十二五发展规划--机械基础件 基础制造工艺和基础材料产业

时间:2019-05-13 12:54:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《十二五发展规划--机械基础件 基础制造工艺和基础材料产业》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《十二五发展规划--机械基础件 基础制造工艺和基础材料产业》。

第一篇:十二五发展规划--机械基础件 基础制造工艺和基础材料产业

机械基础件、基础制造工艺和基础材料

产业“十二五”发展规划

目 录

一、发展现状与面临形势

(一)发展现状

(二)面临形势

二、指导思想与发展目标

(一)指导思想

(二)基本原则

(三)发展目标

三、发展重点

(一)机械基础件

(二)基础制造工艺

(三)基础材料

四、主要任务

(一)加强自主创新,推动产业技术进步

(二)优化产业结构,促进企业协同发展

(三)建设研发和服务平台,增强持续发展能力

(四)加大技术改造,转变产业发展方式

(五)加强行业管理,提升产业整体素质

(六)推进“两化融合”,提高信息化水平

(七)实施“机械基础件和基础制造工艺双提升工程”

五、保障措施

(一)加强宏观统筹协调

(二)加强产业政策引导

(三)加强资金引导和支持

(四)优化产业发展环境

(五)推进国际交流合作

(六)充分发挥行业协会的作用

六、规划组织实施

附表1:机械基础件重点发展方向

附表2:50项推广应用的先进绿色制造工艺

附表3:基础材料重点发展方向

机械基础件、基础制造工艺及基础材料(以下简称“三基”)是装备制造业赖以生存和发展的基础,其水平直接决定着重大装备和主机产品的性能、质量和可靠性。机械基础件是组成机器不可分拆的基本单元,包括:轴承、齿轮、液压件、液力元件、气动元件、密封件、链与链轮、传动联结件、紧固件、弹簧、粉末冶金零件、模具等;基础制造工艺是指机械工业生产过程中量大面广、通用性强的铸造、锻压、热处理、焊接、表面工程和切削加工及特种加工工艺;基础材料特指机械制造业所需的小批量、特种优质专用材料。

为贯彻落实《国民经济和社会发展第十二个五年规划纲要》关于“装备制造行业要提高基础工艺、基础材料、基础元器件研发和系统集成水平”的要求以及“十二五”国家工业转型升级的总体部署,大幅度提升“三基”产业整体水平,提高为装备制造业的配套能力,实现装备制造业转型升级,特制定《机械基础件、基础制造工艺和基础材料产业“十二五”发展规划》,规划期为2011~2015年。

一、发展现状与面临形势

(一)发展现状 1.已形成的基础

经过多年的努力,我国“三基”产业取得了长足进展,形成了门类齐全、能满足主机行业一般需求的生产体系,为装备制造业发展提供了重要的支撑和保障。

产业规模不断扩大。近十年来,我国“三基”产业持续稳定增长,产品品种和水平有了较大提升,多种普通机械基础件产量(产值)居世界前列;铸造、锻造、焊接、热处理和切削加工能力以及焊接材料、高速钢、硬质合金、钕铁硼永磁体等基础材料产量居世界首位。

专栏1 “三基”产业主要经济指标

数据来源:2005年、2010年工业统计快报。

专栏2 2010年部分“三基”产业部分产品世界排名

数据来源:相关行业协会提供。

配套能力不断增强。轴承、齿轮、紧固件等机械基础件国内平均市场占有率65%。基础制造工艺取得明显进步,一批发电设备用大型铸锻件已具备走向国际市场的能力。围绕电工电器设备配套需要,开发出发电设备用钢、大型变压器用取向硅钢片等特种优质专用材料。

产业聚集效应明显。重庆、常州两大齿轮产业聚集区的产值占全国齿轮行业的17%,瓦房店、洛阳、苏锡常镇、新昌四大轴承产业聚集区的销售收入占全国轴承行业的30%,温州、宁波、海盐、冀南四大紧固件产业聚集区的产值占全国紧固件行业的67%。基础制造工艺专业化水平不断提高,在主要装备制造业聚集区建设了一批高水平、专业化的基础制造工艺中心,如江苏泰州和大丰的精密锻件产量超过全国精密锻件产量的一半。

技术进步成效显著。“十一五”期间,“三基”产业固定资产投入持续稳定增长,装备水平明显提升,长期以来存在的寿命、可靠性和精度保持性等质量问题有所改进,一批研究成果获国家科技奖。

2.存在的主要问题

近年来我国装备制造业水平大幅度提升,大型成套装备能基本满足国民经济建设的需要,但高端“三基”产品却跟不上主机发展的要求,高端主机的迅猛发展与配套“三基”产品供应不足的矛盾凸显,已成为制约我国重大装备和高端装备发展的瓶颈,主要表现为:

自主创新能力薄弱。“三基”产业研发投入明显不足,投入强度远低于主机行业,缺乏高水平的人才队伍。产业技术基础薄弱,共性技术研究体系缺失,基础性与共性技术研究弱化,新产品、新技术的推广应用困难,行业基础数据的传承、跟踪、积累和共享机制尚不健全。

产业结构不尽合理。“三基”中低端产品产能过剩、高端产品供给能力不足的矛盾十分突出,同质化竞争激烈,贸易摩擦不断。专业化程度低,具有国际竞争力的大型企业集团和具有知名品牌的“专、精、特”企业群体尚未形成。

产品总体水平偏低。“三基”产品的性能和质量与主机用户的需求之间还有一定差距,轴承、齿轮、液压件、密封件等机械基础件的内在质量不稳定,精度保持性和可靠性低,寿命仅为国外同类产品的1/3~2/3,产品生产过程的精度一致性与国外同类产品水平相比差距明显。

生产工艺装备落后。优质、高效、节能、节材的先进基础制造工艺和自动化、数字化装备的普及程度不高,能源消耗、材料利用率及污染排放与国际先进水平相比差距较大。

(二)面临形势2008年以来我国装备制造业规模持续位居世界首位,主机和重大装备的集成能力得到显著提升。“十二五”是实现由装备制造大国向装备制造强国转变的重要战略机遇期,发展“三基”产业、提升产品水平、增强配套能力十分关键。必须深刻地认识并准确地把握“三基”产业发展环境的新变化、新特点,抓住历史机遇,实现跨越发展。

1.科学技术进步助推“三基”向高端发展

科学技术日新月异,装备制造业智能化、绿色化的发展趋势明显,重大装备和主机产品的应用条件日趋超常态与恶劣,对配套的机械基础零部件、制造工艺和材料均提出了更高的要求,推动机械基础件向长寿命、高可靠性、轻量化、减免维修方向发展。与此同时,信息技术、生物技术、新材料等高技术的快速发展及与传统产业的融合,将“三基”产业带入一个崭新的发展阶段,使其从常规产品、传统制造向高技术产品、现代制造及超常态制造发展。成形技术向净成形和近净成形方向发展;超精密加工的尺寸精度由亚微米级向纳米级发展;铝合金、铝镁合金、复合材料、新型工程材料的应用越来越广泛。

2.国际经济格局变化给“三基”产业带来双向挤压金融危机后,工业发达国家再工业化趋势明显,节能、减排、降耗、低碳要求更为严格,将促进更加激烈的新一轮产业竞争。我国“三基”发展不仅受到来自工业发达国家知识产权、技术标准、绿色壁垒等贸易保护措施的“高端卡位”,也面临着发展中国家更低成本竞争优势所形成的“低端挤压”。

3.工业转型升级对“三基”产业提出了更高要求“十二五”期间是我国工业转型升级的攻坚期。传统产业的改造和提高,战略性新兴产业的培育和发展,以及重大工程、民生工程、基础设施和国防建设对装备制造业的需求,不仅为“三基”产业提供了巨大的市场空间,而且对其增长质量、水平也提出了更高的要求。高质量的基础件、先进的基础制造工艺和基础材料是提高重大装备性能和可靠性、避免重大事故发生的保证;高质量的基础件和基础材料是国防工业现代化的重要保证,必须立足自主发展;“三基”产业为提高人民生活质量提供重要条件,与改善民生息息相关的食品加工、生物制药、家用电器制造过程的自动化和无污染,都需要高清洁度、高精度的基础件和耐腐蚀的基础材料作保证。

当前我国“三基”产业发展严重滞后于主机并被固化在产业链中低端的状况应该尽快扭转,提升“三基”产业整体水平和国际竞争力刻不容缓。

二、指导思想与发展目标

(一)指导思想

深入贯彻落实科学发展观,以产业结构调整和转变发展方式为主线,围绕重大装备和高端装备发展的配套需求,以产品突破为主攻方向,密切产需合作,加强基础技术研究,加速创新能力建设,着力推进产品质量、可靠性和寿命的升级,加大先进技术推广应用和产业化力度,营造有利于“三基”产业向高端发展的环境,提升“三基”产业整体水平和国际竞争力,为实现装备制造业由大变强奠定坚实基础。

(二)基本原则

1.坚持市场导向,发挥政策引导作用

围绕高端装备制造业培育和发展、国家重点工程建设所需重大装备的配套需求,遵循市场经济规律,发挥市场配置资源的基础作用,突出企业在开发新产品、新工艺及新材料的主体地位。积极发挥各级政府部门在规划制定、政策引导、组织协调中的重要作用,努力营造有利于“三基”产业发展的环境。

2.坚持产需合作,促进专业化生产

积极探索产需合作新模式,促进产业链上下游密切合作,建立基于利益相关和共赢的新机制,在“三基”企业与主机企业之间形成有效的供应链。鼓励有实力和有积极性的主机制造厂参与发展其所急需的基础零部件和基础材料,并逐步走向规模化、专业化和社会化。

3.坚持自主创新,积极开展国际合作

充分发挥技术创新的支撑和引领作用,着力解决影响“三基”产品性能、质量和稳定性的关键共性技术,加强行业公共研发与服务平台建设,建立起以企业为主体、产学研用相结合的技术创新体系。积极开展国际交流与合作,加强引进技术消化吸收与再创新。

4.坚持重点突破,推动产业整体提升

选择一批基础条件好、需求迫切、带动作用强的关键机械基础件、基础制造工艺和基础材料,集中优势资源,重点予以突破,打造一批具有国际先进水平的关键产品、工艺和知名品牌。在实现局部领域突破和跨越式发展的同时,提升“三基”产业的整体素质,带动产业的全面发展。

(三)发展目标 1.2015年目标

通过五年时间的努力,我国“三基”产业创新能力明显增强,加工制造水平显著提高,能基本满足重大装备的发展需要,产业发展严重滞后的局面得到改观。

具体指标有:

