经形成了一个巨大的半导体材料体系。据不完全统计,已发现的有机半导体材料已经超过700种。和传统的无机半导体器件相比,有机半导体继承了有机物的特性,因此拥有一些优点,例如:有机半导体结构的多样性允许通过分子设计实现材料的功能化;有机半导体材料具有柔韧性,可以利用柔性基底,制备全柔性器件,进而得到柔性显示屏、柔性集成电路、电子纸等可卷曲、可折叠产品;大部分有机半导体材料可采用低成本易操作的溶液法进行器件的制备,如喷墨打印、旋涂、滴注、印刷等,有利于大规模制备集成电路,制备成本低等。由于有机半导体的这些特点,因而科研机构广泛地研究其用在有机发光器件、有机光检测器、有机太阳能电池、压力传感器、有机存储设备、柔性平板显示、记忆组件、大规模集成电路、电子纸等众多领域的潜在应用前景。
有机场效应晶体管是以有机半导体材料作为核心的晶体管器件,其器件结构如图1所示,包含半导体层,介电层以及3个终端(源极,漏极和栅极)。由于有机半导体作为有机物本身的物理和化学特性,因此其导电能力容易随着外部的环境而变化,这一特性使得有机场效应晶体管在化学传感中有着良好的应用前景。
随着科学技术的发展,以及人类对生活环境和生活水平的要求的提高,能有效探测各类有害化学物质的传感器在国防军事,工业生产,环境监控以及医疗卫生等方面有着越来越重要的作用。而近年来,关于食品卫生安全方面的问题和隐患正越来越受到人们的重视,比如蔬菜水果上的农药残留,奶粉中的三聚氰胺、过期食品的滥用,以及有害化学添加剂在食品中的使用等一系列事件和现象,更使得能方便有效地检测食品安全的传感器成为当前亟待研究的重要课题。常用的化学检测仪器通常成本高,体积大,操作复杂,无法完全满足当前的实际需要。尤其是在人们的日常生活中需要低成本易操作的检测方法,现有的检测仪器和手段的应用受到很多方面的限制。因此,研究一种低成本,操作简单,携带方便的有害物质探测传感器具有非常重大的科研意义。
基于有机场效应管的传感器有着成本低,简单轻便,检测方便快速等诸多优点。能极大地弥补大型化学检测仪器的不足,适合在日常生活中广泛应用,成为对现有化学检测仪器和手段的有效补充。更重要的是,可以通过化学合成的方法制备合成带有特定分子基团和分子结构的有机半导体材料,在保持材料的电学性能的同时,控制改变材料的化学特性,从而大大提高有机半导体材料对特定化学物质的探测灵敏度和选择性。此外,基于晶体管结构的传感器能直接以输出电流作为传感器的输出信号,不需要进行信号转换,因此结构简单,非常有利于传感器的小型化。相对而言,许多其他类型的传感器需要专门的附加器件把某种物理量或者化学量转化为电信号进行测量,使得整体的传感器器件结构相对复杂,不利于在日常生活中大范围地使用。而且基于晶体管结构的传感器能提供更多的关于探测目标物质的信息,从而得到更准确更具选择性的探测。
有机场效应管化学传感器的传感探测工作原理就是利用被检测物分子与有机半导体层之间的物理、化学反应来实现检测。例如利用被检测物质和有机半导体层的电荷相互作用、电荷掺杂等相互作用,引起有机场效应晶体管中的电荷的移动速度、浓度的改变,从而改变器件的输出电流特征,从而实现对化学物质的辨识性和定量化检测,因此提高传感灵敏度和选择性的基本策略是加强待检测物与半导体特异性相互作用。
早期有机场效应晶体管化学传感器的研究主要集中气体传感中。近些年,有机场效应晶体管的研究被拓展到了液体传感中。比如斯坦福大学的鲍哲南教授和她领导的团队报道了能在水溶液环境下工作的基于有机半导体薄膜晶体管的传感器。当前国际上现有研究中的有机场效应晶体管化学传感器基本都基于薄膜晶体管结构,然而有机半导体薄膜结构的固有特性限制了化学传感器灵敏度和反应速度进一步提高的空间。因为探测目标分子需要在有机半导体薄膜中扩散传输,并在所有可吸附点达到浓度平衡后才能使有机场效应晶体管化学传感器的反应达到最高点。因此有机场效应晶体管中有机半导体薄膜的厚度在近几年的研究中不断被减小,以减小探测目标分子在扩散穿透薄膜所需的时间,从而提高传感器的灵敏度和反应速度。科研人员曾研究开发了超薄的有机半导体薄膜晶体管传感器,最薄的有机半导体薄膜达到了几个纳米厚度,已经接近了这种薄膜结构的极限,无法再通过减小有机半导体薄膜厚度来进一步提高传感器性能。
未来的有机场效应晶体管,其发展方向主要有阵列化、多功能、柔性化等方向。阵列化的有机场效应晶体管使用多个同类或不同类的有机半导体和晶体管单元,将他们整合在一个器件上,这样不同的器件会对每种化学探测目标有不同的反应,从而形成一?N反应图谱,以此能有效提高器件的探测选择性和准确度。多功能化指器件具备除了化学传感以外不同的探测能力,例如对温度和压力的探测。柔性化的有机场效应晶体管利用有机半导体本身的柔性优点,制备整体能弯曲变形的传感器薄膜,可以在电子皮肤等领域有潜在应用。此外,进一步提高有机场效应晶体管化学传感器的长期稳定性也是一个重要的发展方向。而从传感器种类方面看,有机场效应晶体管传感器的种类将越来越多,也越来越完善。有机场效应晶体管传感器的核心部分是有机半导体层,因此有机半导体材料的发展对有机场效应晶体管传感器的发展起到重要推进作用。随着有机半导体材料种类的继续增多,基于有机半导体材料的传感器种类和数量也将逐渐增多,这种便捷的低成本传感器将用于更多的场合,获得更好的性能。
参考文献
[1]胡文平.有机场效应晶体管[M].北京:科学出版社,2011.[2]刘雅玲,李洪祥,胡文平,等.有机单晶场效应晶体管[J].化学进展,2006(18):189.
第二篇:有机场效应晶体管和研究
有机场效应晶体管的研究
摘要:有机场效应晶体管(Organic Field Effect Transistors,OFETs)是以有机半导体材料作为有源层的晶体管器件。和传统的无机半导体器件相比,由于其可应用于生产大面积柔性设备而被人们广泛的研究,在有机发光、有机光探测器、有机太阳能电池、压力传感器、有机存储设备、柔性平板显示、电子纸等众多领域具有潜在而广泛的应用前景。文中对OFET结构和工作原理做了简要介绍,之后重点讨论了最近几年来OFET中有机材料和绝缘体材料的发展状况,接着总结了OFET制备技术,最后对OFET发展面临问题及应用前景做了归纳和展望。关键词:有机半导体材料;有机场效应晶体管;迁移率;绝缘体材料;柔性面板显示
0引言
场效应晶体管(Field Effect Transistor FET)是利用电场来控制固体材料导电性能的有源器件。由于其所具有体积小、重量轻、功耗低、热稳定性好、无二次击穿现象以及安全工作区域宽等优点,现已成为微电子行业中的重要元件之一。
目前无机场效应晶体管已经接近小型化的自然极限,而且价格较高,在制备大表面积器件时还存在诸多问题。因此,人们自然地想到利用有机材料作为FET的活性材料。自1986年报道第一个有机场效应晶体管(OFET)以来,OFET研究得到快速发展,并取得重大突破。由于OFET具有以下突出特点而受到研究人员的高度重视:材料来源广,工作电压低,可与柔性衬底兼容,适合低温加工,适合大批量生产和低成本,可溶液加工成膜等。从使用共扼低聚物成功地制造出第一个有机场效应晶体管,到全有机全溶液加工的光电晶体管的诞生,这些突破性进展对有机半导体材料的发展无论从理论上还是工业生产上都起到了巨大的推动作用。
1器件结构、工作原理及性能评定
1.1有机场效应晶体管基本结构
传统的有机场效应晶体管的主要包括底栅和顶栅两种结构,其中底栅和顶栅结构又分别包括顶接触和底接触两种结构,如图1所示。
图1典型的OFET结构
OFET 一般采用栅极置底的底栅结构,即图 1(a)、(b)所示的两种结构,它们分别是底栅-顶接触结构和底栅-底接触结构。二者最大的区别就是有机层是在镀电极之前(a顶接触)还是之后(b底接触)。顶接触结构的源、漏电极远离衬底,有机半导体层和绝缘层直接相连,在制作的过程中可以采取对绝缘层的修饰改变半导体的成膜结构和形貌,从而提高器件的载流子迁移率。同时该结构中半导体层受栅极电场影响的面积大于源、漏电极在底部的器件结构,因此具有较高的载流子迁移率。底接触型OFET的主要特点是有机半导体层蒸镀于源、漏电极之上,且源、漏电极在底部的器件结构可以通过光刻方法一次性制备栅极和源、漏电极,在工艺制备上可以实现简化。而且对于有机传感器来说,需要半导体层无覆盖地暴露在测试环境中,此时利用底结构就有较大的优势。而底接触由于半导体层与金属电极之间有较大的接触电阻,导致载流子注入效率降低从而影响到其性能。目前这方面缺陷也有改进,如使用镀上聚乙撑二氧噻吩和聚苯乙烯磺酸款(PEDOT:PSS)材料的金电极可以减少与有机半导体并五苯材料之间的接触电阻。二者之间载流子注入的阻力由0.85 eV直接降到0.14 eV,导致场迁移率从0.031 cm2 /(V·s)增加到0.218 cm2 /(V·s)。
图1(c),(d)为顶栅结构,即首先在衬底上制作有机半导体层,然后制作源、漏电极,随后再制作绝缘层,最后在绝缘层上面制作栅极。这两种栅极位于最顶部的顶栅结构在文献报道中并不是很多。
图2是垂直沟道OFET结构,是以缩短沟道长度为目的的一类新型场效应晶体管。它以半导体层为沟道长度,依次蒸镀漏-源-珊电极,通过改变栅电压来控制源、漏电极的电流变化。
图2垂直沟道OFET结构
这种结构的主要特点是:沟道长度由微米量级降低至纳米量级,极大的提高了器件的工作电流,降低了器件的开启电压。这类晶体管的不足之处在于漏-源-栅极在同一竖直面内,彼此间寄生电容的存在使得零点电流发生漂移,一般通过放电处理后可以避免这种现象。1.2工作原理
以P型有机场效应0体管(见图3)为例来说明OFET的工作原理。
图3 p型OFET工作原理图
