第一篇:锂硫电池综述
锂硫电池综述
摘要:本文主要综述锂硫电池正极材料的研究进展,主要的研究方向和研究内容。主要从这三个方面进行综述:硫碳复合材料、硫-导电聚合物复合正极材料、新结构体系的正极材料。
关键词:锂硫电池;正极材料;硫碳复合材料;导电聚合物
随着全球经济快速发展对能源需求的不断增长以及环境污染的日益严重,发展具有高能量密度、长循环寿命、高安全性、绿色环保和低成本的二次电池在新能源领域具有重大意义.与铅酸电池、镍镉电池等传统二次电池相比,锂离子电池具有放电电压高、能量密度高、循环寿命长、绿色环保等显著优点,因而迅速占据了便携式电子设备、电动工具、小型电动车等领域的大部分市场.目前,锂离子电池的应用领域已扩展至电动汽车、智能电网、3G通信、航空航天、国防等多个领域,成为了21世纪最具应用前景的储能器件之一。在锂(离子)二次电池体系中,正极材料一直是制约电池发展的瓶颈.传统的过渡金属氧化物和磷酸盐等正极材料如LiCoO2, LiNiO2和LiFePO4等,由于其理论储锂容量的限制已难以满足快速发展的市场需求.因此,寻找和开发新型高比能量、安全、廉价的正极材料是目前研究的热点.以单质硫为正极的锂-硫二次电池[1],其中硫正极具有高的理论比容量(1675mAh / g)和能量密度(2600Wh / kg),且单质硫具有价格低廉、资源丰富、环境友好等优点,已成为下一代高能密度锂二次电池的研究和开发的重点。
一、锂-硫电池的发展历史及研究现状
利用单质硫作为正极材料最早是由Herbet和Ulam在1962年提出.通用汽车公司曾提出以硫为正极活性材料的热电池[2],并将该电池用于他们早期的电动车计划。1976年Whitingham等人以层状TiS2为正极,金属锂为负极,成功开发出了Li-TiS2二次电池,并进行了中试实验研究,但由于锂“枝晶”等安全性问题而最终未能实现商品化.随后在70年代末80年代初,也有研究人员尝试开发有机体系的锂-硫电池。1980年,Armand等人首次提出了摇椅电池(Rocking Chair Batteries)的构想:即用低嵌锂电势的化合物代替金属锂作为负极,高嵌锂电势的化合物做正极.1987年,Auborn等人成功装配出了MoO2(WO2)/ LiPF6-PC/LiCoO2型的锂浓差电池.这时广大锂电研究者将更多的注意力投向了锂离子电池的研究,对锂-硫电池的研究陷入了低谷.1990年,Sony公司正式向市场推出了结构为C(焦炭)/LiPF6-PC-DEC/LiCoO2的第一代商品化锂离子二次电池.经过多年的发展,锂离子电池的生产工艺日趋完善.随着其在军用设备、移动电源、电动工具、笔记本电脑、电动汽车等各个领域的广泛使用,人们对锂离子电池的能量密度提出了更高的要求,从而,具有高能量密度的锂-硫电池再一次受到了锂电研究工作则的广泛关注.2009年,加拿大Nazar小组成功将有序介孔碳CMK-3与硫复合制备了高性能的锂-硫电池硫复合正极材料,再次掀起研究锂-硫电池的研究热潮。目前,国际上Sion power、polypus、Moltech、英国oxis及韩国三星等公司正在抓紧研制锂-硫电池产品[3].日本的目标是在2020年使锂-硫电池的能量密度达到500Wh/kg.美国则希望走得更快一些,Sion power公司计划将锂-硫实验电池应用在无人飞机上,白天依靠太阳能充电,晚上放电,实现了无人机连续飞行14d的记录.该电池比能量达到350~380Wh / kg,活性物质硫的利用率达到75%。2016年,美国预期将锂-硫电池的能量密度提高达到600Wh/kg,并实现1000次充放电循环。在国内,防化研究院、清华大学、南开大学、国防科技大学、北京理工大学等科研院所也正在进行锂-硫电池的研究。处于领先地位的是防化研究院,他们在2007-2011年已经研制出了容量为3AH,能量密度为320wh/kg,100%DOD充放电循环100次后容量保持率接近60%的锂-硫软包装电池[4]。
二、硫复合正极材料的研究现状
为了改善锂-硫电池的循环稳定性,提高活性物质硫的利用率,近年来的研究重点主要集中在硫正极复合材料方面,主要为选用各种高导电且多孔性的材料为基底,将硫分散和固定到该基底上,形成高性能的硫正极复合材料.目前,硫正极复合材料主要包括硫碳复合材料[5]、硫-导电聚合物复合正极材料[6]、新结构体系的正极材料[7]等.与硫复合的基底材料应具备以下3个方面的特性:(1)良好的导电性;(2)拥有尺寸合适且丰富的孔道结构和一定的机械强度,可使活性物质硫在基质材料上高度分散.内部孔道网络即能保证离子和电子的传输,又能在放电过程中缓解体积膨胀和收缩应力造成结构坍塌.孔尺寸要适中,从而限制多硫离子的溶出;(3)对活性物质具有良好的固定化作用.基底材料表面可以含有一定的官能团(如氧化石墨烯,含氮介孔碳),其可以通过物理吸附或化学相互作用,更好地限制多硫离子的溶出,避免产生“穿梭效应”[8],从而对活性物质硫起到很好的固定作用,使硫基复合材料表现出更好的循环稳定性。