——配套能力增强目标。重大装备所需机械基础件配套能力提高到75%以上;基础制造工艺水平全面提升,高端大型及精密铸锻件基本满足国内需求;重大装备所需的基础材料配套水平大幅提升。

——创新能力提升目标。机械基础件的可靠性、性能一致性和稳定性得到显著提升,产品使用寿命提高15~20%,突破一批关键基础件、基础制造工艺和基础材料的核心技术和产业化技术,形成一批研发和试验检测公共服务平台。

——组织结构优化目标。建立起与主机发展相协调、技术起点高、专业化、大批量的配套体系;形成若干年销售收入超过100亿的具有国际竞争力的大型企业集团,培育100家具有知名品牌的“专、精、特”企业,优化30个特色产业集聚区。

——节能降耗减排目标。全面推广应用绿色制造工艺与装备,原材料利用率提高10%,吨合格铸件能耗减少0.12吨标煤,吨合格锻件能耗减少0.08吨标煤,吨热处理件能耗减少150千瓦时,污染物排放量明显减少。

专栏3 “十二五”我国“三基”重点行业发展指标

2.2020年展望2020年,形成与主机协同发展的产业格局,能够满足重大装备和高端装备对机械基础件、基础制造工艺和基础材料的需求,创新能力和国际竞争力处于国际先进水平,部分领域国际领先。

三、发展重点 围绕重大装备和高端装备配套需求,重点发展11类机械基础件、6类基础制造工艺和2类基础材料。集中优势资源,重点开发20种标志性机械基础件、15项标志性基础制造工艺和12种标志性基础材料并实现产业化。

(一)机械基础件选择带动性强、辐射作用大的高速、精密、重载轴承等11类机械基础件作为发展重点,以提高性能、可靠性和寿命为主攻方向,力争使其达到或接近国际先进水平。

1.高速、精密、重载轴承

中、高档数控机床轴承和电主轴,大功率风力发电机组轴承,大型运输机轴承,重载直升机轴承,长寿命高可靠性汽车轴承及轴承单元,高速铁路列车轴承,重载铁路货车轴承,新型城市轨道交通轴承,大型薄板冷热连轧设备轴承,大型施工机械轴承,高速度长寿命纺织设备轴承,超精密级医疗器械主轴轴承。

2.超大型、高参数齿轮及传动装置

大功率风力发电齿轮箱,高速列车齿轮传动装置,汽车节能自动变速器,核电循环水泵齿轮箱,舰船用大型齿轮传动装置,工程机械及矿山机械用液力变速器,大功率采煤机齿轮箱,掘进机齿轮传动装置,污水处理设备用高速齿轮箱。

3.高压液压元件和大功率液力元件

工程机械用31.5兆帕及以上高压柱塞泵/马达、高压液压阀,液压电子控制器,工作压力31.5兆帕及以上高频响电液伺服阀和比例阀,液力变矩器,数字液压泵及油缸,高转速大功率液力偶合器调速装置,农业机械用无级变速传动装置。

4.智能、高频响气动元件

智能化阀岛,智能定位气动执行系统,柔性抓取气动系统及元件,轨道交通设备用气动元件,150赫兹以上高频响电磁换向阀,精密压缩空气过滤器,透平式气动马达。

5.高可靠性密封件

高参数透平压缩机机械密封,大型高温高压泵和核电站核二、三级泵用机械密封和静密封装置,大型工程机械液压油缸密封,大型盾构机密封,风电偏航变桨轴承密封。

6.高速链传动系统

汽车发动机正时链及自动变速箱哈瓦链,无级变速箱专用无级变速链,高精度低噪声链轮,抗疲劳、耐磨损、耐腐蚀特异链。

7.高可靠性联轴器、制动器、离合器

大功率风力发电制动器,高性能柔性联轴器,隧道掘进机和采煤机用鼓形齿联轴器,电磁离合器和制动器,轨道交通制动器,高精度限矩安全联轴器。

8.高强度紧固件

10.9级及以上汽车发动机紧固件,风力发电设备大规格高强度紧固件,飞机及航天器专用铝镁合金紧固件,自锁类紧固件。

9.高应力、高可靠性弹簧

汽车和工程机械用高端悬架弹簧、气门弹簧和稳定杆,高速列车用弹簧,气动、液压件弹簧。

10.高密度、高强度粉末冶金零件

高精度汽车粉末冶金零件,粉末冶金含油轴承,大型客机、高速列车、船舶制动用高性能粉末冶金摩擦材料及刹车片。

11.大型、精密、高效、多功能模具

高档乘用车车身及汽车(超)高强钢板热成形模具,高速精密多工位级进冲压模具,高光无痕、叠层旋转大型塑料模具,超大规模集成电路引线框架及超大超薄LED大型塑料模具,多料多腔精密电子、医疗器械注塑模具,大型工程机械轮胎橡胶模具,轻金属高精压铸模具。

根据以上发展重点,提出“十二五”期间机械基础件重点发展方向(见附表1),从中选择20种标志性机械基础件作为开发的重点。

专栏4 20种标志性机械基础件

(二)基础制造工艺

重点发展6类先进、绿色制造工艺,降低能源、材料消耗、改善环境,提高产品质量和效率。

1.铸造工艺

定向凝固铸造工艺,热风长炉龄冲天炉及其熔炼工艺技术,数字化模拟技术,高紧实度粘土砂自动造型生产线技术,快速无模砂型铸造工艺,铝、镁、钛等特种合金铸造工艺,复合材料铸造工艺,半固态铸造工艺,高温、低温、高强韧度材料(球墨铸铁、等温淬火球铁、蠕墨铸铁、轻质合金)高精度铸造工艺。

2.锻压工艺

大型薄壁结构件整体成形工艺,多工位冷、温锻工艺,高速精密镦锻工艺,大型复杂结构件精密体积成形工艺,大型环件冷辗扩工艺,板材管材精密成形工艺,高强钢板热成形工艺,曲轴、风电主轴及阀门全纤维近净成形技术,汽车铝合金精密锻造工艺,螺旋伞齿轮锻-磨联合制造工艺,精冲工艺。

3.焊接工艺

激光及激光电弧复合热源焊接工艺,搅拌摩擦焊工艺,高精度及大厚度切割工艺,高效电弧焊工艺,等离子喷焊工艺,近净成形焊接新技术。

4.热处理工艺

化学热处理催渗工艺,精密控制加热和淬火工艺,齿轮和轴承精密可控热处理工艺,超大型零件真空热处理工艺,大型轴类和管类零件感应淬火热处理工艺,大型全纤维炉衬无料盘可控气氛连续加热炉热处理工艺,连续真空热处理工艺,大型薄板件压淬热处理工艺,深冷热处理工艺。

5.表面处理工艺

铝、镁合金、钛合金件表面处理与强化工艺,纳米颗粒复合电刷镀工艺,纳米陶瓷涂层工艺,等离子、激光、电子束表面强化工艺,低铬酸镀硬铬、镀锌后低铬钝化等绿色电镀工艺。

6.切削加工及特种加工工艺

高速/超高速切削加工工艺,复合加工工艺(车铣复合、铣磨复合等),复合材料切削工艺,超精密加工工艺(轴系精度0.02~0.05微米),超大零件切削加工工艺,微量润滑切削工艺,干式切削工艺,“三束”(电子束、离子束、激光束)加工工艺,电火花加工工艺,超声加工工艺,增量制造工艺,粉末冶金零件的精密成形工艺。

从以上重点发展的基础制造工艺中,提出50项先进绿色制造工艺作为推广的重点(见附表2),同时选择15项标志性基础制造工艺作为开发的重点。

专栏5 15项标志性基础制造工艺

(三)基础材料

以经济可承受性为主旨,重点发展关键基础零部件所需的高品质结构材料和工艺材料。

1.结构材料

——高性能结构钢。高速铁路列车用轴承钢、汽车用轴承钢、耐冲击载荷高淬透性高碳铬轴承钢、中碳轴承钢、下贝氏体淬火高碳铬轴承钢、准高温轴承钢、抗磨粒磨损轴承钢;汽车变速箱齿轮和汽车后桥齿轮用合金渗碳钢、飞机及坦克发动机齿轮用合金渗碳钢,高强度紧固件用合金钢和调质钢,高应力弹簧钢,高性能链条专用钢,机床滚珠丝杠和直线导轨专用钢。

——高温合金。涡轮叶片、涡轮盘等用高温合金。

——高压精密液压铸件用铸铁。

——密封材料。高抗水解聚醚聚氨酯密封材料,高性能柔性石墨材料,高温和低温弹性等密封材料,高性能无石棉密封材料,高强度细颗粒机械密封用碳石墨材料。

——绝缘材料。F、H级亚胺薄膜,特高压绝缘材料。

——复合材料。碳纤维复合材料,新能源汽车动力用大功率锂电池材料,聚甲醛合金材料,液压泵用双金属烧结材料,纳米复合材料。

——仪表功能材料。测温材料、敏感材料。

2.工艺材料

——模具钢。中厚预硬模具钢,高耐蚀耐磨镜面塑模钢,高韧高耐磨冷作模具钢,大型轻质合金压铸模具钢,高性能粉末冶金模具钢。

——新型焊接材料。高强高韧焊接材料,耐热、耐蚀、耐辐照、耐磨及耐低温焊接材料,无毒绿色钎焊材料及焊剂。

——超硬刀具材料。金刚石(PCD)、立方氮化硼(PCBN)、硬质合金(YG、YT、YW)。

——工艺耗材。环境友好型涂料和润滑剂。

根据以上发展重点,提出“十二五”期间基础材料重点发展方向(见附表3),从中选择12种标志性基础材料作为开发的重点。

专栏6 12种标志性基础材料

四、主要任务

(一)加强自主创新,推动产业技术进步 1.健全技术创新体系

继续推进以企业为主体,产学研用相结合的产业新体系建设。鼓励“三基”企业与科研院所、高等院校、主机制造企业联合建立研发机构、产业技术联盟等技术创新组织,重点支持国家创新型企业试点、国家技术创新示范企业、国家认定的企业技术中心等创新能力建设和国家重点实验室、国家工程实验室、国家工程研究中心、国家工程技术研究中心等公共研发平台建设。支持行业生产力促进中心等社会化、专业性科技服务机构为“三基”企业服务,促进其健康发展。

2.开发一批标志性“三基”产品

本着“有所为、有所不为”的原则,围绕重大装备和高端装备发展急需,集中优势资源,通过开发20种标志性机械基础件、15项标志性基础制造工艺和12种标志性基础材料,掌握一批“三基”产业发展的核心技术,形成批量生产能力,提高对重大装备和高端装备的配套能力,进而带动“三基”产业的配套和保障能力的全面提升。