有机场效应晶体管在结构上类似一个电容器,源、漏电极和有机半导体薄膜的导电沟道相当于一个极板,栅极相当于另一个极板。当在栅、源之间加上负电压从VGS后,就会在绝缘层附近的半导体层中感应出带正电的空穴,栅极处会积祟带负电的电子。此时在源、漏电极之间再加上一个负电压VDS,就会在源漏电极之间产生电流IDS通过调节VGS和V ns可以调节绝缘层中的电场强度,而随着电场强度的不同,感应电荷的密度也不同。因而,源、漏极之间的导电通道的宽窄也就不同,进而源、漏极之间的电流也就会改变。由此,通过调节绝缘层中的电场强度就可以达到调节源漏极之间电流的目的。保持VDS不变,当VGS较小时IDS很小,称为“关”态;当VGS较大时,IDS达到一个饱和值,称为“开”态。1.3主要性能指标
对有机半导体层的要求主要有以下几个方面:第一,具有稳定的电化学特性和良好的π共扼体系,只有这样才有利于载流子的传输,获得较高迁移率;第二,本征电导率必须较低,这是为了尽可能降低器件的漏电流,从而提高器件的开关比。此外,OFET半导体材料还应满足下列要求:单分子的最低未占分子轨道(LUMO)或最高已占分子轨道(HOMO)能级有利于电子或空穴注入;固态晶体结构应提供足够分子轨道重叠,保证电荷在相邻分子间迁移时无过高能垒。因此,评价OFET的性能指标主要有迁移率、开—关电流比、阈值电压3个参数。场迁移率是单位电场下电荷载流子的平均漂移速度,它反映了在不同电场下空穴或电子在半导体中的迁移能力;开—关电流比定义为在“开”状态和“关”状态时一的漏电流之比,它反映了在一定栅极电压下器件开关性能的优劣。为了实现商业应用,OFET的迁移率一般要求达到0.O1 cm2 /(V·s),开—关比大于10。对于阈值电压,要求尽量低。OFET发展至今,电压由最初的几十甚至上百伏下降到5 V甚至更低。开关电流比由102~103提高到109,器件载流子迁移率也由最初的10-5 cm2 /(V·s)提高到了15.4 cm2/(V • s)。
器件性能通常用输出特性曲线和转移特性曲线来表征。
图4是以聚合物PDTT为半导体材料的顶结构OFET输出特性曲线(a)和转移特性曲线(b)图。从图4(a)可以看出漏电流ID在VD绝对值小于20 V范围内随VD绝对值的增大而增大。图4(b)中,ID随着VG负电压绝对值的增大而增大。最终计算出该器件的迁移率为2.2x10 3 cm2 /(V·s)。
图4顶结构OFET输出特性曲线及转移特性曲线图
2有机半导体材料
目前研究较多的是单极性有机场效应晶体管,根据有机半导体层材料的不同可将其分为p型材料和n型材料两大类。2.1 p-沟道有机半导体材料
p型半导体材料又称空穴型半导体材料,即空穴浓度远大于自由电子浓度的杂质半导体材料,p型有机材料又分为p型高聚物、p型低聚物、p型小分子3类。常见的p型有机半导体材料结构见图5。
图 5典型 p 型有机半导体材料化学结构
2.1.1 p沟道高聚物
高分子聚合物(如烷基取代的聚噻吩等)优势在于可使用涂膜甩膜、LB膜等方法制备。这些制备方法优点是工艺简单、成木低廉,缺点是有机材料难于提纯且有序度较低,从而导致了高分子材料较低的迁移率。聚噻吩(PTh)经过真空干燥后作为活性材料空穴迁移率为0.25 cm2 /(V·S)。基于噻吩的聚合物,poly(3-hexylthiophene)(P3HT)被广泛的研究。烷基可以通过头-尾(H-T)相连和头-头(H-H)相连两种方式被引入聚噻吩链。引入烷基的聚噻吩链与基底接触展不了高度有序的自适应薄膜结构。经H-T方式引入烷基的P3HT迁移率接近0.2 cm2 /(V • s),开关电流比接近106。使用LB成膜技术的P3HT迁移率为0.02cm2 /(V•s)。
Takashi Kushida等人对(P3HT)材料做了进一步的研究,他们通过旋涂的方法制成的OFET迁移率仅有1.3x10-4cm2 /(V·s),通过改变成膜方法,采用微接触打印技术之后,得到1.6x10-2 cm2 /(V•s)的迁移率,比旋涂成膜方法提高了两个数量级。性能的提高归因于微接触打印方法生成的P3HT薄膜表面高度有序,有利于载流子的横向传输。2.1.2 p-沟道低聚物
常见的低聚物有噻嗯齐聚物和噻吩齐聚物等,与高分子聚合物相比,低聚物用于OFET有许多优点,如可通过调整分子的结构和长度来控制载流子的传输等。相关报道表明,星形低聚噻吩迁移率为2x10-4 cm2 /(V•s),开关电流比达到102。一系列星形低聚噻吩衍生物也可作为OFET材料。如通过氯仿溶液旋涂得到薄膜,场迁移率达到1.03x10-3cm2/(V•s),开关电流比103。以三基化胺为中心以π共扼噻吩为分支的混合材料也被合成出来,其空穴迁移率为0.011 cm2 /(V•s)。2.1.3 p-沟道小分子
有机小分子拥有聚合物无法比拟的优点:易于提纯,减少杂质对晶体完整性的破坏,达到器件所要求的纯度;一定的平面结构大大降低了分子势垒,有利于载流子高速迁移;易形成自组装多晶膜,降低晶格缺陷,提高有效重叠;较容易得到单晶,极大地提高了场效应迁移率。金属酞菁小分子因具有以上优点而被广泛研究,近几年取得了很大进展。2005年Yasuda等用Ca做电极制备的CuPc(酞菁铜)FET显示出电子和空穴两种载流子传输性质。2007年Opitz等人又提出用酞菁铜和富勒烯混合膜制备OFET的思想,并讨论了两种化合物不同的混合比率所对应的各种迁移率和阈值电压。利用5,50-bis-(7-dodecyl-9H-fluoren-2-yl)-2,20-hithiophene(DDFTTF)作为活性材料制成的OTFT器件空穴迁移率为0.11 cm2 /(V • s),开关电流比为3.1x106cm2 /(V • s),具有很高的灵敏度,可用于传感器材料研究。晶态并苯化合物的禁带宽度随着芳环数目的增加而降低,有很强的电荷注入能力,表现出很高的载流子迁移率。载流子的传输效率随着分子的有序调整或者晶体取向的改善而提高。并苯小分子表现出很好的性能也一直是研究的热点,尤其是并五苯材料。2008年中科院化学所采用20 nm厚的聚乙烯基咔唑(PVK)薄膜作为缓冲层,修饰并五苯与SiO2:的界面,制备了并五苯OFETs。结果表明,PVK缓冲层的加入明显提高了器件迁移率和开关比(迁移率约为0.5 cm2 /(V•s),开关比约为107;同时显著降低了器件的夹断电压(器件的夹断电压的绝对值都小于20v)。不过有机小分子溶液粘度太低,难于用溶液法加工成膜,且多数有机小分子半导体对环境较敏感。Raphael等人研究了dithiophene}etrathiafulvalene(DT-TTF)单晶材料的性能,分别制作了以DT-TTF为有机半导体材料的顶接触和底接触OFET两种器件结构。对比发现顶接触结构的性能优于底接触器件结构,研究结果符合晶体形态学。2.2 n-沟道有机半导体材料
n沟道有机半导体材料也可称为电子型半导体。n型半导体即自由电子浓度远大于空穴浓度的杂质半导体。第一个n型OFET在1990年被报道。它采用双酞菁铬为场效应材料,但器件性能一般,载流子迁移率为2x10-4cm2 /(V·s)。n型有机半导体材料对氧和湿度较敏感,尤其是有机阴离子(特别是碳阴离子)很容易和氧发生反应,从而造成场效应迁移率低和晶体管工作性能不稳定。正因如此,n型有机场效应材料在数目上大大少于p型有机场效应材料。因此才找高性能,高稳定度的n型有机半导体材料已经成为了一项具有挑战性的工作。n型有机半导体材料也分为n型高聚物、n型低聚物、n型小分子3类。2.2.1 n沟道高聚物
n型高聚物所表现的性能参数并不是很理想,因此对其研究的相关报道很少。梯形聚合物BBL,经路易斯酸AlCl3或GaCl3掺杂后迁移率达到0.06cm2/(v·s)。PCBM 和 PCBM 与 P3HT 的混合物(1∶ 2)作为太阳能电池材料而被广泛研究,在室温下的电子迁移率分别为10-3cm2/(V·s)和10-4cm2/(v·s)。2.2.2 n沟道低聚物
第一个n型低聚物OFET是由全氟烷基低聚噻吩衍生物DFH-6T制备的,在真空条件下其载流子迁移率达0.24 cm2 /(V·s)。同时,该小组设计并合成了全氟芳基低聚噻吩F一衍生物,在溶液加工条件下制备的OFET室温时载流子迁移率达0.08 cm2 /(V • s)。这些低聚物表现出独特的填充特性,通过溶液处理的低聚物为高度有序的薄膜表现出单晶形态特性。2005年,Yoon等人合成了含有碳基的n-沟道低聚噻吩。例如DFHCO-4TCO,迁移率大致为0.O1 cm2 /(V·s),而通过真空蒸镀成膜DFHCO-4T,电子迁移率达0.6 cm2 /(V·s)。溶液旋涂发成膜的DFPCO-4T,也达到0.24 cm2 /(V • s)的电子迁移率。2.2.3 n-沟道小分子
n沟道小分子的研究主要集中在并五苯,萘,二萘嵌苯,金属酞菁,萘酞亚胺,富勒烯以及其衍生物上。最初Katz等人对萘酞亚胺进行了研究,但迁移率较低。利用具有可溶特性的萘二酞亚胺(NDI)和花二亚酞胺(PDI)的衍生物制成的场效应晶体管电子迁移率分别可达10-2cm2/(V • s)和5x10-4 cm2/(V•s)。并且基于PDI衍生物的场效应晶体管显示出双极性特性。而 Chesterfield等人报道二烃基取代的二萘嵌苯衍生物PDI8在真空中电子迁移率达0.6 cm2/(V • s),开关电流比大于105。同样PDI13通过140 0C锻烧之后迁移率达2.1cm2/(V·s)。2,4,6-tris(4-cyano-1,2,5-thiadiazol-3-yl)-1,3,5-triazine(TCTDT)材料由于具有较低的LUMO轨道,有利于电子的注入和传导,并且TCTDT原子半径较小,更有利于电子祸合作用力等优点而被广泛研究和报道。利用TCTDT材料制成的顶接触OFET器件电子迁移率为0.04 cm2 /(V•s),开关电流比为102,阈值电压为-18V,并且器件在空气中具有很高的稳定型和重复性。carbonyl-bridged conjugated compound(C-BTz)材料具有较低的LUMO能级,其分子结构有利于载流子的传输。具有较高的空气稳定性。以C-BTz作为活性材料制成的OFET器件载流子迁移率为0.06cm2 /(V•s),开关电流比106。n型球状小分子C60是一种性能很好的材料,具有很好的各相同性固体,不需要像其它有机半导体一样特别控制其分子取向。通过溶液加工处理的方法以C60及C70衍生物为半导体材料制成的场效应管电子迁移率分别为0.21 cm2/(V·s)和0.1 cm2/(V·s)。C60-ferrocene共扼分子也被作为OFET活性材料研究,使用C60-ferrocene共扼分子制成的OFET器件电子迁移率0.04 cm2 /(V•s)阈值电压为-22 V。进一步研究表明,当使用C60-ferroce,共扼分子制成n型OFET器件载流子迁移率高于P型OFET器件,这是因为C60作为电子受体,而ferrocene是电子受体,二者之间的传送带使得载流子传送效率更高。