2.1、硫-碳复合材料
在锂-硫电池正极材料的研究中,利用各种碳材料来提高正极材料的导电性和改善电池循环性能的研究最多.但由于硫极易熔化和升华(熔点115.2 ℃,沸点444.6 ℃),使得传统的碳包覆方法,如气相沉积、高温热处理法等[9],并不适用于制备硫-碳复合正极材料.目前,用于制备硫-碳复合材料的方法主要有两种:一是利用液态硫在155 ℃时黏度最低的特点,经简单的加热方法使液态硫在155 ℃扩散到多孔碳材料的孔道或网络空隙中[10];二是利用化学沉积法制备纳/微米尺寸的硫,使其分散于碳材料的孔道或网络空隙中.碳材料纳米孔道强烈的毛细管作用力可以实现活性物质硫以及多硫化物的固定[11].目前,使用的碳材料包括介孔碳、介孔碳球、空心碳球、碳纳米管、碳纤维和石墨烯[13]等.从形态上划分,可以分为介孔类、空心类、层状类、纳米管类等碳材料[14].
2.1.1、硫-介孔类碳复合材料
Wang等早在2002年就设计并制备了一种大孔活性炭-硫复合材料[15].硫的首次放电比容量为800mAh / g,但是第二次循环时衰减至440mAh / g,容量衰减明显.2007年防化研究院相关研究人员提出了以大-介孔碳为载体将硫填充其中,制备寄生型复合材料(LMC / S)的思路.此后,国内外先后出现了多篇关于中孔碳(MPC)与硫的复合材料的报道.2009年,加拿大Nazar小组成功地将有序介孔碳CMK-3作为载硫基体材料[16].该介孔碳具有规则结构,其中的规则碳棒直径约为6.5nm,碳棒间隙宽度约为3nm,碳棒之间同时又有碳纳米棒相联,可以保持CMK-3结构的稳定.正时由于CMK-3规则的孔道结构,硫在热处理过程中很容易渗入到CMK-3的孔道内,所以制备的硫-碳复合材料硫的负载率高达70%(质量分数).为了进一步提高复合材料的电化学性能,他们还在S/ CMK-3复合材料的表面包覆了一层聚乙二醇(PEG).结果表明,电池的首次放电容量和循环稳定性都有明显提高(如图2b).
图1 MK-3结构示意图(a)和电池循环性能曲线(b)
2.2、硫-导电聚合物复合材料
导电高分子材料因具有良好的导电性和电化学可逆性,可用作二次电池的电极材料.导电聚合物骨架既可以提高单质硫的导电性,抑制多硫离子的迁移扩散,又可以增加电极材料的稳定性.目前用于硫正极复合材料的导电聚合物主要有聚吡咯(PPy),聚苯胺(PANI),聚噻吩(PTH)和聚(3,4-亚乙二氧基噻吩)/聚苯乙烯磺酸(PEDOT / PSS)等[17].研究者一般用2种方法制备硫-导电聚合物复合材料:一种是先合成具有特殊纳米结构的导电高分子,如管状、网状、树枝状和介孔球等,然后将硫分散在其孔道或网络空隙中;另一种是用导电高分子包裹硫纳米颗粒,这种方法必须使硫达到足够小的尺度才能实现包覆效果,通常硫纳米颗粒通过化学沉积法合成.利用第一种合成方法制备硫-导电聚合物复合材料是最常见的方法,也是目前研究的热门.第二种方法是近2年开始尝试的方法.Wang等以乙炔黑为核,在其上接枝PANI导电网络,再通过简单的化学沉积法负载硫,形成CPANI-S纳米粒子.再以多个团聚的C-PAN-S纳米粒子为核,包覆PANI,最终形成多核-壳结构的CPANI-S@PANI复合材料[18](如图10).该材料最大的优势是载硫量较大(87%,质量分数),且正极极片上硫负载量可高达6mg/cm2.在0.2C倍率下,电池100次循环后容量保持为835mAh / g.Zhou等使用第二种方法制备硫-导电聚合物,设计了一种中空蛋黄-蛋壳形(yolk-shell)
图2 CPANI-S@PANI复合材料制备过程示意图(a)和C-PANI-S @ PANI复合材料扫描电镜和透射电镜(b和c)
纳米硫-聚苯胺(S-PANI)正极材料[19].球形纳米硫(〜 350nm)通过聚乙烯吡咯烷酮作分散剂,在酸性水溶液中化学沉积合成.在球表面包覆一层PANI后,得到核-壳形(core-shell)S-PANI复合材料,经180 ℃处理得到了yolk-shell结构的S-PANI复合材料[20]。PANI大的空间为硫的膨胀提供了很好的场所.该复合材料结构稳定,在充放电过程中不容易坍塌,因此材料的电化学性能良好.在0.2C倍率下,电池200次循环比容量保持765mAh / g.0.5C倍率下,200次循环比容量保持628mAh / g.