3.完善人才培养机制

加快建立多层次的适合“三基”产业发展的人才培养体系,培养一批具有国际视野的专家和技术带头人,引进、培养和造就一批优秀的从事“三基”研发和创新的团队。建立企校联合培养人才的新机制,促进创新型、应用型、复合型和技能型人才的培养。重视发展职业教育,支持行业职业技术培训中心的建设,开展技能等级评定和职业技能大赛,大力培养专业技能人才。

(二)优化产业结构,促进企业协同发展 1.推进组织结构调整

通过政策引导,推动企业跨地区、跨所有制的兼并、重组,整合优势资源,提高产业集中度,形成若干家高起点、具有国际竞争力、产值超过100亿元的大型企业集团。鼓励“三基”企业向专业化分工、细分市场、特色明显的方向发展,重点培育100家掌握核心技术、专业化水平高、具有知名品牌的 “专、精、特”企业。发挥龙头企业的带动、辐射作用,形成大型企业集团与中小企业优势互补、协调发展的产业格局。

2.推进产品结构调整

推动通用型“三基”产品的更新换代,增加产品品种,改善和提高产品的性能和质量。鼓励“三基”企业发展高附加值、高技术含量的产品和工艺,不断提高高端产品的比重,增强为重大装备和高端装备配套能力。

3.优化特色产业集聚区

加大对已有轴承、齿轮、液压件、气动件、密封件、链与链轮、紧固件、弹簧、模具、基础材料等产业集聚区的支持和指导,引导企业向产业园区集聚。结合“新型工业化示范基地”建设,发展一批专业特色鲜明、品牌形象突出、服务平台完备、热加工相对集中的现代产业集聚区。培育30家专业化分工、产业链协同的特色产业集聚区,形成布局合理、协调发展的产业格局。

(三)建设研发和服务平台,增强持续发展能力 1.建设一批公共研发中心

发挥转制院所等已有平台为行业的服务功能,充实健全“三基”行业公共研究机构。充分利用现有优势资源,组建轴承、齿轮、液压件/气动件、密封件、紧固件及铸造技术、表面处理技术等公共研发平台,为行业提供关键技术、共性技术研发支持,并实现成果共享。

2.建设一批检测实验公共服务平台

依托现有检测实验资源,以公正开放、独立运作为保障,形成一批布局合理的第三方公共检测实验平台,开展产品强化实验、可靠性和寿命测试试验、产品质量检测检验、基础材料检验,形成专业化的检测/试验和服务能力。优先支持在产业集聚区建立公共检测实验平台。

3.建设产需对接平台

深化配套企业与主机企业的战略合作关系,依托行业协会,建设若干跨行业、跨地区的产需对接平台,促使“三基”企业与主机企业形成有效的供应链,提升“三基”产业发展的效率与效益。

4.提升金融服务水平

在“三基”产业集聚区,鼓励金融要素市场、金融机构在商业可持续和风险可控的情况下,围绕“三基”企业的发展,充分利用现有政策,拓宽企业融资渠道,健全信用担保体系,开发贸易融资、应收账款融资等金融产品,创新服务模式。鼓励优势企业上市融资。

(四)加大技术改造,转变产业发展方式 1.推广50项先进绿色制造工艺

选择目前技术成熟、覆盖面广、应用效果显著的50项先进绿色制造工艺,结合企业技术改造工作,加快先进工艺与装备在生产过程中的应用示范和推广,实现节能、降耗、减排,提高产品质量和生产效率。

2.支持企业技术改造

重点支持“三基”企业技术改造,优先加强科研和检测实验能力建设,提高工艺、技术和装备水平;鼓励企业进行节能降耗和资源综合利用改造;引导企业利用数字化控制技术和先进适用技术改造传统制造工艺和装备。

3.建设区域基础制造工艺中心

在装备制造业发达的城市和产业集聚区,盘活和整合优势资源,形成20家技术水平高、服务能力强的铸造、锻造、热处理及表面处理等基础制造工艺中心,提高环境综合治理能力,降低污染物排放水平。

(五)加强行业管理,提升产业整体素质 1.提升经营管理水平

支持大型企业集团和行业龙头企业创新体制机制,完善法人治理结构,建立与市场经济相适应的现代企业制度,提高经营管理能力。引导中小型企业加强管理基础,健全管理制度,广泛运用先进管理方法和手段,提高产品质量一致性。

2.完善标准体系

结合研究开发和试验验证,加大国家标准和行业标准制修订力度,鼓励以企业为主体研究制定我国自主知识产权的标准,并将有代表性的标准推向国际,加快国外先进标准向国内转化。发挥标准化手段对规范市场的基础性作用,加强标准宣贯,建立健全合格评定程序,促进新产品、新材料、新工艺的推广应用。加强产需企业间的沟通交流,实现上下游产品的标准对接,保证标准要求的协调性和一致性。

3.提升产品质量

贯彻落实“工业产品品牌和质量振兴战略”,加强质量保障体系建设,强化产品质量认证制度,充实质量管理、可靠性工程的专业人才队伍,推进标准、认证、计量、检测检验、质量控制技术、质量工程技术等在企业质量控制与质量管理中的应用,着力提升产品的质量、可靠性和寿命。

4.培育知名品牌

引导“三基”企业开展知名品牌培育活动,鼓励企业加强知名品牌产品和优质产品的推广营销,提高知名品牌产品的市场价值。同时,利用标准、认证、检测等手段,促进知名品牌产品质量水平的提高,加大打击制造假冒品牌产品的力度。

(六)推进“两化融合”,提高信息化水平1.提高企业信息化水平

继续推进企业在产品设计、生产过程、物流管理、销售与服务管理、财务管理等环节的信息化。开发和推广适合“三基”中小企业的产品设计软件及管理软件。鼓励在“三基”企业和主机用户之间建立持续改进、及时响应的客户关系和供应链管理系统,实现产业链上下游信息共享和业务协作。培育一批两化融合示范企业。

2.大力发展数字化集成化的基础件

落实《智能制造装备发展规划》和《“数控一代”装备创新工程行动计划》,大力推进数字化控制技术与齿轮、轴承、液压件、气动件、密封件等机械基础件的相互融合,发展新一代具有智能化和集成化特征的机械基础件。

(七)实施“机械基础件和基础制造工艺双提升工程”

围绕提高机械基础件性能、可靠性和寿命,开展现代设计技术、先进制造技术、材料优化与新材料应用技术、快速强化试验技术等产品关键技术研究,重点开发一批标志性机械基础件,加强应用示范并实现产业化,全面提升对重大装备和高端装备的配套保障能力。

针对加工对象的大型化和精密化的发展趋势,以及生产过程绿色化的要求,开发一批标志性基础制造工艺,推广应用绿色制造工艺技术和先进制造装备;加强工艺管理,严格工艺纪律,建立总工艺师责任制,实现制造工艺水平和工艺管理水平的大幅度提升。

五、保障措施

(一)加强宏观统筹协调加强组织领导,成立推进“三基”工作领导小组,定期研究“三基”产业发展的重大问题;在继续贯彻落实《机械基础零部件产业振兴实施方案》的基础上,组织部署和实施《机械基础件和基础制造工艺双提升工程》。建立部际/部省例会制度,协调相关部门和地方资源,形成支持“三基”产业发展的合力。充分发挥企业市场主体作用和各级政府、行业协会及中介机构在推动“三基”产业技术进步和发展中的组织、协调作用。

(二)加强产业政策引导充分发挥产业政策的引导作用,制定“三基”行业技术规范条件,提高行业准入门槛,遏制低水平重复建设。制定《机械基础件、基础制造工艺和基础材料产品推广目录》。继续实施现行基础件财税支持政策,对研制国家鼓励发展的关键“三基”产品,落实关键零部件、原材料进口免税政策。鼓励“三基”企业积极开展清洁生产审核,推进制造过程绿色化。研究制定鼓励用户采用“三基”新产品和新工艺的政策。

(三)加强资金引导和支持加大国家相关计划对“三基”产业技术创新和技术改造的投入力度,支持产学研合作,联合攻克产业关键技术。研究设立“三基”产业发展专项,重点支持机械基础件、基础制造工艺和基础材料企业的技术研发和产业化,先进工艺推广应用,新产品的试点示范,研发、检测、培训等行业服务平台建设等。鼓励金融机构设立“三基”产业发展专项基金。引导地方、企业和社会资本加大对“三基”产业的资金投入。

(四)优化产业发展环境加大宣传力度,促进技术、资本、人才向“三基”产业集聚,营造全社会重视“三基”产业发展的氛围。认真落实研发费用加计扣除、固定资产加速折旧等税收政策,促进企业加快技术创新和技术进步。鼓励有实力和有积极性的主机制造企业发展其所急需的基础零部件和基础材料,在满足自身配套需求的基础上逐步走向社会化。

(五)推进国际交流合作鼓励和引导企业加强与跨国集团开展多种形式的合资合作;鼓励国外企业来华投资或设立研发机构;鼓励国内“三基”企业走出去,到国外设立分公司或研发机构,更多地利用全球科技资源,引进国外先进技术、先进经验。积极参与和组织国际合作项目,在更大范围、更广领域、更高层次开展国际合作。

(六)充分发挥行业协会的作用发挥行业协会的桥梁、纽带作用,鼓励行业协会积极参与国家、地方有关“三基”产业政策法规的制定。各行业协会要加强对行业发展重大问题的调查研究,反映企业诉求,引导规范企业行为,推进诚信体系建设,加强行业自律。组织建立“三基”产业经济运行及预测预警信息平台,及时发现、分析、反应行业情况和问题。提高各行业协会组织企业应对涉外知识产权纠纷、国际贸易摩擦的能力。各行业协会要积极组织企业间的交流活动、加强为企业新产品开发、工艺技术创新、科学管理提供咨询服务。

六、规划组织实施

工业和信息化部牵头负责《规划》实施,建立各部门分工协作、共同推进的工作机制,建立规划实施动态评估机制。

地方工业和信息化主管部门及相关企业结合本地区和本企业实际情况,制订与本规划相衔接的实施方案和相关扶持措施。

相关行业协会及中介组织要做好行业基础数据的统计分析工作,建立行业信息定期发布制度和行业预警制度,及时反映规划实施过程中出现的新情况、新问题,提出政策建议。

第二篇:机械加工工艺基础知识点总结

机械加工工艺基础知识点总结

一、机械零件的精度

1.了解极限与配合的术语、定义和相关标准。理解配合制、公差等级及配合种类。掌握极限尺寸、偏差、公差的简单计算和配合性质的判断。

1.1基本术语:尺寸、基本尺寸、实际尺寸、极限尺寸、尺寸偏差、上偏差、下偏差、(尺寸)公差、标准公差及等级(20个公差等级,IT01精度最高;IT18最低)、公差带位置(基本偏差,了解孔、轴各28个基本偏差代号)。1.2配合制:

(1)基孔制、基轴制;配合制选用;会区分孔、轴基本偏差代号。(2)了解配合制的选用方法。

(3)配合类型:间隙、过渡、过盈配合

(4)会根据给定的孔、轴配合制或尺寸公差带,判断配合类型。1.3公差与配合的标注(1)零件尺寸标注(2)配合尺寸标注

2.了解形状、位置公差、表面粗糙度的基本概念。理解形位公差及公差带。2.1几何公差概念:

1)形状公差:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。

2)位置公差:位置度、同心度、同轴度。作用:控制形状、位置、方向误差。3)方向公差:平行度、垂直度、倾斜度、线轮廓度、面轮廓度。4)跳动公差:圆跳动、全跳动。2.2几何公差带: 1)几何公差带 2)几何公差形状 3)识读

3.正确选择和熟练使用常用通用量具(如钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺等)及专用量具(如螺纹规、平面样板等),并能对零件进行准确测量。3.1常用量具:

(1)种类:钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺。(2)识读:刻度,示值大小判断。

(3)调整与使用及注意事项:校对零点,测量力控制。3.2专用量具:

(1)种类:螺纹规、平面角度样板。(2)调整与使用及注意事项 3.3量具的保养

(1)使用前擦拭干净

(2)精密量具不能量毛坯或运动着的工伯(3)用力适度,不测高温工件(4)摆放,不能当工具使用(5)干量具清理

(6)量具使用后,擦洗干净涂清洁防锈油并放入专用的量具盒内。

二、金属材料及热处理 1.理解强度、塑性、硬度的概念。

2.了解工程用金属材料的分类,能正确识读常用金属材料的牌号。2.1金属材料分类及牌号的识读: 2.1.1黑色金属:

(1)定义:通常把以铁及以铁碳为主的合金(钢铁)称为黑色金属。

(2)铸铁:灰铸铁HT抗拉强度(σb)200(MPa)、可锻铸铁KT(H黑心、Z珠光体)抗拉强度(σb)300-伸长率06、球墨铸铁QT抗拉强度(σb)400-伸长率18。(3)碳钢:

按含碳量分:低、中、高碳钢。

按质量分:普通、优质、高级优质。按用途分:

普通:Q235A:一般工程用,屈服强度Q数值235等级A。

优质碳素结构钢:45钢:机械零件用,中碳钢,含碳量0.45%);

碳素工具钢:T12:工具钢,用于刃具、量具、模具用钢,含碳量1.2%。铸造碳钢:铸钢ZG屈服强度不低于270-抗拉强度不低于500。(4)合金钢: 按用途分:

合金结构钢:40Cr:合金结构钢,含碳量0.40%,合金含量小于1.5%不标。合金工具钢:9SiCr:合金工具钢,含碳量0.9%,Si、Cr含量小于1.5%;

高速钢(锋钢)W18Cr4V:含碳量0.7-0.8%,钨含量18%,Cr含量4%,V含量小于1.5%。2.1.2有色金属

(1)有色的定义:除黑色金属以外的金属材料,统称为有色金属。(2)了解铝及铝合金。(2)了解铜及铜合金。

3、了解退火、正火、淬火、回火、调质、时效处理的目的、方法及应用。重点放在应用上。

(1)退火:消除铸件、焊接件、冷作件毛坯的应力。(2)时效处理:长时间退火,消除毛坯的应力。

(3)正火:消除锻件毛坯的锻造应力。调整硬度,便于加工。

(4)调质:淬火 回火,综合机械性能。一般安排在粗加工后、精加工前。(5)回火:消除淬火应力。温度越高,钢的强度、硬度下降,而塑性、韧性提高。

4.了解金属表面处理的一般方法。(1)表面淬火

(2)(表层)化学处理:电镀

物理处理:防锈漆因在金属表面外处理,不在此列。

第三篇:机械装配工艺基础习题答案

机械装配工艺基础习题答案

一、填空:

1、零件

是组成机器的最小单元,机器的质量最终是通过

装配

保证的。

2、装配系统图是。

表明产品零、部件间相互关系及装配流程的示意图

3、装配精度包括的内容是

精度、精度和

精度。

相互位置

相对运动

相互配合4、保证产品精度的装配工艺方法有

法、法、法和

法。

互换法

选配法

调整法

修配法

5、装配调整法保证装配精度时又有

法、法。

固定调整法

可动调整法

6.选择装配法有三种不同的形式:

法、法和复合选配法。

直接选配

分组装配

二、选择:

1、装配尺寸链的封闭环是

B。

A.精度要求最高的环

B.要保证的装配精度

C.尺寸最小的环

D.基本尺寸为零的环

2、大批、大量生产的装配工艺方法大多是

A。

A.按互换法装配

B.以合并加工修配为主

C.以修配法为主

D.以调整法为主

3、在绝大多数产品中,装配时各组成环不需挑选或改变其大小或位置,装配后即能达到装配精度的要求,但少数产品有出现废品的可能性,这种装配方法称为

B。

A.

完全互换法  B.概率互换法 D.选择装配法 B.修配装配法

4、在机械结构设计上,采用调整装配法代替修配法,可以使修配工作量从根本上

B。

A.增加

B.减少

5、装配尺寸链的最短路线(环数最少)原则,即

A。

A.“一件一环”

B.“单件自保”

三、问答题:

1、什么叫装配尺寸链?它与一般尺寸链有什么不同?

答:在装配过程中,由相关零件的尺寸或位置关系所组成的一个封闭的尺寸系统。

它与一般尺寸链的不同点是:

1)装配尺寸链的封闭环一定是机器产品或部件的某项装配精度,因此,装配尺寸链的封闭环是十分明显的;

2)装配精度只有机械产品装配后才能测量;

3)装配尺寸链中的各组成环不是仅在一个零件上的尺寸,而是在几个零件或部件之间与装配精度有关的尺寸。

2、简述制订装配工艺的步骤是什么?

答:

1)将机械产品分解为可以独立装配的单元。装配单元即为各部件及组件。

2)选择确定装配基准件。它通常是产品的基体或主干零、部件。

3)绘制装配系统图。

第四篇:机械加工工艺基础教案

三、CA6140型卧式车床主要结构

(一)主轴箱

CA6140车床的主轴箱包括:箱体、主轴部件、传动机构、操纵机构、换向装置、制动装置和润滑装置等。其功用在于支承主轴和传动其旋转,并使其实现起动、停止、变速和换向等。

机床的主轴箱是一个比较复杂的运动部件,它的装配图包括展开图、各种向视图和剖面图,以表示出主轴箱的所有零件及其装配关系。

作。

1、主轴部件

主轴部件是主轴箱最重要的部分,由主轴、主轴轴承和主轴上的传动件、密封件等组成。

主轴前端可安装卡盘,用以夹持工件,并由其带动旋转。主轴的旋转精度、刚度和抗振性等对工件的加工精度和表面粗糙度有直接影响,因此对主轴部件的要求较高。

CA6140型车床的主轴是一个空心阶梯轴。其内孔是用于通过棒料或卸下顶尖时所用的铁棒,也可用于通过气动、液压或电动夹紧驱动装置的传动杆。主轴前端有精密的莫氏6号锥孔,用来安装顶尖或心轴,利用锥面配合的摩擦力直接带动心轴和工件转动。主轴后端的锥孔是工艺孔。

CA6140型卧式车床的主轴部件在结构上做了较大改进,由原来的三支承结构改为两支承结构;由前端轴向定位改为后端轴向定位。前轴承为P级精度的双列短圆柱滚子轴承,用于承受径向力。后轴承为一个推力球轴承和角接触球轴承,分别用于承受轴向力和径向力。

主轴的轴承的润滑都是由润滑油泵供油,润滑油通过进油孔对轴承进行充分润滑,并带走轴承运转所产生的热量。为了避免漏油,前后轴承均采用了油沟式密封装置。主轴旋转时,依靠离心力的作用,把经过轴承向外流出的润滑油甩到轴承端盖的接油槽里,然后经回油孔流回主轴箱。

主轴上装有三个齿轮,前端处为斜齿圆柱齿轮,可使主轴传动平稳,传动时齿轮作用在主轴上的轴向力与进给力方向相反,因此可减少主轴前支承所承受的轴向力。

主轴前端安装卡盘、拨盘或其它夹具的部分有多种结构形式。

2、开停和换向装置

CA6140型卧式车床采用的双向多片式摩擦离合器实现主轴的开停和换向。

其由结构相同的左右两部分组成,左离合器传动主轴正转,右离合器传动主轴反转。摩擦片有内外之分,且相间安装。如果将内外摩擦片压紧,产生摩擦力,轴I的运动就通过内外摩擦片而带动空套齿轮旋转;反之,如果松开,轴I的运动与空套齿轮的运动不相干,内外磨擦片之间处于打滑状态。正转用于切削,需传递的扭矩较大,而反转主要用于退刀,所以左离合器摩擦片数较多,而右离合器摩擦片数较少。

内外摩擦片之间的间隙大小应适当:如果间隙过大,则压不紧,摩擦片打滑,车床动力就显得不足,工作时易产生闷车现象,且摩擦片易磨损。反之,如果间隙过小,起动时费力;停车或换向时,摩擦片又不易脱开,严重时会导致摩擦片被烧坏。同时,由此也可看出,摩擦

离合器除了可传递动力外,还能起过载保险的作用。当机床超载时,摩擦片会打滑,于是主轴就停止转动,从而避免损坏机床。所以摩擦片间的压紧力是根据离合器应传递的额定扭矩来确定的,并可用拧在压套上的螺母9a和9b来调整。

3、制动装置

制动装置功用在于车床停车过程中克服主轴箱中各运动件的惯性,使主轴迅速停止转动,以缩短辅助时间。CA6140型卧式车床采用闸带式制动器实现制动。

制动带6的拉紧程度可由螺钉5进行调整。其调整合适的状态,应是停车时主轴能迅速停

止,而开车时制动带能完全松开。

(二)溜板箱

溜板箱的功用是:将丝杠或光杠传来的旋转运动转变为直线运动并带动刀架进给;控制刀架运动的接通、断开和换向;机床过载时控制刀架停止进给;手动操纵刀架移动和实现快速移动。

因此,溜板箱通常设有以下几种机构:

接通丝杠传动的开合螺母机构;

将光杠的运动传至纵向齿轮齿条和横向进给丝杠的传动机构;

接通、断开和转换纵、横向进给的转换机构;

保证机床工作安全的过载保险装置和互锁机构;

控制刀架运动的操纵机构;