图6列出了几种常见的n型有机半导体结构图。
图6典型n型有机半导体材料分子结构 3绝缘层材料
早期有机场效应晶体管通常采用无机材料作为介电层材料。例如:Si,SiO2,TiO2,Al2O3等无机材料具有较高的介电常数、好的热力学稳定性、不易被击穿、耐高温等优点。但是由于无机材料不能适应柔性加工,不能采用溶液成膜的印刷生产技术,且其加工尺寸已经接近极限,以及成膜太薄会产生较大的漏电流等缺点。因此,为了实现未来低成本、大面积、可柔性加工的工业生产目标,使用高性能有机绝缘体材料来代替无机材料已成为未来发展的必然趋势。对OFET有机绝缘层材料的选取主要有以下几点:(1)由于绝缘体是夹在有机半导体层和栅极之间的三明治结构,所以首先要保证与二者都能很好的相容。(2)要防止静电荷或者动态电荷注入绝缘层界。(3)具有低的表面陷阱密度,低粗糙度,低掺杂浓度,以及滞后现象尽量小。(4)能适应大面积、常温、柔性、低成本的溶液加工技术。另外,加工制作时应尽量将栅极全部覆盖,这样可以有效防止漏电流。
聚苯乙烯PS和聚甲基丙烯酸甲酯PMMA已被用来作为绝缘层材料。但是它们的电容特性并不理想。聚乙烯醇(PVA)和聚乙烯苯酚(PVP)是两种应用广泛的聚合物绝缘体材料。2008年Yang等人利用P3 HT作为有机半导体层,使用PVP和poly(melamine-co-formaldehyde)(PMF)混合物在经过200℃热处理后作为绝缘层材料制成的P3HT-0FET测得载流子迁移率为0.1cm2/(V·s),阈值电压2 V,开-关电流比1.2 x 104。同时他们又研究了在PVP与PMF混合的绝缘层中以不同比例加入PAG(Photo-acid generator)利用120℃光处理过程制成的OFET,结果发现载流子迁移率可达0.06 cm2/(V•s)阈值电压降至1.4 V,开关电流比也提高至3.0×104。高介电常数的聚合物cyanoethylpullulan(K = 12)也被用来作为绝缘层材料。苯并环丁烯(BCB)作为绝缘体材料表现出了很低的漏电流特性,但是由于它的高温需求,使它尚不能被用于生产。Parylene C作为绝缘材料的顶栅和底栅设备迁移率分别为0.1 cm2 /(V·s)和0.4 cm2 /(V•s),顶栅结构的迁移率较小是面粗糙度所致。使用聚氧化乙烯(PEO)-高氯酸锂做为绝缘材料的顶栅结构OFET具有很高的电容特性。近几年,杂化材料作为绝缘层材料也成为研究的热点。2008年Kim等人研究了以并五苯为有机材料,以SnO2 /PVA混合的杂化材料作为绝缘层制成的有机薄膜晶体管。证明了有机-无机杂化材料可以对晶体管起到很好的防护作用,增强设备的长期稳定性。同年,我国吉林大学也在绝缘层研究上有突破。该研究小组利用酞菁铜作为有机半导体材料,研究了以P(MMA-co-GMA)共聚材料作为绝缘层材料制成的晶体管迁移率、开-关电流比、阈值电压分别为(1.22×10-
2、7×103、一8V)。性能明显优于仅使用PMMA作为绝缘层材料的晶体管(5.89×10-
3、2 ×103、-15 V)。这些性能的提高是因前者增强了酞菁铜表面的结晶度所致。常见的有机绝缘体材料如图7所示。
图7典型有机绝缘体材料分子结构 OFET的制备技术
有机半导体材料的选取对于有机场效应晶体管的性能影响固然至关重要,但是器件特性以及性能的好坏在很大程度上也取决于有机薄膜的结构与表面形态。高度有序的有机共扼分子的π键在源漏电极方向上得以最大的重叠,以而提高载流子传输效率,从而使器件具有较好的性能。有机薄膜的制备方法通常有真空技术、溶液处理成膜技术、单晶技术等几种。通常按照原材料的化学结构和性能来选取合适的方法。4.1真空镀膜
真空镀膜方法是目前使用最为普遍的方法之一。这种技术的优点是通过控制蒸镀速率来控制膜的纯度和厚度,并实现膜的高度有序。真空技术通常包括物理气相沉积(PVD)、化学气相沉积(CVD)、脉冲激光沉积(PLD)、离子溅射四种方法。其中最重要且使用最多的方法是PVD技术。它是液体或固体物质受热蒸发或升华转化为气体后在沉积在基底表面形成薄膜的方法。许多有机小分子如并五苯很难找到合适的溶剂将其溶解,很难用溶液加工成膜,真空技术就可以用来成膜。利用并五苯作为有机材料制成的沟道长度为1 μm的顶接触OFET在300 k和5.8 k的场迁移率分别为1.11cm2 /(V•s)和0.34 cm2 /(V•s)。开关电流比分别为107和105,这说明场迁移率也受温度的影响。但是真空蒸镀技术仪器设备复杂,成本较高,不适合大面积的工业化生产。4.2溶液处理成膜
溶液处理成膜技术被认为是制备OFET最具有发展潜力的技术。它适用于可溶性的有机半导体材料,结合大面积印刷技术可以大大地降低成本。常用的溶液处理成膜技术主要包括电化学沉积技术、甩膜技术、铸膜技术、预聚物转化技术、L-B膜技术、分子自组装技术、印刷技术等。前4种技术成膜的有序性较差,我们这里主要介绍目前在OFET制备中最具有发展前景的,成膜有序性较好的后3种技术。
4.2.1 Langmuir-Blodgett(L-B)膜技术
具有表面活性的两亲分子溶于易挥发的溶剂中形成的溶液可以通过在水面上铺展,而在空气/水界面形成不溶于水的铺展膜,通过控制表面压力将这层膜转移到固体基底上,从而制备单层L-B膜,进行多次转移,就可以制备多层膜。它是一种可以在分子水平上精确控制薄膜厚度的成膜技术。
2009年初我国山东大学和济南大学共同发表了一篇以酞菁染料铺的络合物为原料,使用L-B成膜技术设计制成的有机场效应晶体管的文章。参见图8,以亲水的冠醚(a)置于底部,疏水的辛基(b)置于顶部,金属铺位于中间,制成的三明治结构图8(c)。
图8亲水的酞蓄染料冠醚衍生物(a),疏水的酞蓄染料辛基衍生物(b)及(a)(b)组
成的三明治结构(c)利用L-B膜技术分别制成的以(HMDS)处理过的SiO2 /Si为基底和以(OTS)处理过SiO2 /Si为基底的顶结构有机场效应晶体管。图9是它们的原子力显微技术图像(AFM)。
图9以SiO2/Si为基底的AFM图像(a),以HMDS处理过的SiO2/Si为基底的AFM图像(b),以OTS处理过的SiO2/Si为基底的AFM图像(c)他们对比讨论了两种不同基底OFET性能的差别,可以看出图9(c)以octadecyltrichlorlsilane(OTS)处理过SiO2 /Si基底更有利于薄膜形态的有序性,因此显示了更好的性能。该结构空穴迁移率为0.33 cm2 /(V•s),开关电流比为7.91×105。但由于L-B膜技术在材料设计上要求材料具有两亲性,使得对材料的选取和适用上受到了一定的限制。4.2.2分子自组装技术
自组装分子(SAMs)是分子与分子在一定条件下,通过分子与分子间或分子中某一片段与另一片段之间的分子识别,依靠分子间的相互作用力,自发连接成结构稳定的、具有特定排列顺序的分子聚集体的过程。分子间相互作用力为分子的自组装提供必需的能量。自组装成膜技术较L-B成膜技术具有操作更简单、膜的热力学性质好、对基质没有特殊限制,且成膜材料广泛、膜稳定等优点,因而它是一种更具广阔应用前景的成膜技术。有机薄膜分子的有序程度受接触面相互作用的影响。使用分子自组装技术可以对界面进行修饰,从而提高分子排列的有序性进而提高器件性能。2008年日本的Hayaka-wa小组使用OTS自组装分子对SiO2界面进行修饰,与没经修饰的OFET进行详细对比,结果发现经OTS-SAM修饰的界面薄膜生长高度有序。其原子力显微镜图像对比如图10所示。晶体管性能也有很大的提高。然而分子自组装技术还会受到多种因素的影响,如成膜厚度、基片表面性质、溶液性质等。而构筑多层膜时分子自组装技术也不如L-B膜高度有序。
图10 AFM 图像(15×15μm2)[(a)-(c)] SiO2表面,[(d)-(f)] OTS表面 4.2.3印刷成膜技术
寻找简单、低成本、可大面积生产的印刷成膜技术将是未来非常有挑战性且有意义的工作。印刷技术主要有喷墨打印、微接触打印两种。碳纳米管能够适合室温的喷墨打印生产因而作为制备碳纳米管晶体管的材料而被研究。利用超纯的高密度的碳纳米管作为载流子传输层,离子凝胶作为绝缘层,PEDOT作为栅极材料,全部利用喷墨打印技术,在室温下以聚酰亚胺为衬底材料制成顶栅结构的薄膜晶体管。整个过程没有进行任何表面预处理工作,最后晶体管展示出很高的工作频率(大于5GHZ)开关电流比也超过100。这种能适应全室温全柔性的技术有希望应用于有机电子电路中。接触打印技术是将待成膜的有机半导体或绝缘体材料的溶液蘸在已设计的固定图案印章上,然后在衬底上生长出特定图案薄膜。由于要使用固定图案,对柔性基底的适应性就不好。并且打印多层结构时的精确性不好。4.3单晶技术