图3蛋黄-蛋壳形S-PANI复合材料的制备过程示意图(a)和核-壳形S-PANI复合材料扫描电镜(b)与蛋黄-蛋壳形S-PANI复合材料透射电镜(c)
2.3、新结构体系的正极材料-S/TIO2 核壳结构复合正极材料
由斯坦福大学崔毅副教授带头的斯坦福直线加速器中心(SLAC)和斯坦福大学的研究人员用蛋黄-壳结构的硫二氧化钛(S-TiO2)正极材料设计出了一种新型锂硫电池[21],0.5C 放电时,初始比容量为1 030 mAh/g,经过1 000 多次循环后,库仑效率为98.4%。此电池经1 000 次循环后,每周期的容量衰减只有0.033%,这是到目前为止长寿命锂硫电池的最佳性能。蛋黄-壳结构的优势是在锂化过程中,其内部空隙部分可以承受硫的过度膨胀,从而保护壳的结构完整性,并最大程度降低多硫化物的溶解,使电池具有高的容量保持率。研发人员说:“据我们所知,这是锂硫电池第一次具有如此高的性能。”
图4硫二氧化钛蛋黄-壳纳米结构的合成和特性表征图
图5 硫二氧化钛蛋黄-壳纳米结构的电化学性能
三、结束语
尽管锂-硫电池研究已经取得了一定进展,但还有许多深入细致的基础研究工作期待完善,如电化学反应过程机理、电极界面反应、反应中间体的性质、速率控制步骤等,同时在正极复合材料、电极制备方法、电解液的匹配性、负极保护、适宜粘结剂等方面尚需进行综合研究.只有解决了活性物质硫的负载量、电池的循环稳定性、安全性、温度适应性,锂-硫电池才能作为高能量密度二次电池真正进军二次电池市场。
参考文献
[1]胡宗倩,谢凯.锂硫电池硫正极材料研究现状与展望[J].材料导报,2011,17:46-50.[2]杨学兵,王传新,张行.锂硫电池正极复合材料研究进展[J].电池工业,2010,05:317-320.[3]Xiaohui Zhao, Jae-Kwang Kim, Hyo-Jun Ahn, Kwon-Koo Cho, Jou-Hyeon Ahn, A ternary sulfur/polyaniline/carbon composite as cathode material for lithium sulfur batteries[J], Electrochimica Acta, Volume 109, 30 October 2013, Pages 145-152.[4]Dongmei Han, Bin Zhang, Min Xiao, Peikang Shen, Shuanjin Wang, Guohua Chen, Yuezhong Meng, Polysulfide rubber-based sulfur-rich composites as cathode material for high energy lithium/sulfur batteries[J], International Journal of Hydrogen Energy, Available online 3 May 2014.[5]Yu-Sheng Su, Arumugam Manthiram, A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium–sulfur batteries[J], Electrochimica Acta, Volume 77, 30 August 2012, Pages 272-278.[6]王超.锂硫电池正极材料研究[D].华中科技大学,2012.[7]Wook Ahn, Kwang-Bum Kim, Kyu-Nam Jung, Kyoung-Hee Shin, Chang-Soo Jin, Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries[J], Journal of Power Sources, Volume 202, 15 March 2012, Pages 394-399.[8]Shi-chao Zhang, Lan Zhang, Wei-kun Wang, Wen-juan Xue, A Novel cathode material based on polyaniline used for lithium/sulfur secondary battery[J], Synthetic Metals, Volume 160, Issues 17–18, September 2010, Pages 2041-2044.[9]Lin Zhu, Wancheng Zhu, Xin-Bing Cheng, Jia-Qi Huang, Hong-Jie Peng, Shu-Hui Yang, Qiang Zhang, Cathode materials based on carbon nanotubes for high-energy-density lithium–sulfur batteries[J], Carbon, Volume 75, August 2014, Pages 161-168.[10]杨晓娇.不同形态的碳在锂硫电池正极材料中的应用[D].山西师范大学,2013.Xin-Bing Cheng, Jia-Qi Huang, Qiang Zhang, Hong-Jie Peng, Meng-Qiang Zhao, Fei Wei, Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries[J], Nano Energy, Volume 4, March 2014, Pages 65-72.[11]陈漾,张霞,李亚娟,刘又年.锂硫电池新型硫/碳复合正极材料的研究[J].电源技术,2013,12:2243-2246.