改变纵、横向机动进给运动方向的换向机构;

快速空行程传动机构。

1、纵横向进给操纵机构

CA6140型车床的纵、横机动进给运动的接通、断开和换向,采用一个手柄集中操纵方式。当需要纵、横向移动刀架时,向相应的方向扳动操纵手柄1即可。

2、互锁机构

为了避免损坏机床,必须保证横、纵向机动进给运动和车螺纹进给运动不能同时接通。

为此,CA6140型车床的溜板箱中设有互锁机构。

因此,合上开合螺母后,纵横向机动进给都不能接通。而接通纵向或横向机动进给后,开合螺母都不能合上。

第七章 机械加工质量生产率和经济性

第一节 机械加工质量

机械零件的加工质量包括两个方面:加工精度和表面质量。

一、加工精度

(一)加工精度的概念

加工精度是指加工后的零件在形状、尺寸、表面相互位置等方面与理想零件的符合程度。它由尺寸精度、形状精度和位置精度组成。

尺寸精度:指加工后零件表面本身或表面之间的实际尺寸与理想尺寸之间的符合程度。

形状精度:指加工后零件表面本身的实际形状与理想零件表面形状之间的符合程度。

位置精度:指加工后零件各表面之间的实际位置与理想零件各表面之间的位置的符合程度。

(二)机械加工精度获得的方法

1.尺寸精度的获得方法

1)试切法 这是一种通过试切工件—测量—比较—调整刀具—再试切—……再调整,直至获得要求的尺寸的方法。

2)调整法 是按试切好的工件尺寸、标准件或对刀块等调整确定刀具相对工件定位基准的准确位置,并在保持此准确位置不变的条件下,对一批工件进行加工的方法。

3)定尺寸刀具法 在加工过程中采用具有一定尺寸的刀具或组合刀具,以保证被加工零件尺寸精度的一种方法。

4)自动控制法 通过由测量装置、进给装置和切削机构以及控制系统组成的控制加工系统,把加工过程中的尺寸测量、刀具调整和切削加工等工作自动完成,从而获得所要求的尺寸精度的一种加工方法。

2.形状精度的获得方法

机械加工中获得一定形状表面的方法可以归纳为以下三种。

1)轨迹法 此法利用刀具的运动轨迹形成要求的表面几何形状。刀尖的运动轨迹取决于刀具与工件的相对运动,即成形运动。

用这种方法获得的形状精度取决于机床的成形运动精度。

2)成形法 此法利用成形刀具代替普通刀具来获得要求的几何形状的表面。机床的某些成形运动被成形刀具的刀刃所取代,从而简化了机床结构,提高了生产效率。

用这种方法获得的表面形状精度既取决于刀刃的形状精度,又有赖于机床成形运动的精度。

3)范成法 零件表面的几何形状是在刀具与工件的啮合运动中,由刀刃的包络面形成的。因而刀刃必须是被加工表面的共扼曲面,成形运动间必须保持确定的速比关系,加工齿轮常用此种方法。

3.位置精度的获得方法

在机械加工中,获得位置精度的方法主要有下述两种。

1)一次装夹法 工件上几个加工表面是在一次装夹中加工出来的。

2)多次装夹法 即零件有关表面间的位置精度是由刀具相对工件的成形运动与工件定位基准面(亦是工件在前几次装夹时的加工面)之间的位置关系保证的。在多次装夹法中,又可划分为:

① 直接装夹法 即通过在机床上直接装夹工件的方法。

② 找正装夹法 即通过找正工件相对刀具切削成形运动之间的准确位置的方法。

③ 夹具装夹法 即通过夹具确定工件与刀具切削刃成形运动之间的准确位置的方法。

二、表面质量

(一)表面质量的概念

零件的机械加工质量不仅指加工精度,而且也包括加工表面质量。表面质量是指机械加工后零件表面层的几何结构,以及受加工的影响表面层金属与基体金属性质产生变化的情况。表面层一般只有0.05~0.15mm。

在金属切削过程中,形成加工表面时发生金属的弹性变形和撕裂,同时伴随着切削力和切削热的作用,使整个工艺系统可能产生振动。因此已加工表面不可能是理想的光滑的表面,而是存在着粗糙度、波纹等几何形状误差以及划痕、裂纹等表面缺陷。零件表面层材料的化学和物理性质也发生一系列变化。

表面质量的主要内容包括以下方面:

1.表面的几何形状

2.表面层物理机械性能的变化

由于表面层沿深度的变化,所以表面层物理机械性能的变化主要有:

1)表面层的冷作硬化

2)表面层中残余应力的大小、方向及分布情况

3)表面层金相组织的改变

4)表面层的其它物理机械性能的变化

(二)表面质量对零件使用性能的影响

机械产品之所以要维修,更换某些零件或整个报废,一般不是因为它的零件发生了整体破坏,而是零件之间有相互运动的表面产生过大的磨损,从而改变了机械的性能,使之不能使用。有时即使零件发生了整体断裂,究其原因也往往是首先在零件表面上形成了疲劳裂纹,裂纹不断扩展,从而造成了零件的整体破坏。因此,了解零件的表面质量对其使用性能的影响,正确的提出对零件表面质量的要求是非常重要的。

1.表面粗糙度对耐磨性的影响

零件的耐磨性除与材料的性能、热处理状态和润滑条件有关外,零件自身的表面粗糙度起着十分重要的作用。

2.冷作硬化对耐磨性的影响

冷作硬化可以显著地提高零件表面的耐磨性。

3.表面层应力集中及残余应力对疲劳强度的影响

零件表面微观不平度会在它的“波谷”底部造成应力集中。

4.表面质量对零件耐蚀性能的影响

降低表面粗糙度值可以提高零件的抗腐蚀性能。

5.表面质量对配合性质的影响

对于间隙配合,如果零件表面粗糙度值过大,初期磨损就较严重,导致磨损量加大,从而使配合间隙增大,破坏了原设计要求的配合精度。对于过盈配合,表面粗糙度值过大,装配中,在压入配合的表面上的部分微小波峰被挤平,使实际得到的过盈量比设计要求的小,降低了过盈表面的结合强度,从而影响零件联接的可靠性。

三、提高加工质量的措施

影响零件加工精度的因素很多,为了提高加工质量,保证机械加工精度,生产中采取的工艺措施很多,这里仅举一些实例,作简要说明。

(一)增强工件刚性的工艺措施

生产中常遇到一些零件刚性差,按传统的加工方法则很难达到加工精度,为此需采取工艺措施提高工件的刚性。

(二)采用减振、消振装置

第二节 生产率和经济性

一、生产率

(一)生产率的概念

机械加工的劳动生产率,是指工人在单位时间内加工出合格零件的数目。工艺过程的基本组成单元是工序,因此评价机械加工劳动生产率,主要看各个工序加工的单件工时,即该工序加工完成一个零件所需要的时间,以t单表示。组成:基本时间、辅助时间、服务时间、休息和自然需要时间、准备结束时间。

(二)提高生产率的途径

缩短基本时间、缩短辅助时间、缩短服务时间、缩短准备结束时间。

二、工艺过程的经济性

(一)生产成本和工艺成本

造一个产品或零件所必须的一切费用的总和,称为产品或零件的生产成本。生产成本由两大部分费用组成:即工艺成本和其它费用。

工艺成本是与工艺过程直接有关的费用,约占生产成本的70%~75%,它又包含可变费用(V)和不变费用(C)。

可变费用(V)的组成:材料费;操作工人工资;机床维持费;通用机床折旧费;刀具维持费折旧费;夹具维持费折旧费。它们与年产量直接有关。

不变费用(C)的组成:调整工人工资;专用机床折旧费;专用刀具折旧费;专用夹具折旧费。它们与年产量无直接关系。因为专用机床、专用工装是专门为某种零件加工所用的,不能用于其它零件,所以它们的折旧费、维持费等是确定的,与年产量无直接关系。

从而,一个零件的全年工艺成本E(单位为元/年)为: E = NV + C

(二)工艺成本与年产量的关系

(三)不同工艺方案经济性比较

对不同的工艺方案进行经济性比较时,有下列两种情况:

1.若两种工艺方案的基本投资相近或都采用现有设备时,则工艺成本既作为衡量各方案经济性的重要依据。

2.若两种工艺方案的基本投资相差较大时,必须考虑不同方案的基本投资差额的回收期限。

第五章 其他类型常用机床

第一节 铣床

一、铣床类型与用途

铣床是用于铣削加工的机床。

根据构造特点及用途,铣床的主要类型有:卧式升降台铣床、立式升降台铣床、工作台不升降铣床、圆工作台铣床、龙门铣床、铣床、仿形铣床和各种专门化铣床。

铣床是一种用途广泛的机床。它可以加工平面(水平面、垂直面、阶台面)、沟槽(键槽、T型槽、燕尾槽等)、分齿零件(齿轮、链轮、棘轮、花键轴等)、螺旋形表面(螺纹、螺旋槽)及各种曲面。此外,还可用于对回转体表面及内孔进行加工,以及进行切断工作等。

二、各类铣床主要特点

铣床使用的是旋转的多齿刀具,生产效率较高。但是,由于铣削加工为断续切削,铣刀的每个刀齿的切削层参数随时都在变化,所以铣削力的大小和方向也在不断变化,容易引起机床振动。因此,铣床在结构上要求有较高的刚度和抗振性。

(一)万能升降台铣床

万能升降台铣床的主轴为水平布置,属卧式升降台铣床,主要用于铣削平面、沟槽和成形表面。

在工作台和床鞍之间有一层回转盘,它可以相对床鞍在水平面内调整±45°偏转,改变工作台的移动方向,从而可加工斜槽、螺旋槽等。

此外,还可换用立式铣头,插头等附件,扩大机床的加工范围。

(二)立式升降台铣床

立式升降台铣床与卧式升降台铣床的主要区别在于安装铣刀的机床主轴是垂直于工作台面。除立铣头外其它主要组成部件与卧式升降台铣床相同。铣头可以在垂直平面内调整角度,主轴可沿其轴线方向进给或调整位置。

立式铣床用于加工平面、沟槽、台阶,还可铣削斜面、螺旋面、模具型腔和凸模成形表面等。

(三)其他常用铣床

1、龙门铣床

龙门铣床是一种大型的高效通用机床,它在结构上呈柜架式布局,具有较高的刚度及抗振性。主要用于大中型工件的平面、沟槽加工。可以进行粗铣、半精铣和精铣加工。

2、工作台不升降铣床

工作台不升降铣床一般为立式布局,工作台不作升降运动,机床的垂直进给运动由安装在立柱上的主轴箱作升降运动来实现。这种铣床由于工作台层次少,刚性好,适用于加工外形为中等或大尺寸的工件。