传统方法制备的OFET半导体层一般都是多晶薄膜,而多晶薄膜的晶界有许多缺陷,造成费米能级钉扎,产生电荷势垒,降低载流子迁移率,影响OF-ET器件性能。而单晶技术因具有以下优点而成为近两年研究的热点:(1)高能量带电粒子,固有的等离子体沉积技术,决定了有机半导体表面光滑且高度有序;(2)整个过程可以在常温下进行;(3)不需要高真空要求,适合低成本技术生产;(4)沉积过程速度快;(5)有机半导体单晶与多晶薄膜相比,晶界和缺陷都很少。因此有机单晶晶体可以避免一些多晶甚至非晶有机半导体薄膜中的缺陷、晶界等因素的干扰而获得有机半导体材料的本征性质。其载流子迁移率通常比多晶薄膜要高。有机单晶酞菁铁、酞菁铜、红荧烯都显示了双极性特性。Podzorov等人利用红荧烯单晶制备的有机单晶晶体管的场效应载流子迁移率高达8cm2/(V·S)。使用溶液法很难制备高纯度、低缺陷的单晶薄膜。一般单晶薄膜可以通过电化学沉积、扩散沉积、气相沉积等方法来制备。其中又以气相法最为常用。离子液体具有可在室温下工作、化学稳定性不断提高、防水、无毒、不挥发等特性,利用它的离子迅速扩散性能,可以制备出高性能的有机单晶晶体管。已有报道有机单晶半导体被应用于低成本微电极电路中,比如矩阵显T传感等领域。日本电力中央研究所与大阪大学联手开发出了采用离子液体的高性能有机单晶晶体管,基本结构见图11。
图11有机单晶离子晶体管基本结构
利用PDMS制成弹性体基底,使有机红荧烯单晶吸附在上面,在有机单晶体红荧烯与栅极间夹入了低粘滞度和高离子导电率离子液体1-ethyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide作为栅极绝缘体。外加栅极电压,离子就会发生迁移,在栅极与离子液体之间的界面和离子液体与有机单晶体之间的界面上,由离子蓄积而形成双电荷层。此时,由于离子液体中的离子与有机单晶体电极的距离只有1nm,外加微弱电压就实现了高电场。该开发晶的工作电压(约0.2 V),为现有有机FET的约1/500~1/100。电荷迁移率更是高达10cm2 /(V•s),达到了采用双电荷层的有机FET中的最大值。超过了非晶硅的电荷迁移率((1.0 cm2/(V·s)左右),可满足有机柔性显示器所需的性能。另外,在0.1~1MHz的宽频率下具有高电解电容,并具备高速开关性能。Ono等人分析比较了也报道了加入五种不同阴离子液体制成的红荧烯单晶体管的性能。Nakanotani等人也报道了使用金-钙不对称电极介于BSB-Me单晶制成的具有双极性特性的晶体管,虽然只有0.005 cm2 /(V·s)的迁移率,但是由于BSB-Me具有很高的发光效率因而BSB-Me单晶晶体管也展示了很好的发光性能,有望用来制备蓝光固体激光器。
5结论与展望
从第一个具有真正意义上的有机场效应晶体管产生以来,它已获得了巨大的发展,OFET以其柔性好、成木低、质量轻等优点展现出良好的应用前景,并已经在一些低端市场取得应用。目前有机场效应晶体管面临的主要问题和发展趋势有以下几方面:
(1)在材料方面,类型过于单一,n型有机半导体材料较少,开关速度不稳定,大多数有机材料载流子迁移率过低。限制了有机场效应晶体管的进一步发展。因此,探索高迁移率且具有良好工作性能的新材料是OFET所要解决的问题之一。
(2)在器件制备技术方面,OFET器件的各层几乎都要涉及成木昂贵的真空技术,因此研制出新的成膜技术和更为简单、成木更低的制作工艺是近年来发展的一个方向。
(3)在制作工艺上,OFET的沟道长度很难进一步降低且器件存在开启电压大、工作电流低等缺点。
(4)从外界影响因素看,如材料的纯度、不同介电常数的绝缘层以及衬底温度等,如何排除干扰,提高器件的稳定性和寿命也应得到高度币视。
(5)从产业化角度看,要实现真正的产业化,有机电子器件在很多方面还需要不断的改进,例如,室温及大气环境下制备的器件性能还有待进一步提高,大气环境下器件稳定性和寿命也有待提高才能满足商业化的需求。
目前有机场效应晶体管材料和器件的发展面临着以上种种困难,尚不能与无机硅半导体材料相提并论。今后的研究仍然要以材料、器件工艺、器件稳定性和寿命为主要研究方向。另外,有机场效应晶体管目前仍然在延续使用无机MOSFET的载流子传输理论和模型,尚没有统一的有机半导体载流子传输机理。因此,探索一种适用于OFET的载流子传输机理和模型也是当前有待解决的难题。
参考文献
[1]MUKHERJEE B,SHIN T,SIM K,et al.Periodic arrays of organiccrystals on polymer gate dielectric for low-voltage field-effect transistors and complementary inverter[J]. J Mater Chem,2010,20:9047 - 9051.
[2]KAJII H,LE Y,NITANI M,et al.N-channel organic field-effecttransistors containing carbonyl-bridged bithiazole derivative fabrica-ted using polyfluorene derivatives as solution-processed buffe layers[J].Org Electron,2010,11(12): 1886 -1890.
[3]CHUNG D S,YUN W M,NAM S,et al. All-organic solution-pro-cessed two-terminal transistors fabricated using the photoinduced p-channels[J].ApplPhysLett,2009,94(4): 043303. [4]HAMADANI B H,CORLEY D A,CISZEK J W,et al.Controllingcharge injection in organic field-effect transistors using self-assem-bled monolayers[J].Nano Lett,2006,6(6): 1303 - 1306.
[5]IHM K,KIM B,KANG T H,et al.Molecular orientation dependenceof hole-injection barrier in pentacene thin film on the Au surface inorganic thin film transistor [J].ApplPhysLett,2006,89(3): 33504.
[6]MAEDA T,KATO H,KAWAKAMI H.Organic field-effect tran-sistors with reduced contact resistance[J].ApplPhysLett,2006,89(12): 123508.
[7]HONG K,YANG S Y,YANG C,et al.Reducing the contact resist-ance in organic thin-film transistors by introducing a PEDOT: PSShole-injection layer[J].Org Electron,2008,9(5): 864 - 868.
[8]HILL I G,RAJAGOPAL A,KAHN A,et al.Molecular level align-ment at organic semiconductor-metal interfaces[J].ApplPhysLett,1998,73(5): 662 - 664.
[9]WEIS M,MANAKA T,LWAMOTO M.Effect of Traps on Carrier In-jection and Transport in Organic Field-effect Transistor[J].IEE J TElectr,2010,5(4): 391 - 394.
[10]KITAMURA M,IMADA T,ARAKAWA Y.Organic light-emittingdiodes driven by pentacene-based thin-film transistors[J].ApplPhysLett,2003,83(16): 3410 - 3412. [11]SUNDAR V C,ZAUMSEIL J,PODZOROV V,et al.Elastomerictransistor stamps: Reversible probing of charge transport in organiccrystals[J].Science,2004,303(5664): 1644 - 1646.
[12]MADDALENA F,SPIJKMAN M,BRONDIJK J J,et al.Devicecharacteristics of polymer dual-gate field-effect transistors[J].OrgElectron,2008,9(5): 839 - 846.
[13]SALIM N T,AW K C,PENG H,et al.New 3-((2': 2″,5″: 2″-ter-thiophene)-3 ″-yl)acrylic acid as active layer for organic field-effect transistor[J]. Mater ChemPhys,2008,111(1): 1 - 4.
[14]WANG G M,SWENSEN J,MOSES D,et al.Increased mobilityfromregioregular poly(3-hexylthiophene)field-effect transistors[J].J ApplPhys,2003,93(10): 6137 -6141. [15]CHANG J F,SUN B Q,BREIBY D W,et al.Enhanced mobility ofpoly(3-hexylthiophene)transistors by spin-coating from high-boil-ing-point solvents[J].Chem Mater,2004,16(23): 4772 - 4776.
[16]XU G F,BAO Z A,GROVES J T.Langmuir-Blodgett films of regio-regular poly(3-hexylthiophene)as field-effect transistors[J].Langmuir,2000,16(4): 1834 - 1841. [17]TAKASHI K,TAKASHI N,HIROYOSHI N.Air-mediated self-or-ganization of polymer semiconductors for high-performance solution-processable organic transistors[J].APPlPhysLett,2011,98:063304 - 063307.
[18]PONOMARENKO S A,KIRCHMEYER S,ELSCHNER A,et al.Star-shaped oligothiophenes for solution-processible organic field-effect transistors[J].AdvFunct Mater,2003,13(8): 591 - 596.
[19]PEI J,WANG J L,CAO X Y,et al.Star-shaped polycyclic aromat-ics based on oligothiophene-functionalized truxene: Synthesis,prop-erties,and facile emissive wavelength tuning[J].J Am ChemSoc,2003,125(33): 9944 - 9945.
[20]SUN Y M,XIAO K,LIU Y Q,et al.Oligothiophene-functionalizedtruxene: Star-shaped compounds for organic field-effect transistors[J].AdvFunct Mater,2005,15(5): 818 -822.
第三篇:化学有机实验题
化学有机实验题
1.(14分)
Ⅰ:“酒是陈的香”,就是因为酒在储存过程中生成了有香味的乙酸乙酯,在实验室我们也可以用如右图所示的装置制取乙酸乙酯。回答下列问题:
(1)浓硫酸的作用是:①
;②;
(2)现拟分离乙酸乙酯、乙酸、乙醇的混合物,下图是分离操作流程图。完成下列空白:
试剂:a______________,b______________。
分离方法:①_____________③_____________
物质名称:A_____________,C_____________
Ⅱ:已知卤代烃(R-X)在碱性条件下可水解得到醇(R-OH),如:CH3CH2-X+H2O
CH3CH2-OH+HR,现有如下转化关系:
回答下列问题:
(1)反应1的条件为
__________,X的结构简式为______
(2)写出反应3的方程式______________________。
Ⅲ:写出苹果酸
①和乙醇完全酯化的反应的化学方程式___________________。
②和过量的Na2CO3溶液反应的化学方程式___________________。
2.(12分)实验室用乙酸和正丁醇制备乙酸正丁酯。有关物质的相关数据如下表:
化合物
相对分子质量
密度/g·cm-3
沸点/℃
溶解度g/l00g水
正丁醇
0.80
118.0
冰醋酸
1.045
118.1
互溶
乙酸正丁酯
116
0.882
126.1
0.7
操作如下:
①在50mL三颈烧瓶中投入几粒沸石,将18.5
mL正丁醇和13.4
mL冰醋酸(过量),3~4滴浓硫酸按一定顺序均匀混合,安装分水器(作用:实验过程中不断分离除去反应生成的水)、温度计及回流冷凝管。
②将分水器分出的酯层和反应液一起倒入分液漏斗中依次用水洗,10%
Na2CO3洗,再水洗,最后转移至锥形瓶并干燥。
③将干燥后的乙酸正丁酯加入烧瓶中,常压蒸馏,收集馏分,得15.1
g乙酸正丁酯。
请回答有关问题:
(1)写出任意一种正丁醇同类的同分异构体的结构简式。
(2)仪器A中发生反应的化学方程式为。
(3)步骤①向三颈烧瓶中依次加入的药品是:。
(4)步骤②中,用
10%Na2CO3溶液洗涤有机层,该步操作的目的是。
(5)步骤③在进行蒸馏操作时,若从118℃开始收集馏分,产率偏,(填“高”或“低”)原因是。
(6)该实验生成的乙酸正丁酯的产率是。
3.(16分)下图所示为某化学兴趣小组设计的乙醇催化氧化的实验装置(图中加热仪器、铁架台、铁夹等均未画出)。图中A试管盛有无水乙醇(沸点为78℃),B处为螺旋状的细铜丝,C处为无水硫酸铜粉末,干燥管D中盛有碱石灰,E为新制的氢氧化铜,F为氧气的发生装置。
(1)在实验过程中,需要加热的仪器(或区域)有(填仪器或区域的代号A~F)___(4分)。
(2)B处发生的化学反应方程式为________________(2分)。
(3)C处应出现的现象是_________________(2分),D处使用碱石灰的作用是__________________(2分),E处应出现的实验现象是
_____________________(2分),F处可以添加的固体药品是
______________(2分)。
(4)若本实验中拿去F装置(包括其上附的单孔塞和导管),同时将A试管处原来的双孔塞换成单孔塞用以保证装置的气密性,其它操作不变,则发现C处无明显变化,而E处除了依然有上述(3)中所出现的现象之外,还有气体不断地逸出。由此推断此时B处发生反应的化学方程式为______________(2分)。
参考答案
1.Ⅰ(1)催化剂;吸水剂;(2)饱和碳酸钠溶液;硫酸;分液;蒸馏;乙酸乙酯;乙酸钠、碳酸钠的混合物。
Ⅱ(1)光照;
;(2)2+O22+2H2O
Ⅲ.①HOOCCH(OH)CH2COOH+2CH3CH2OH
CH3CH2OOCCH(OH)CH2COOCH2CH3+2H2O
②HOOCCH(OH)CH2COOH+2Na2CO3→2NaHCO3+NaOOCCH(OH)CH2COONa
【解析】
试题分析:Ⅰ(1)在制取乙酸乙酯的反应中,浓硫酸的作用是:①催化剂,②是催化剂;(2)在制取的乙酸乙酯中含有未反应的乙醇和乙酸,由于乙醇及容易溶于水,而乙酸与Na2CO3发生反应产生容易溶于水的乙酸钠,而乙酸乙酯难溶于水,密度比水小,也不能与Na2CO3发生反应,因此试剂a是饱和碳酸钠溶液;经分液,得到的A是乙酸乙酯,B是含有乙醇的乙酸钠溶液;由于乙醇沸点低,容易气化,通过蒸馏分离得到E是乙醇,C是乙酸钠、碳酸钠的混合溶液,然后利用酸性硫酸>醋酸,而且难挥发,向混合溶液中加入稀硫酸,利用乙酸的沸点低,硫酸钠是离子化合物,沸点高的性质,蒸馏分离得到乙酸。所以试剂a是饱和碳酸钠溶液;试剂b是硫酸;分离方法:①是分液;③是蒸馏;物质名称:A是乙酸乙酯;物质B是乙酸钠和碳酸钠的混合物;Ⅱ:与Cl2在光照时发生取代反应形成X:1-Cl环戊烷;X与NaOH的水溶液在加热时发生取代反应形成Y:;Y
在Cu存在时加热发生氧化反应形成。(1)反应1的条件为光照;X的结构简式为;(2)反应3的方程式是2+O22+2H2O;Ⅲ.①苹果酸和乙醇发生酯化反应,羧基脱去羟基,醇脱氢羟基H原子,因此苹果酸与乙醇完全酯化的反应的化学方程式是HOOCCH(OH)CH2COOH+2CH3CH2OH
CH3CH2OOCCH(OH)CH2COOCH2CH3+2H2O;②苹果酸含有羧基,可以和Na2CO3溶液反应,由于Na2CO3溶液过量,所以反应产生碳酸氢钠,反应的化学方程式是HOOCCH(OH)CH2COOH+2Na2CO3→2NaHCO3+NaOOCCH(OH)CH2COONa。
考点:考查有机物的结构、性质、转化、反应方程式、结构简式的书写的知识。
2.(1)CH3CH2CH(OH)CH3
(其他合理答案也可)(1分);
(2)CH3COOH+CH3CH2CH2CH2OHCH3COOCH2CH2CH2CH3+H2O(2分)
(3)正丁醇,浓硫酸,冰醋酸(2分);
(4)除去酯中混有的乙酸和正丁醇(2分)
(5)高(1分);会收集到少量未反应的冰醋酸和正丁醇(2分)
(6)65%(或65.1%)
(2分)
【解析】
试题分析:(1)写出任意一种正丁醇同类的同分异构体的结构简式是CH3CH2CH(OH)CH3,(CH3)2CH-CH2OH、(CH3)3C-OH。(2)仪器A中乙酸和正丁醇制备乙酸正丁酯的发生反应的化学方程式为CH3COOH+CH3CH2CH2CH2OHCH3COOCH2CH2CH2CH3+H2O。(3)步骤①向三颈烧瓶中先加入正丁醇,然后再浓硫酸,待溶液冷却后再加入冰醋酸。(4)步骤②中,用