工作台不升降铣床根据工作台面的形状,可分为矩形工作台式和圆形工作台式两类。

第二节 钻床和镗床

钻床和镗床都是加工内孔的机床,主要用于加工外形复杂,没有对称旋转轴线的工件,如杠杆、盖板、箱体、机架等零件上的单孔或孔系。

一、钻床

钻床类机床的主要工作是用孔加工刀具进行各种类型的孔加工。主要用于钻孔和扩孔,也可以用来铰孔、攻螺纹、锪沉头孔及锪凸台端面。

钻床分为坐标镗钻床、深孔钻床、摇臂钻床、台式钻床、立式钻床、卧式钻床、铣钻床、中心孔钻床等。

(一)立式钻床

立式钻床是钻床中应用较广的一种,其特点是主轴轴线垂直布置,且位置固定,需调整工件位置,使被加工孔中心线对准刀具的旋转中心线。由刀具旋转实现主运动,同时沿轴向移动作进给运动。因此,立式钻床适用于加工中、小型工件。

多轴立式钻床是立式钻床的一种,可对孔进行不同内容的加工或同时加工多个孔,大大提高了生产效率。

台式钻床实质上是一种加工小孔的立式钻床,结构简单小巧,使用方便,适于加工小型零件上的小孔。

(二)摇臂钻床

对于体积和质量都比较大的工件,在立式钻床上加工很不方便,此时可以选用摇臂钻床进行加工。

主轴箱可沿摇臂上的导轨横向调整位置,摇臂可沿立柱的圆柱面上、下调整位置,还可绕立柱转动。加工时,工件固定不动,靠调整主轴的位置,使其中心对准被加工孔的中心,并快速夹紧,保持准确的位置。摇臂钻床广泛地应用于单件和中、小批生产中,加工大、中型零件。

如果要加工任意方向和任意位置的孔和孔系,可以选用万向摇臂钻床,机床主轴可在空间绕二特定轴线作回转。机床上端还有吊环,可以吊放在任意位置。故它适于加工单件、小批生产的大中型工件。

为了提高钻削加工效率,目前正在发展钻削加工中心。集钻孔、攻螺纹和铣削于一体,可得到很高的加工精度和生产率。

二、镗床

镗床类机床主要工作是用镗刀进行镗孔,也可进行铣平面、车凸缘、切螺纹等工作。有卧式镗床、立式镗床、落地镗床、金刚镗床和坐标镗床等多种类型。

(一)卧式镗床

卧式镗床又称万能镗床,可以进行孔加工、车端面、车凸缘、车螺纹和铣平面等。尤其适于加工箱体零件中尺寸较大、精度较高且相互位置要求严格的孔系。

(二)落地镗床

为适应某些庞大而笨重工件的加工,产生了落地镗床。

落地镗床具有万能性大、集中操纵、移动部件的灵敏度高、操作方便等特点。

为提高生产效率和加工精度,在落地镗床的基础上还发展了以铣削为主的铣镗床。

(三)坐标镗床

坐标镗床主要用于镗削高精度的孔,特别适用于加工相互位置精度很高的孔系,如钻模、镗模和量具等零件上的精密孔加工。

坐标镗床制造精度很高,具有良好的刚度和抗振性,最主要特点是具有坐标位置的精密测量装置,加工时,按直角坐标来精确定位。

坐标镗床还可钻孔、扩孔、铰孔等工作。也可以用于精密刻度、划线、及孔距和直线尺寸的测量等工作。所以坐标镗床是一种万能性很强的精密机床。

坐标镗床有立式的和卧式的,立式坐标镗床又有单柱和双柱之分,以适应不同的加工需要。

金刚镗床是一种高速精镗床,采用很高的切削速度、极小的背吃刀量和进给量,可加工出质量很高的表面。适于成批、大量生产中,加工精密孔。

第四章 典型机床工作运动分析

二、CA6140型卧式车床传动系统分析

机床的加工过程中,需要有多少个运动就应该有多少条传动链。所有这些传动链和它们之间的相互联系就组成了一台机床的传动系统。分析传动系统也就是分析各传动链,分析各传动链时,应按下述步骤进行:

(1)根据机床所具有的运动,确定各传动链两端件。

(2)根据传动链两端件的运动关系,确定计算位移量。

(3)根据计算位移量及传动链中各传动副的传动比,列出运动平衡式。

(4)根据运动平衡式,推导出传动链的换置公式。

传动链中换置机构的传动比一经确定,就可根据运动平衡式计算出机床执行件的运动速度或位移量。

要实现机床所需的运动,CA6140型卧式车床的传动系统需具备以下传动链:实现主运动的主传动链;

实现螺纹进给运动的螺纹进给传动链;

实现纵向进给运动的纵向进给传动链;

实现横向进给运动的横向进给传动链;

实现刀架快速退离或趋近工件的快速空行程传动链。

(一)主运动传动链

1、传动路线

CA6140型卧式车床主运动,是由主电动机经三角皮带传至主轴箱中的轴I,轴I上装有一个双向多片式摩擦离合器M1,用以控制主轴的启动停止和换向。轴I的运动经离合器M1和轴II--III间变速齿轮传至轴III,然后分两路传递给主轴。

(1)高速传动路线 主轴VI上的滑移齿轮Z50处于左边位置,运动经齿轮副直接传给主轴。

(2)中低速传动路线 主轴VI上的滑移齿轮Z50处于右边位置,且使齿式离合器M2接合,运动经轴III-IV-V间的背轮机构和齿轮副传给主轴。

传动路线是分析和认识机床的基础,常用的方法是“抓两端,连中间”:首先找到传动链的两端件,然后按照运动传递或联系顺序,从一个端件到另一个端件,依次分析各传动轴之间的传动结构和运动传递关系。

2、主轴的转速级数与转速计算

根据传动系统图和传动路线表达式,主轴正转可获得2´3´(2´2-1)+2´3=24级不同转速。同理,主轴反转12级。

主轴的转速可按下列运动平衡式计算:

n主

主轴反转一般不用来进行车削,而是为了在车螺纹时,使刀架在主轴与刀架之间的传动链不脱开的情况下退回至起始位置,以免下次走刀发生“乱扣”现象.同时为了节省退刀时间,主轴反转转速高于正转转速。

(二)螺纹进给运动传动链

CA6140型卧式车床螺纹进给运动传动链,可以保证机床车削公制、英制、模数制和径节制四种标准螺纹。

此外,还可以车削大导程、非标准和较精密的螺纹。这些螺纹可以是右旋的,也可以是左旋的。不同标准的螺纹用不同的参数表示其螺距。

无论车削哪一种螺纹,都必须在加工中保证主轴每转一转,刀具准确地移动被加工螺纹一个导程的距离。由此可列出螺纹进给传动链的运动平衡式:

1(主轴)×u0×ux×L丝=L工

由上式可知,被加工螺纹的导程正比于传动链中换置机构的可变传动比。为此,车削不同标准和不同导程的各种螺纹时,必须对螺纹进给传动链进行适当调整,使其传动比根据不同种类螺纹的标准数列作相应改变。

公制螺纹是我国常用的螺纹,在国家标准中已规定了其标准螺距值。公制螺纹的标准螺距是按分段等差数列的规律排列的(参见表4-6),为此,螺纹进给传动链的变速机构也应按分段等差数列的规律变换其传动比。这一要求是通过适当调整进给箱中的变速机构来实现的。

车削公制螺纹时,进给箱中的离合器M3、M4脱开,M5接合。其运动由主轴VI经齿轮副,轴IX至轴XI间的左右螺纹换向机构,挂轮,传至进给箱的轴XII,然后再经齿轮副,轴XIII--XIV间的滑移齿轮变速机构(基本螺距机构),齿轮副传至轴XV,接下去再经轴XV—XVII间的两组滑移齿轮变速机构(增倍机构)和离合器M5传动丝杠XVIII旋转。合上溜板箱中的开合螺母,使其与丝杠啮合,便带动了刀架纵向移动。其传动路线表达式如下:

其中,u基为轴XIII-XIV间变速机构的可变传动比,共8种:26/

28、28/

28、32/

28、36/

28、19/

14、20/

14、33/

21、36/21,即6.5/

7、7/

7、8/

7、9/

7、9.5/

7、10/

7、11/

7、12/7。它们近似按等差数列的规律排列,是获得各种螺纹导程的基本机构,故通常称之为基本螺距机构,或基本组。

u倍为轴XV-XVII间变速机构的可变传动比,共4种:28/35×(35/28)、28/35×(15/48)、18/45×(35/28)、18/45×(15/48),即1、1/

2、1/

4、1/8。它们按倍数关系排列,用于扩大机床车削螺纹导程的种数,一般称之为增倍机构,或增倍组。

根据传动系统图或传动链的传动路线表达式,可列出车削公制螺纹的运动平衡式:

L=kP=1(主轴)u基u倍´12 化简得:

L=7u基u倍

由此可得8´4=32种导程值,其中符合标准的只有20种(见表4-6)

由上述可知,利用基本组中各传动副传动,可以车削出按等差数列规律排列的基本导程值;经过增倍组后,又可把由基本组得到的8种基本导程值按1:2:4:8的关系增大或缩小,两种变速机构的不同组合,便可得到常用的、按分段等差数列的规律排列的标准导程(或螺距)的公制螺纹。

加工其它不同种类和标准的螺纹时,只要通过离合器不同的离合状态和挂轮适当组合即可。

(三)机动进给传动链

实现一般车削时刀架机动进给的纵向和横向进给传动链,由主轴至进给箱中轴XVII的传动路线与车公制或英制常用螺纹的传动路线相同,其后运动经齿轮副传至光杠XIX(此时离合器M5脱开,齿轮Z28与轴XIX 齿轮Z56 啮合),再由光杠经溜板箱中的传动机构,分别传至光杠齿轮齿条机构和横向进给丝杠XXVII,使刀架作纵向或横向机动进给,其纵向机动进给传动路线表达式如下:

溜板箱中的双向牙嵌式离合器M8、M9和齿轮传副组成的两个换向机构,分别用于变换纵向和横向进给运动的方向。利用进给箱中的基本螺距机构和增倍机构,以及进给传动链的不同传动路线,可获得纵向和横向进给量各64种。纵向和横向进给传动链的两端件的计算位移为:

纵向进给:主轴转一转———刀架纵向移动f 纵(单位:mm)

横向进给:主轴转一转———刀架横向移动f 横(单位:mm)