10%Na2CO3溶液洗涤有机层,该步操作的目的是反应消耗乙酸,溶解正丁醇,降低制备的到的乙酸正丁酯的溶解度。(5)步骤③在进行蒸馏操作时,若从118℃开始收集馏分,由于乙酸的沸点是118.1℃,正丁醇沸点是118.0℃,会使收集的物质中含有乙酸,将其当作酯,因此产率偏高。(6)15.1
g乙酸正丁酯的物质的量是n(乙酸正丁酯)=
15.1
g÷116g/mol=0.13mol,18.5
mL正丁醇的物质的量是n(正丁醇)=
(18.5
mL×0.80g/ml)
÷74g/mol=0.2mol;由于乙酸过量,所以该实验生成的乙酸正丁酯的产率是(0.13mol÷0.2mol)
×100%=65%。
考点:考查有机物制备操作、反应方程式、物质产率的计算的知识。
3.(1)ABEF
(2)
(3)C处:白色粉末变成蓝色晶体,D处:吸收水份以防止对后续反应的干扰,E处:产生砖红色沉淀,F处:高锰酸钾(或氯酸钾和二氧化锰混合物)
(4)
【解析】
试题分析:(1)依据实验流程和反应原理分析F装置是加热制氧气;A装置需要加热得到乙醇蒸气;B装置为乙醇的催化氧化需要加热;D装置中乙醛通入氢氧化铜溶液需要加热反应生成砖红色沉淀;故答案为ABEF;(2)B处的反应是乙醇的催化氧化生成乙醛和水的反应;反应的化学方程式为:2CH3CH2OH+O22CH3CHO+2H2O;(3)乙醇在铜催化作用下被氧气氧化为乙醛和水,C处:白色粉末变成蓝色晶体;碱石灰是吸收水蒸气,D处:吸收水份以防止对后续反应的干扰;E处是乙醛通入新制氢氧化铜中加热反应:产生砖红色沉淀;F处是实验是制氧气,试剂加在大试管中的固体加热生成氧气:实验室制氧气的试剂是:高锰酸钾(或氯酸钾和二氧化锰混合物);(4)去掉制氧气的装置后,E装置中仍然出现砖红色沉淀,说明有乙醛生成,无水硫酸铜不变色说明无水生成,但还有气体不断地逸出,说明有氢气生成,化学方程式为:
考点:考查乙醇的催化氧化实验分析。
第四篇:有机半导体材料与器件课程教学大纲
《有机半导体材料与器件》课程教学大纲
一、课程说明
(一)课程名称、所属专业、课程性质、学分; 课程名称:(中文)有机半导体材料与器件;
(英文)Organic semiconductor materials and devices 所属专业:物理学专业、微电子科学与工程专业及光信息科学与技术类专业 课程性质:专业选修课程 学 分:3 课 时:54课时
(二)课程简介、目标与任务;
《有机半导体材料与器件》是一门新兴交叉和前沿学科,是将电子科学与有机材料科学紧密结合在一起的一门尖端学科。它凭借着有机光电材料及半导体材料独特的分子特性、软物质行为和超分子结构,已成为继真空电子、固体电子、光电子之后的国际研究热点。当前有机半导体材料与器件研究已经从基础研究走向产业化开发,并渗透到许多领域而迅猛发展,为人类文明与科学技术的进步做出日益突出的贡献。
本课程研究有机半导体材料及其光电子器件,讲解光电信息技术领域中有机半导体材料与器件所涉及的相关原理、技术及应用,是一门发展极为迅速、实践性很强的应用学科。学习本课程的目标是掌握有机材料及器件的基本理论、器件原理,了解该领域的最新成就和应用前景,进一步拓宽专业口径,扩大知识面,为学生将来进入有机电子、信息科学领域打下基础。
课程根据专业的特点,重点掌握目前有机光电功能材料与器件基本工作原理及其技术、了解和掌握最新国际发展趋势,使学生获得对有机半导体光、电子器件分析和设计的基本能力,掌握分析和解决实际问题的方法与途径,重视理论与实践的结合,以便为进一步开展有机光、电子相关研究奠定基础。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程涵盖多学科领域,其中主要的学科是半导体物理学、半导体材料学,同时还需要具备有机化学和半导体器件的基本知识,并且还要应用半导体平面工艺技术等,因此本课程需要先修的课程包括:半导体物理、有机化学、半导体材料、半导体器件及半导体工艺等。
(四)教材与主要参考书。教材:
《分子材料与薄膜器件》,贺庆国、胡文平、白凤莲等编,化学工业出版社,2010 主要参考书:
1.黄春辉等,《光电功能超薄膜》,北京大学出版社 2.朱道本等,《有机固体》,上海科学技术出版社
3.黄春辉等,《有机电致发光材料与器件导论》,复旦大学出版社 4.M.Pope, Clarendon Press,《Electronic processes in organic crystals》,Oxford
5.Joseph Shinar, 《Organic light emitting devices》, Springer 6.马丁.波普,《有机晶体中的电子过程》,上海科学技术出版社 7.高观志等,《固体中的电输运》,科学出版社 8.黄维等,《有机电子学》,科学出版社
二、课程内容与安排 课程简介(绪论)第一章 有机材料与电子学 § 1.1 有机材料概念及发展简史 § 1.2 电子学与有机材料
§ 1.3 有机半导体与无机半导体比较 § 1.4 有机光电材料中的电子过程及相关性质 § 1.5 有机电子学及其应用
§ 1.5.1 有机场效应晶体管(Organic field effect transistor,OFET)§ 1.5.2 有机太阳能电池(Organic photovoltaic cells,OPV)
§ 1.5.3 有机电致发光器件(Organic electroluminescence devices,OELD)§ 1.5.4 有机传感器和存储器(Organic sensor,OS;Organic memory,OM)第二章 有机材料中的电子结构 § 2.1 有机分子内成键及相关概念 § 2.1.1 固体物质的成键方式 § 2.1.2 原子的电子轨道和电子云 § 2.1.3 原子之间的杂化轨道
§ 2.1.4 σ键与π键,单键、双键与三键,饱和键与不饱和键 § 2.1.5 价电子、σ电子、π电子和n电子 § 2.1.6 典型实例:化学成键与材料性质 §2.2 有机材料的电子结构及相关理论简介
§ 2.2.1 分子轨道理论(molecular orbital theory,MO理论)§ 2.2.2 配位场理论 § 2.2.3 能带理论 § 2.3 有机材料中电子能级
第三章 有机材料分子间作用力及其晶体堆积方式 §3.1 分子作用力 §3.2 有机分子晶体结构
第四章 有机材料中与光、能量相关的概念及电子过程 §4.1 分子内光激发态及其衰变过程
§4.2 聚集分子中的激发态及衰变特点(指晶体、固体时的特点)第五章 光跃迁规律 §5.1 光跃迁本质 §5.2 光跃迁选择法则
§5.3 Franck-Condon原理(Franck-Condon Principle)§5.4 Einstein方程:激发过程与辐射过程之间的关系 §5.5 光吸收强度分布
§5.6 光的发射效率及激发态寿命 §5.7 物质的发光 §5.7.1 发光物质/体系 §5.7.2 有机发光材料 第六章 激子 §6.1 激子的产生 §6.2 激子的分类
§6.3 激子输运——能量传递/转移 §6.4 激子扩散
§6.5 激子的动力学过程
第七章 有机材料中与电学性能相关的概念及电子过程 §7.1 有机材料电学性质研究历史 §7.2 描述电学性质的基本概念 §7.3 有机材料中载流子类型 §7.3.1 光生载流子
§7.3.2 非本征激发----掺杂型载流子(另一个是杂质缺陷型)§7.3.3 注入型载流子 §7.4 导电有机材料 第八章 有机半导体器件(专题讨论)
(一)教学方法与学时分配
1、教学方法:
(1)以课堂讲授为主,充分利用教材,围绕知识点组织教学内容;(2)多媒体教学:PowerPoint讲稿、Movie演示;(3)考试:闭卷笔试。
2.学时分配:
(4)本课程共54学时,讲授7章,课堂专题讨论1章。各章节的学时分配如下:
绪论(2学时)第一章(6学时)第二章(8学时)第三章(6学时)第四章(10学时)第五章(6学时)第六章(6学时)第七章(8学时)第八章(2学时)
(二)内容及基本要求 主要内容:
以学科特点和创新能力培养为基础设计课程内容,加强理论概念和技术应用的讲授,重点讲授有机光电材料中的电子过程及相关性质、有机材料中的电子结构及相关理论、有机材料分子间作用力及其晶体堆积方式、有机材料中与光、能量相关的概念及电子过程、光跃迁规律、激子的产生输运理论及其动力学过程以及有机材料中与电学性能相关的概念及电子过程;
引导学生自主搜索和阅读相关文献,让学生大胆提出自己的见解,并在课堂上进行 讨论典型的有机光电器件(有机发光二极管、有机场效应晶体管、有机光伏电池、有机存储器、有机激光、有机传感和有机光电探测器等)的原理、结构、材料、性能参数以及制造工艺。
【重点掌握】:有机光电材料中的电子过程及相关性质、有机材料中的电子结构及相关理论、有机材料分子间作用力及其晶体堆积方式、有机材料中与光、能量相关的概念及电子过程、光跃迁规律、激子的产生输运理论及其动力学过程以及有机材料中与电学性能相关的概念及电子过程;
【掌握】:有机光电器件的原理、结构、材料、性能参数以及制备工艺; 【了解】:有机半导体材料与器件的发展历程、最新进展及应用前景; 【一般了解】:发展中的有机半导体材料与器件;
【难点】:有机材料中的电子结构及相关理论、有机材料分子间作用力、有机材料中与光、能量相关的概念及电子过程、光跃迁规律、激子的产生输运理论及其动力学过程以及有机材料中与电学性能相关的概念及电子过程。
制定人:李海蓉
审定人: 批准人: 日 期:2017.1.5 6
第五篇:有机化学材料化学专业教学大纲
《有机化学》(材料化学专业)教学大纲
一、课程基本信息
课程名称(中、英文): 有机化学(Ⅱ)-1[Organic Chemistry(Ⅱ)-1]
有机化学(Ⅱ)-2[Organic Chemistry(Ⅱ)-2] 课程号(代码):20309030,20308930 课程类别: 类级平台课程,必修课
学时:48x2
学分:3x2
二、教学目的及要求
材料化学专业的学生,在学完《高等数学》、《普通物理》、《无机化学》、《分析化学》等前置课程的基本理论知识后,进入有机化学的学习。该课程要求学生系统地、扎实地掌握有机化学的基本原理和基本规律,为后续课程的学习、继续深造以及将来解决有机化学中的问题、奠定必要而坚实的基础,同时能进一步加强解决问题和分析问题能力的培养。在学习该课程时学生要着重掌握各类有机化合物的结构、命名、物理性质、光谱性质、常用制备方法和用途,尤其是着重掌握各类有机化合物的结构特征和关键反应,把握规律、抓住机理、将官能团互相转变的方法和碳碳键的形成与断裂的方法形成互联网络,同时专注有机化学中的立体化学问题,才能达到有机化学的教学之目的。
三、教学内容 1 绪论(4学时)
基本要求:
一、了解有机化学的发展史、主要任务和学习方法;
二、了解有机化合物的基本特点、分类和反应类型;
三、了解共价健的本质,掌握共价健的属性,熟悉利用键能数据推算反应的焓变;
四、掌握下述名词术语:有机化学;同分异构现象;分子间作用力;Van der walls力;官能团 1-1 有机化学的由来和发展
1-2 有机化合物的特点:分子结构和组成(同分异构现象,结构的表示方法);理化性质 1-3 共价键的键参数:键能、键长、键角;键的极性与诱导效应;键的可极化性 1-4 共价键的断裂方式与有机反应的类型 1-5 有机化合物的分类
1-6 学习有机化学的目的和学习方法 2 烷烃(4学时)
基本要求:
一、掌握构象的表示方法和典型的构象ap, sp, sc, ac的稳定性分析;
二、了解饱和碳原子的sp3杂化轨道与烷基自由基的sp2杂化轨道的形成与构型;
三、着重掌握烷烃的自由基取代反应(卤代反应)的基本规律(区域选择性)和反应机理(自由基反应),了解烷烃的物理性质。
四、弄清下列概念:同系列与同分异构;构造异构与链异构;T.S与活泼中间体;扭转张力与Van der Walls张力;Newman投影式与透视式;活性与选择性 2-1 烷烃的同系列与同分异构现象(键异构)
2-2 烷烃和命名:习惯命名;系统命名(采用1980年中国化学会有机化学命名原则)衍生物命名与俗名
2-3 烷烃的结构:CH4的正四面体结构与sp3杂化轨道;烷烃的构象 2-4 烷烃的物理性质
2-5 烷烃的反应:烷烃的卤代反应(CH4的氯代反应及自由基反应历程);烷烃卤代及活性;卤代反应中卤素的活性与选择性;卤代反应的T.S;氧化反应(燃烧与部分氧化);裂化(解)反应。
2-6 烷烃自由基的立体化学(sp2杂化)3 立体化学-对映异构(6学时)
基本要求:
一、掌握对称因素与手性的关系;
二、掌握Fischer投影式的书写规则,并能熟练地掌握R/S的命名法,正确地判断手性中心的构型和各种构型式的相互转变;
三、弄清下列概念:对映异构体和非对映异构体;手性和旋光性;旋光度与比旋光度;内消旋体和外消旋体;手性与对称因素,手性中心与手性分子;赤式与苏式;外消旋化与内消旋化 3-1 手性现象
3-2平面偏振光与物质的光活性:平面偏振光;物质的光活性;旋光度与比旋光度 3-3 手性与对称因素(对称面、心、轴,更迭对称轴)3-4 手性分子构型表示方法与命名
结构表示法(透视式与投影式)命名(R、S,赤式与苏式,次序规则)3-5 含两个手性碳原子的化合物 3-6 含三个手性碳原子的化合物 3-7 其它手性分子 烯烃与环烷烃(9学时)
基本要求:
一、掌握烯烃和环烷烃的顺、反异构现象和E/Z命名法;
二、掌握烯烃的各类反应,重点掌握其反应规律及离子型亲电加成反应的历程;
三、了解环烷烃的性质和构象,掌握环丙烷和环已烷的构象及其理论解释;
四、掌握下述概念:Markovnikov规则与过氧化物效应;立体选择性反应与立体与一性反应;亲电剂;亲电反应;氢化热与燃烧热;Baeyer张力;船式与椅式构象;掌握醇脱水和卤代烃脱HX制烯方法 4-1 烯的结构
4-2 烯烃的异构与命名:烯烃的异构(位置、顺反异构);命名(Z、E命名法)4-3 烯烃的物理性质
4-4 烯烃的化学反应;烯烃与卤素的加成反应与亲电加成反应的历程[立体选择性]与立体专一性;烯烃与无机酸的亲电加成反应(Markovnikov规则);烯烃与H2O的反应;烯烃与HOX的反应;烯烃的聚合反应;硼氢化一氧化反应;溶剂汞化一去汞化反应;烯烃的还原与氧化反应;烯烃的自由基加成反应;烯烃的α-H反应 4-5 烯烃的制备;醇脱水(Saytzev规律)和卤代烃脱HX(Hofmann规律)
4-6 环烷烃的分类、异构与命名 4-7 环烷烃的物理性质 4-8 环烷烃的化学反应 4-9 拜尔张力学说与近代观点
4-10 环烷烃的构象(环丙烷、环己烷及其衍生物、十氢萘)5 炔烃与二烯烃(6学时)
基本要求:
一、掌握炔烃的亲电加成反应、氧化还原和炔氢的反应,了解亲核加成、聚合反应等;
二、掌握共轭二烯的亲电加成反应规律和共轭二烯的Diels-Alder反应;
三、掌握下述概念:共轭效应与诱导效应;双烯组分与亲双烯组分;乙烯基化反应与乙炔基化反应;速度控制与平衡控制;1,2-加成与共轭加成 5-1 炔烃的结构、异构和命名
5-2 炔烃的化学反应:加成反应(亲电加成);炔烃与含活泼氢化物反应(亲核加成、乙烯基化);氧化与还原反应(Lindlar催化剂);炔氢的反应(酸性、亲核取代、乙炔基化反应);乙炔的聚合反应 5-3 炔烃的制备
5-4 二烯烃的分类与多烯烃的命名 5-5 共轭二烯烃的结构与π、π共轭效应
5-6 其它类型的共轭效应(P-π、P-P、σ-π、σ-P)
5-7 共轭二烯烃的反应:与H2和HX的反应(动力学和热力学控制反应)加H2;游离基加成反应;Diels-Alder反应;聚合反应 5-8 共轭二烯烃的制备 5-9 丙二烯的结构 6 芳烃(8学时)
基本要求:
一、掌握苯系芳烃的亲电取代反应类型(卤代;硝化;磺化;付一克烷化与酰化)、历程和定位规则,能充分利用电子效应和共振论来解释其规律;
二、掌握侧链上的氧化与卤代反应规律,了解芳环被催化氢化,催化氧化,Birch还原的规律;
三、掌握萘及一取代萘的亲电取代反应和蒽、菲的特性;
四、掌握下述概念和人名反应:共振论和Kekule结构;活化基与钝化基;o,p-位定位基与m-位定位基;同位素效应;空间效应Friedel-Crafts烷化和酰化;Clemensen还原;Haworth合成法 6-1 芳烃的分类和命名
6-2 苯的结构:苯的特性与Kekule结构;苯结构的描述(MO和共振论)6-3 苯系芳烃的亲电取代反应的反应历程:卤代;硝化;磺化;付一克烷化与酰化 6-4 芳环上的亲电取代反应的定位规则及其应用:定位规律及理论解释;苯二元取代物再取代的定位规律;定位规律的应用
6-5 氧化与还原(苯环上氧化,侧链氧化,Birch还原)
6-6 游离基反应(环的加成,侧链卤代)6-7萘的结构与衍生物的命名
6-8萘的化学反应;亲电取代(定位规则);氧化与还原 6-9致癌烃 卤代烃(8学时)
基本要求:
一、重点掌握卤代烃的三类反应:亲核取代、消去反应与活泼金属的反应以及前两类反应的极端历程的描述和特征(动力学特征、立体化学特征等);
二、掌握影响SN1,SN2,E1,E2历程的影响因素及其规律(判断反应的历程);
三、熟练掌握消去反应的规律——Saytzev烯和Hofman烯;
四、熟练掌握Grignard试剂的制备和应用,了解RLi,R2CuLi,RNa等的形成与应用;
五、掌握下述概念:亲核剂;溶剂解;氢解;Walden转化;两可离子;邻基参与与邻位促进 7-1 卤代烃的分类、异构与命名
7-2 卤代烃的亲核取代反应:碳亲核剂的反应;氧亲核剂的反应;氯亲核剂的反应硫亲核剂的反应;卤亲核剂的反应
7-3 卤代烷SN反应的历程和立体化学(SN1、SN2)
7-4 影响SN反应的因素:R的结构;L离去基团;Nu的亲核性;溶剂 7-5 芳卤的SN反应(Meisenheimer络合物,苯炔历程)
7-6 卤代烃的消去反应:β-消去的历程(E1,E2,E1cb)影响因素;定向规律 7-7 卤代烷与金属的反应:格氏试剂及其反应;类格氏试剂及其反应 7-8 卤代烃的还原
7-9 多卤代烃与α-消去反应 7-10 分子内的SN反应与邻基参与 8 醇、酚、醚(8学时)
基本要求:
一、了解醇、酚、醚的结构的共性、命名与物理性质及一些主要合成法;
二、掌握醇的亲核取代反应和消去反应的规律,了解醇氧化和掌握邻二醇的特性;
三、掌握不对称醚的醚键断裂规律和酸碱作用下的环醚开环规律;
四、掌握酚的的反应和制备方法;