由传动分析可知,横向机动进给在其与纵向机动进给传路线一致时,所得的横向进给量是纵向进给量的一半。

(四)刀架的快速移动传动路线

刀架的快速移动是使刀具机动地快速退离或接近加工部位,以减轻工人的劳动强度和缩短辅助时间。当需要快速移动时,可按下快速移动按钮,装在溜板箱中的快速电动机(0.25kW,2800r/min)的运动便经齿轮副传至轴XX,然后再经溜板箱中与机动进给相同的传动路线传至刀架,使其实现纵向和横向的快速移动。

了节省辅助时间及简化操作,在刀架快速移动过程中光杠仍可继续传动,不必脱开进给传动链。这时,为了避免光杠和快速电动机同时传动轴XX而导致其损坏,在齿轮Z56 及轴XX之间装有超越离合器,即可避免二者发生的矛盾。

超越离合器结构原理如教材图4-4所示。

第二节 金属切削原理及其应用

金属的切削过程是一个复杂的过程,在这一过程中形成切屑、产生切削力、切削热与切削温度,刀具磨损等许多现象,研究这些现象及变化规律,对于合理使用与设计刀具,夹具和机床,保证加工质量,减少能量消耗,提高生产率和促进生产技术发展都有很重要的意义。

一、切削变形

(一)切削变形特点和切屑的种类

如图所示,金属压缩实验,当金属试件受挤压时,在其内部产生主应力的同时,还将在与作用力大致成45°方向的斜截面产生最大切应力,在切应力达到屈服强度时将在此方向剪切滑移。

金属刀具切削时相当于局部压缩金属的压块,使金属沿一个最大剪应力方向产生滑移。

如图所示当切屑层达到切削刃OA(OA代表始滑移面)处时,切应力达到材料屈服强度,产生剪切滑移,切削层移到OM面上,剪切滑移终止,并离开切削刃后形成了切屑,然后沿前面流出。

始滑移面OA与终滑移面OM之间的变形区称为第一变形区,宽度很窄(约0.02~0.2mm),故常用OM剪切面亦称滑移面来表示,它与切削速度的夹角称为剪切角φ。

当切屑沿前面流出时,由于受到前面挤压和摩擦作用,在前面摩擦阻力的作用下,靠近前面的切屑底层金属再次产生剪切变形。使切屑底层薄的一层金属流动滞缓,流动滞缓的一层金属称为滞流层,这一区域又称为第二变形区。

工件已加工表面受到钝圆弧切削刃的挤压和后面的摩擦,使已加工表面内产生严重变形,已加工表面与后面的接触区称为第三变形区。

这三个变形区不是独立的,而是有着紧密的联系和相互影响。

根据被切的金属剪切滑移后形成切屑的外形不同,可将切屑分成以下四种类型。

1.带状切屑

2.节状切屑(挤裂切屑)

3.粒状切屑(单元切屑)

4.崩碎切屑

切屑的形态随切削条件的不同可互相转化。

(二)切削变形程度的表示方法

(三)刀具前面上的摩擦与积屑瘤

切屑流经刀具前面时,在高压力的作用下产生剧烈的摩擦并产生很高的温度,刀屑接触区可分成粘结区和滑动区两部分。

粘结区的摩擦为内摩擦,切削时由于高压和高温作用,切屑底部流速要比切屑的上层缓慢,从而在切屑底部形成了一个滞流层,内摩擦就是滞流层与其上层金属在切屑内部的摩擦,这部分的切向力等于被切材料的剪切屈服点,它不同于金属接触面滑动摩擦。

滑动区的摩擦为外摩擦,即滑动摩擦,摩擦力的大小与摩擦系数和法向正压力有关,而与接

触面积大小无关。在粘结区内,切应力是常数,且等于材料的剪切屈服强度,在滑动区内则随着距离切削刃越远而逐渐减小,在整个接触区内平均正应力亦随着距切削刃越远而减小。在刀屑间的两种摩擦中,力的大小一般占总摩擦力的85%左右,所以研究前面摩擦中应以内摩擦为主。

由于刀屑接触面的粘结摩擦及滞流作用,在中速或较低的切削速度切削塑性金属材料时,经常在刀具前面粘结一些工件材料,形成一个硬度很高的楔块,这楔块称为积屑瘤。

从实验得知,积屑瘤的金相组织与工件母材料相比未发生相变,它是受了强烈塑性变形的被切材料的堆积物,剧烈的加工硬化使之硬度大幅提高。它是逐渐形成的,经过一个生成、长大、脱落的周期性过程。

积屑瘤的存在可代替刀刃切削,并对切削刃有一定的保护作用;同时增大了实际工作前角,减小了切削变形。但由它堆积的钝圆弧刃口造成挤压和过切现象,使加工精度降低,积屑瘤脱落后粘附在已加工表面上恶化表面粗糙度,所以,在精加工时应避免积屑瘤产生。

影响积屑瘤的主要因素有工件材料,切削层、刀具前角及切削液等,工件材料塑性越大,刀屑间摩擦系数和接触长度越大,容易生成积屑瘤。

切削速度对切屑瘤影响很大,切削速度很低时,由于摩擦系数较小,很少产生积屑瘤。在切削速度υc=20m/min左右,切削温度约为300℃时,最易产生积屑瘤,且高度最大。切削速度是通过平均温度和平均摩擦系数影响积屑瘤的。

减小进给量,增大刀具前角,提高刃磨质量,合理选用切削液,使摩擦和粘结减少,均可达到抑制积屑瘤的作用。

(四)已加工表面变形和加工硬化

任何刀具的切削刃都很难磨得绝对锋利,当在钝圆弧切削刃和其邻近的狭小后面的切削挤压摩擦下,切屑晶体向下滑动绕过刃口形成已加工表面。使已加工表面层的金属晶粒发生扭曲挤紧,破碎等,构成了已加工表面上的变形区。

已加工表面经过严重塑性变形而使表面原硬度增高,这种现象称为加工硬化(冷硬)。

金属材料经硬化后在表面上会出现细微裂纹和残余应力,从而降低了加工质量和材料的疲劳强度,增加下道工序加工困难,加速刀具磨损,所以在切削时应设法避免或减轻加工硬化现象。

(五)影响切削变形的因素

切削变形的程度主要决定于剪切角和摩擦系数大小。

影响切削变形的主要因素有工件材料,前角,切削用量。

工件材料的强度、硬度越高,刀屑间正压力则增大,平均正应力会增加,因此,摩擦系数下降,剪切角增大,切削变形减小。而切削塑性较高的材料,则变形较大。

刀具前角越大,切削刃越锋利,使剪切角增大,变形系数减小,因此,切削变形减小。

切削速度对切削变形的影响,切削速度是通过切削温度和积屑瘤影响切屑变形的。切削速度在3~20m/min范围内提高,积屑瘤高度随着增加,刀具实际前角增大,故变形系数减小。当20m/min 左右时,积屑瘤高度最高,ξ值最小。在20~40m/minn范围内提高,积屑瘤逐渐消失,刀具实际剪切角减小,ξ增大。当>40m/min 时,由于切削温度逐渐升高,变形系数ξ减小。切削铸铁等脆性金属时,一般不产生积屑瘤,随着切削速度的增大,变形系数则缓慢地减小。

进给量增大,使切削厚度增加,正压力增大,平均正应力增大,因此,μ下降,剪切角φ增大,使ξ减小。同时,由于各切削层的变形和应力分布不均匀,近前发面处的金属变形和应力大,离前刀面越远的金属层变形和应力越小。切削厚度增加,近前刀面处发生剧烈变形层增加不多,切削平均变形减小,使变形系数变小。

二、切削力

(一)切削力的来源和分解

切削过程中,刀具施加于工件使工件材料产生变形,并使多余材料变为切屑所需的力称为切削力

而工件低抗变形施加于刀具称为切削抗力,在分析切削力以及切削机理时,切削力与切削抗力意义相同。

刀具切削工件时,由于切屑与工件内部产生弹性,塑性变形抗力,切屑与工件对刀具产生摩擦阻力,形成刀具对工件作用一个合力F,由于其大小,方向不易确定。

因此,为了便于测量、计算及研究,通常将合力F分解成三个分力。

(二)工作功率

(三)计算切削力的经验公式

(四)单位切削力和单位切削功率

(五)影响切削力的主要因素

1.工件材料的影响,工件材料的硬度和强度越高,虽然切削变形会减小,但由于剪切屈服强度增高,产生的切削力会越大;工件材料强度相同时,塑性和韧性越高,切削变形越大,切削与刀具间摩擦增加,切削力会越大。切削铸铁时变形小,摩擦小,故产生的切削力小。

2.切削用量的影响 进给量、背吃刀量增大,二者都会使切削力增大,而实际上背吃刀量对切削力的影响要比进给量大。其主要原因在于,αp增大一倍时,切削厚度hD 不变,而切削宽度bD 则增大一倍,切削刃上的切削负荷也随之增大一倍,即变形力和摩擦成倍增加,最终导致了切削力以成倍增加;f增大一倍时,切削宽度bD不变,只是切削厚度hD增大一倍,平均变形减小,故切削力增加不到一倍。

切削速度对切削力的影响:切削塑性金属时,在40m/min时,由于积屑瘤的产生与消失,使刀具前角增大或减小,引起变形系数的变化,导致了切削力的变化;当>40m/min,切削温度升高,使平均摩擦系数下降,切削力也随之下降。切削灰铸铁等脆性材料时,塑性变形很小,且刀屑间的摩擦也很小,因此,υc对影响不大。

3.刀具几何参数的影响 前角对Fc影响较大。前角增大,切削变形减小,故切削力减小。主偏角对进给力Ff和背向力Fp影响较大,当кr增大时Ff增大而Fp 则减小。刃倾角对背切削力FP影响较大,因为λs由正值向负值变化时,会使顶向工件轴线的背向力增大。

此外刀尖圆弧半径,刀具磨损程度等因素对切削力也有一定的影响。

三、切削温度与切削液

由它引起的切削温度的升高会影响刀具磨损和耐用度,同时抑制了切削速度的提高,还将导致工件、机床,刀具和夹具的热变形,降低零件的加工精度和表面质量。

(一)切削热的产生和传散

提高切削速度,由摩擦生成的热量增多,但切屑带走的热量也增加,在刀具中热量减少,在工件中热量更少,所以高速切削时,切屑温度很高,在工件和刀具中温度较低,这有利于加工顺利进行。