五、弄清下述试剂与反应的体质:Lucas试剂;Sarett试剂;Reimer-Tiemann反应;Kolbe反应;Oppenmer氧化法;Williamenson醚合成;Pinacol重排;Wagner-meerwein重排;Fries重排 8-1 醇的分类和命名 8-2 醇的物理性质
8-3 醇的化学性质:酸性、碱性、亲核性(与R-X反应,与ROH反应,与RCOOH反应,与TsCl和无机酰卤反应,与CS2反应)与无机酸反应;醇的氧化 8-4 邻二醇的特性(氧化与重排)8-5 醇的制备
8-6 酚的结构、反应与合成;反应(酸性,氧上的烷化与酰化,显色反应,芳环上的反应,4 氧化与还原,制备(磺化法氯苯水解法、异丙苯法等)8-7 醚:链醚(命名,反应);环醚;冠醚
8-8 硫醇、硫酚和硫醚:命名;物理性质;化学性质 9 醛、酮、醌(8学时)
基本要求:
一、重点掌握羧基上的各种亲核加成反应的规律及历程,注意Cram规则的立体化学问题;
二、掌握醛、酮的α-H的反应历程;
三、了解插烯原理,掌握α、β-不饱和醛酮的共轭加成规律及意义;
四、搞清下列名称反应:Aldol反应;Claisen-Schmidt缩合;Mamich反应;Wittig反应;Baeyer-Villiger反应;Wolff-Kisher-黄鸣龙反应;Michael反应;Robinson反应;Cannizzaro反应 9-1 醛酮的分类与命名
9-2 醛酮的结构与反应:羰基上的亲核加成反应——加HCN、NaHSO3,有机金属化合物,H2O,LiAlH4,NaBH4,PCl5等和立体化学;与氨及氨衍生物的反应(肟、腙、缩氨脲),与醇的加成缩合反应——半缩醛(酮)、缩醛(酮)的生成,醛(酮)的Wittig反应、Mannich反应、安息香缩合;醛酮α-H的反应:酮-烯醇互变,卤代与卤仿反应,aldol反应;氧化与还原:醛酮的一般氧化,Baeyer-Villiger氧化和Riley氧化;Cannizzaro反应;还原成醇(催化氢化和金属氢化物和金属还原);还原成烃基(Clemensen还原,Wolff-Kisher-黄鸣龙还原)9-3 醛、酮、的制备 9-4 醛、酮的几个代表化合物 9-5 插烯原理与共轭加成 9-6 醌的结构与特性 羧酸及其衍生物(9学时)
基本要求:
一、重点掌握羧酸及其衍生物羰基碳上的亲核取代反应,熟悉它们之间的衍变关系和反应历程;
二、了解羧酸的结构对酸性的影响,羧酸的脱酸与还原反应;
三、掌握酯和羧酸的α-H的反应和历程,了解酯的热消去反应和酰胺的一些特殊反应;
四、熟悉β-丁酮酸酯与丙二酸二乙酯的合成法,同时掌握β-酮酸酯及其类似物的互变异构现象及其影响因素;
五、卤代酸、酚酸、醇酸、乙烯酮的特性作适当的了解;
六、掌握Hell-Volhavd-Zelinsky反应;Perkinr反应;Claisen缩合;Hofmann降解;Darzen反应;Reformatsky反应;β-丁酮酸酯和丙二酸二乙酯合成法
10-1 概述:羧酸的分类与命名;羧酸的结构与性能
10-2 羧酸的反应:羧基中氢的反应(酸性、影响酸性的结构因素);羰基碳上的反应(酯化反应、酰卤的形成、酰胺的形成,贝克曼重排、酸酐的生成);脱羧反应;羧酸的还原反应(有机金属化合物反应);羧酸的α-H的反应(Hell-Volhavd-Zelinsky反应)10-3 羧酸的制备
10-4 羧酸衍生物的命名和结构与性能
10-5 羧酸衍生物的化学反应:酰基碳上的SN反应;与有机金属化合物的反应;还原反应;α-H的反应(酰卤α-H反应;酸酐α-H的反应,Perkinr反应;酯的α-H的反应,Claisen缩合);酯的热消去反应;酰胺的特殊反应,如Hofmann降解 10-6 乙烯酮
10-7 取代酸:卤代酸的特性(Darzen反应,Reformatsky反应);醇酸特性;酚酸的性质与制备方法;羧基酸的特性
10-8 β-丁酮酸酯和丙二酸二乙酯在合成上的应用 11 含氮化合物(7学时)
基本要求:
一、重点掌握胺类的碱性规律,氮上的取代反应和与HNO2及TsCl/NaOH的反应(Hinsberg分胺法),了解叔胺氮上的氧化反应及其氧化产物在合成上的应用(Cope反应);
二、重点掌握芳香重氮盐的生成及其在合成上的应用,如Sandmeger反应和偶联反应等;
三、掌握烯胺和季胺化合物的反应(重点Hofmann彻底甲基化反应);
四、掌握硝基化合物的还原反应,尤其是芳香族硝基化合物不同程度还原在有机合成上的意义;
五、掌握胺的各种制备方法,如还原胺化法与Gabriel合成法等;
六、了解重氮甲烷与氮烯的结构与应用。
11-1 胺的分类、命名和物理性质
11-2 胺的结构与反应:结构(碱性、亲核性;与HNO2反应;氧化)11-3 芳胺环上的反应(卤代、硝化、磺化)11-4 烯胺的合成与反应 11-5 季胺盐与季胺碱
11-6 胺的制备:硝基、腈、酰胺、肟等化合物的还原;羧基还原胺化;氨或胺的羟化;特殊的伯胺合成法(Hofmann降解、Gabriel合成法)
11-7 芳香重氮盐的结构与反应:结构;反应(脱氮、Sandmeger反应等,不脱氮反应,偶联等)
11-8 重氮甲烷与碳烯的结构和反应:重氮甲烷的结构和反应:碳烯的结构和反应 11-9 硝基化合物的结构和反应:结构;反应(还原、缩合等)11-10 分子结构与颜色 有机化合物的光谱性质(4学时)
基本要求:
一、了解MS、IR、NMR波谱的基本原理;
二、掌握主要类型有机化合物的波谱特征,能够用于不太复杂的有机化合物的结构测定与鉴定,其中:(1)MS要求掌握M+和碎片离子的识别,对各类有机化合物的开裂规律有总体了解;(2)IR要求掌握一些典型基团的特征吸收峰及影响峰位的因素;(3)NMR要求掌握化学位移δ、偶合常数J与分子结构的关系。
12-1 IR与有机分子结构:概述(IR形成、IR表示方法,化学键振动类型与规律);影响峰强度的因素;IR谱应用举例
12-2 1H-NMR与有机分子结构:基本原理;化学位移;化学位移与分子结构;自旋偶合与自旋裂分;NMR的应用举例
12-3 MS与有机分子结构:概述(MS的产生与IR表示方法)M+与碎片(M+的形成与识别,M+强度与结构等);MS的应用举例 13 非苯芳香族化合物(4学时)
基本要求:
一、掌握Huckel规律与芳香性判断,了解几个典型的芳香族化合物的结构;
二、熟悉简单杂环化合物的类型与命名;
三、主要掌握五元和六元杂环中的呋喃、吡咯、噻吩、吡啶化合物的结构与性能;
四、了解五元杂环化合物的制备及其衍生物的反应;
六、了解以吲哚、喹啉为代表的稠杂环的结构与性能,并对某些天然含杂环有机化合物有一定的了解。
13-1 含碳环的非苯芳香族化合物:芳香性的条件(Huckel规则);几个典型碳环非苯芳香族化合物(环丙烯正离子,环戊二烯负离子,环庚三烯正离子,篮烃,杯烯、轮烯)13-2 芳香杂环化合物:杂环化合物的分类和命名;含一个杂原子的五元杂环体系的结构与反应(呋喃、吡啶、噻吩的结构、反应及制备,呋喃和吡咯衍生物);含一个杂原子的六元环化合物——吡啶及其衍生物(结构与性能,吡啶的化学反应、吡啶及其取代吡啶的合成);稠杂环(吲哚、喹啉)14 碳水化合物(4学时)
基本要求:
一、了解单糖的结构与性能,熟悉成苷与成脎等反应;
二、掌握以葡萄糖为代表的单糖结构的表示法(Fischer式,Haworth式和构象式)及D/L命名法;
三、学习以葡萄糖为代表的单糖结构表征的推论方法和几个典型的双糖的结构以及推导方法;
四、掌握下述概念:变旋光作用;正位异构体(α、β);差向异构体;转化糖和还原糖 14-1 碳水化合物的定义和分类
14-2 单糖:命名;结构(葡萄糖的构造、构型、构象);反应(或苷、成脎、氧化、醛糖的递升和递降)
14-3 双糖:麦芽糖;纤维二糖;乳糖;蔗糖 14-4 多糖:淀粉;纤维素 氨基酸、肽和蛋白质(4学时)
基本要求:
一、了解α-氨基酸的结构与共性(物性和化性);
二、掌握氨基酸的几种典型的合成方法;
三、了解肽的命名和结构特征,肽的合成和保护基的应用,肽的结构测定方法(端基分析法)。15-1 概述
15-2 氨基酸:分类与命名;结构与物性(PI);反应;合成 15-3 肽:结构与命名;结构测定;合成 15-4 蛋白质(四级结构)16 周环反应(4学时)
基本要求:
一、了解周环反应的特点及理论;
二、掌握前线轨道理论的基本思想,能熟练地描述HOMO和LUMO;
三、掌握三类周环反应的选择规律,能预言反应的进程。16-1 概述(特点和分类)
16-2 电环化反应:4nπ电子体系;[4n+2]π电子体系
16-3 环加成体系:[2+2]环加成;[4n+2]π电子环加成;1.3-偶极加成;钳合反应
16-4 σ-迁移;[I.J]σ-迁移(氢原子参加,碳原子参加);[3.3]σ-迁移(Cope重排,Claisen重排)
四、教材
《有机化学基础》(第二版),蓝仲薇,李瑛,陈华,肖友发主编,海洋出版社,2004,北京。
五、主要参考书:
1、邢其毅、徐瑞秋、周政、裴伟伟,《基础有机化学》第二版,上、下册,高等教育出版社,2003,北京。
2、L.G.Wade Jr,Organic Chemstry(5 th Ed), Pearson Education Inc, 2003.3、胡宏纹主编,《有机化学》第二版,上、下册,高等教育出版社,1990,北京。
4、R.T.莫里森、R.N.博伊德,《有机化学》第二版,上、下册,科学出版社,1992,北京。
六、成绩评定
期末考试占总成绩的60% 期中考试占总成绩的20%平时成绩占总成绩的20%