(二)切削区温度分布和切削温度的测量

切削区温度一般是指切屑,工件和刀具按触表面上的平均温度,在正交平面内刀具、工件和切屑中温度分布规律如图2—19所示。

刀具与切屑接触面摩擦大,不易散热,产生的温度值最高;切屑带走热量最多,它的平均温度高于刀具、工件上的平均温度。

切削温度测量方法很多,目前以利用物体的热电效应来进行温度测量的热电偶法应用较多,其测量简单方便。

(三)影响切削温度的因素

切削温度的高低决定于产生热量多少和传散热量快慢两方面因素。切削时影响产生热量和传散热量的因素有:切削用量、工件材料的性能,刀具几何参数和冷却条件等。

切削用量对切削温度的影响,当υc、αp和f增加时,由于切削变形功和摩擦功增大,所以切削温度升高。其中切削速度影响最大,当υc增加一倍时,由于摩擦生热增多,切削温度约增加32%,进给量f的影响次之,当f增加一倍,切削温度约增加18%,因为f增加切削变形增加较少,并且改善了散热条件,故热量增加不多。背吃刀量αp影响最小,αp增加一倍时,切削温度约增加7%,这是因为αp增加使切削宽度增加,增大了热量的传散面积。

工件材料主要是通过硬度、强度和导热系数影响切削温度。

刀具几何参数中影响切削温度最明显的因素是前角γo和主偏角κr,其次是刀尖圆弧半径rε。前角γo增大,切削变形和摩擦产生的热较少,故切削温度下降,但 γo 过大散热变差,使切削温度升高。主偏角κr减少,切削变形摩擦增加,但κr减小切削宽度增大,改善了散热条件,由于散热起主要作用,故切削温度下降。增大刀尖圆弧半径能增大散热面积,降低切削温度。

刀具磨损后,刀具后面与已加工表面摩擦加大,切削刃变钝,使刃区前方对切屑的挤压作用增大,切屑变形增大,会使切削温度升高。在加工时,使用切削液也是降低切削温度的重要措施。

(四)切削液的选用

在切削过程中,合理使用切削液能有效减少切削刃,降低切削温度,从而能延长刀具寿命,改善已加工表面质量和精度。

1.切削液的作用

冷却作用、润滑作用、清洗作用、防锈作用等。

2.切削液的种类及选用

(1)水溶液 一般常用于粗加工和普通磨削加工中。

(2)乳化液 一般材料的粗加工常用乳化液,难加工材料的切削,常使用极压乳化液。

(3)切削油 一般材料的精加工常使用切削油,如普通精车、螺纹精加工等。

第五篇:浅谈先进制造技术在机械工艺中的运用

湖南农业大学课程论文

学院:科学技术师范学院班级:09级机制教育班 姓名:肖阿文学号:200940914104 课程论文题目:浅谈先进制造技术在机械工艺中的运用 课程名称:《先进制造技术》 评阅成绩:

成绩评定教师签名: 日期:年月日

目录

1.引言................................................1 2.先进制造技术的提出与体系............................1 3.先进制造技术与机械制造工艺的关系...................2 4.先进制造技术在机械制造工艺中的应用.................2 4.1业生产方式发生重大变革..........................2 4.2产品设计开发应用了现代设计技术的最新成果........2 5.我国机械工业发展先进制造技术的对策...............3 5.1加强先进制造技术的应用与自身制造技术的开发相结合...............................................3 5.2发挥企业主体作用与政府引导、扶助相结合............3 5.3立足实际先行试点.................................3 5.4加强人才培训.....................................4 5.5加强国际交流与合作...............................4 6.结束语..............................................4

浅谈先进制造技术在机械工艺中的运用

学 生:肖阿文

科学技术师范学院机制教育班 学号200940914104

摘要:论述了先进制造技术与机械制造工艺的相互关系,并提出我国机械工业发展先进制造技术应采取的对策,因此广泛采用先进制造技术应用于制造业,无论从战略角度还是发展策略,都是我国实现工业经济大国必须要大力提倡和广泛发展的。

关键词:先进制造技术 机械工艺

1、引言

先进制造技术是当今议论较多的一个专用词语。近年来,先进制造技术在机械加工领域中的应用越来越广泛,越来越深入,并取得了很大的成绩。然而,如何看待先进制造技术与机械制造工艺之间的相互关系、如何面对市场的竞争和新技术的挑战,采取相应的对策。这是我们机械行业必须认真思考的一个重要问题。

2、先进制造技术的提出与体系

什么是先进制造技术?对此,目前尚没有一个明确的、一致的定义。但普遍公认的含义是:先进制造技术是制造业不断吸收信。息技术和现代管理技术的成果。并将其综合应用于产品设计、加工、检测、生产管理、产品销售、使用、回收等制造全过程的制造技术的总称。

先进制造技术是制造业为了提高竞争力以适应时代的要求而形成的一个高新技术群,经过发展,已形成了完整的体系结构。但在不同的国家、不同的发展阶段,先进制造技术有不同的内容及组成方式。在我国,机械科学研究院提出了由多层次技术群构成的先进制造技术体系。第一个层次是优质、高效、低耗、清洁基础制造技术,它是先进制造技术的核心。它在铸造、锻压、焊接、热处理、表面保护、机械加工等基础工艺中大量采用。第二个层次是新型的制造单元技术。这是在市场需求及新兴产业的带动下。制造技术与电子、信息、新材料、新能源、环境科学、系统工程、现代管理等高新技术结合而形 成的崭新制造技术,如数控技术、清洁生产技术、机器人技术等等。第三个层次是先进制造集成技术。这是应用信息技术和系统管理技术,通过网络与数据库对上述两个层次的技术集成而形成的。如虚拟技术等。

3、先进制造技术与机械制造工艺的关系

制造业领域十分广泛,它包括机械、电子、食品、化工、轻工、纺织等,制造业从本质上来讲,它既是一个基础产业,也是一个创造新的生产力的生产过程。制造技术是现代制造产业的基础与核心。而机械制造工艺是制造业的根本。一方面先进制造技术广泛应用于机械制造业。推动着机械制造工艺的发展,并带动其他制造业的进步;另一方面,机械制造技术的更新、发展又集中体现着先进制造技术,并补充、丰富了先进制造技术。因此,先进制造技术与机械制造工艺的关系是相辅相成的,不能忽视甚至废弃任何一方的发展。

4、先进制造技术在机械制造工艺中的应用

如前所述。先进制造技术是一个庞大的技术群,在机械制造的整个过程中,无论是在产品的设计开发、还是在产品生产制造或是经营管理中都能充分利用先进制造技术。近几年。机械制造业发生了一系列重大变化,主要表现在以下几个方面。

4.1业生产方式发生重大变革

由于先进制造技术的应用,现代机械制造企业逐步改变了传统观念,在生产组织方式上发生了五个转变:从传统的顺序工作方式向并行工作方式转变;从金字塔式的多层次生产管理结构向扁平的网络结构转变;从按功能划分部门的固定组织形式向动态、自主管理的小组工作组织形式转变;从质量第一的竞争策略向快速响应市场的竞争策略转变;从以技术为中心向以人为中心转变。

4.2产品设计开发应用了现代设计技术的最新成果

现代设计的方法和技术主要有:绿色设计。在开发和应用新技术时,必须把保护环境、爱护人类的“生态平衡”意识摆在设计、制造和使用的首位,“以人为本”是制造技术发展的最高准则。绿色技术就是为了减轻环境污染或减少原材料的浪费、充分利用自然资源的使用技术。绿色设计的目的就是克服传统设计的不足,使产品满足环保的要求。它包括产品从概念形成到生产制造、使用乃至废弃后的回收、再利用及处理等各个阶段。绿色设计从根本上防止了 污染,节约了资源和能源。因此,绿色设计也是现代机械制造业进行产品设计开发的一个重要原则。并行工程。并行工程是现代设计的一个重要方法。传统的顺序工程设计,是先进行需求分析,然后进行产品设计,再进行生产制造,最后是产品上市。这种设计方法,信息是单向依次地传递。

采用并行工程方法则将各个工程设计过程与其后续过程并行进行设计,而且上下过程之间的信息交流是双向的,并据此作出决策。这意味着,采用并行工程方法,从一开始就要考虑产品整个生命周期中的所有因素,如用户要求概念形成、成本质量、报废处理等。这就利于提高产品质量、降低成本、缩短研制周期。

5、我国机械工业发展先进制造技术的对策

我国是一个制造业基础薄弱的国家,而机械制造业占的比重又较大。尽管近十年来。我国机械制造业不断引进国外的先进制造技术,但与发达国家相比仍有较大的差距。主要表现为:技改投入相对不足,技术装备、生产工艺、生产管理、市场观念、人员素质相对落后。面对新世纪国际机械制造业的竞争和高新技术发展的挑战,我国机械制造业应采取以下对策:

5.1加强先进制造技术的应用与自身制造技术的开发相结合

加强先进制造技术在机械制造业的应用,对发展机械制造业、增强机械制造业的生命力十分必要。但同时,我们也应注藿机械制造技术自身的开发,这对于丰富先进制造技术、促进其他制造业的发展至关重要。

5.2发挥企业主体作用与政府引导、扶助相结合

机械制造企业是应用先进制造技术的主体,也是技术开发、投资的主体。因此,企业应改变观念,眼光放远,在这两方面舍得花人力、物力和财力。.

5.3立足实际先行试点

推广应用先进制造技术在机械制造业的应用与推广要立足于实际,循序渐进。要结合中国实际,因地制宜,滚动式发展。应选择一些重点行业、重点地区、重点企业进行试点,待成熟后再广泛推广,不可搞“一刀切”。

5.4加强人才培训 人才是技术发展的关键。要加强先进制造技术的应用和开发,必须提高 人员索质,加强人才培训。应培养一批德才兼备、既懂科学技术,又懂管理的优秀企业家,还要造就一支具有较高职业素质的技术工人队伍。

5.5加强国际交流与合作

世界各国的机械制造技术的发展都有自己的特色和侧重点。通过加强国际交流与合作,可迅速吸收应用先进制造技术,并结合本国国情来发展机械制造技术。

6、结束语

先进机械制造技术不仅是衡量一个国家科技发展水平的重要标志,也是国际间科技竞争的重点。我国正处于经济发 展的关键时期,先进制造技术是我们的薄弱环节。我们应该跟上发展先进造技术的世界潮流,将其放在战略优先地位,并以足够的力度予以实施,尽快缩小与发达国家的差距,在激烈的市场竞争中立于不败之地。同时,先进的发展孕育产生大量的专业技术人才,进而推动我国现代机械制造业进一步走向繁荣。

参考文献:

[1]李蓓智.先进制造技术[M].高等即骄傲与出版社,2007-5 [2]候书林.机械制造技术基础[M].中国农业出版社 ,2010-3 [3]张世昌.先进制造技术[M].天津:天津大学出版社,2004-5 [4]陆青海.制造模式的新形势[M].北京:冶金工业出版社,2002-9

下载十二五发展规划--机械基础件 基础制造工艺和基础材料产业word格式文档
下载十二五发展规划--机械基础件 基础制造工艺和基础材料产业.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