[12]Mengyao Gao, Xing Xiong, Weikun Wang, Shengrong Zhao, Chengming Li, Hao Zhang, Zhongbao Yu, Yaqin Huang, Discharge–charge process of the porous sulfur/carbon nanocomposite cathode for rechargeable lithium sulfur batteries[J], Journal of Power Sources, Volume 248, 15 February 2014, Pages 1149-1155.[13]Bing Ding, Laifa Shen, Guiyin Xu, Ping Nie, Xiaogang Zhang, Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery[J], Electrochimica Acta, Volume 107, 30 September 2013, Pages 78-84.[14]Kyoung Hwan Kim, Young-Si Jun, Jeffrey A.Gerbec, Kimberly A.See, Galen D.Stucky, Hee-Tae Jung, Sulfur infiltrated mesoporous graphene–silica composite as a polysulfide retaining cathode material for lithium–sulfur batteries[J], Carbon, Volume 69, April 2014, Pages 543-551.[15]Xiao Liang, Yu Liu, Zhaoyin Wen, Lezhi Huang, Xiuyan Wang, Hao Zhang, A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium–sulfur batteries, Journal of Power Sources, Volume 196, Issue 16, 15 August 2011, Pages 6951-6955,[16]Kyoung Hwan Kim, Young-Si Jun, Jeffrey A.Gerbec, Kimberly A.See, Galen D.Stucky, Hee-Tae Jung, Sulfur infiltrated mesoporous graphene–silica composite as a polysulfide retaining cathode material for lithium–sulfur batteries, Carbon, Volume 69, April 2014, Pages 543-551,[17]Long-Yan Li, Yan-Xiao Chen, Ben-He Zhong, Synthesis and electrochemical performance of a simple and low-cost sulfur/porous carbon composite cathode for rechargeable lithium sulfur battery, Composites Part A: Applied Science and Manufacturing, Volume 62, July 2014, Pages 26-31,[18]G.C.Li, J.J.Hu, G.R.Li, S.H.Ye, X.P.Gao, Sulfur/activated-conductive carbon black composites as cathode materials for lithium/sulfur battery, Journal of Power Sources, Volume 240, 15 October 2013, Pages 598-605, [19]Weizhai Bao, Zhian Zhang, Wei Chen, Chengkun Zhou, Yanqing Lai, Jie Li, Facile synthesis of graphene oxide @ mesoporous carbon hybrid nanocomposites for lithium sulfur battery, Electrochimica Acta, Volume 127, 1 May 2014, Pages 342-348, [20]Guoqiang Ma, Zhaoyin Wen, Jun Jin, Yan Lu, Kun Rui, Xiangwei Wu, Meifen Wu, Jingchao Zhang, Enhanced performance of lithium sulfur battery with polypyrrole warped mesoporous carbon/sulfur composite, Journal of Power Sources, Volume 254, 15 May 2014, Pages 353-359,[21]刘兰兰.美国斯坦福大学研发出S-TiO_2正极材料长寿命锂硫电池[J].电源技术,2013,04:532-533.
第二篇:锂辉电池市场部对废旧锂电池回收经济性分析
锂电回收经济性强,电池厂商自行拆解或第三方拆解模式是目前主流,从2015年以来,随着新能源汽车行业的爆发,以及电池材料的趋势性变化(向着高镍三元材料的方向发展),钴、镍及碳酸锂/氢氧化锂的价格将受到一定幅度的提振。这使得回收废旧锂电池的经济性得到进一步重视。
我国私家车年平均行驶里程约为1.6万公里,保守估计私家车的使用条件下,纯电动/插电式汽车的动力电池组使用寿命为4~6年左右;而对于公交车、出租车等车型,由于其日均行驶里程长,充电较为频繁,其动力电池组的寿命为2~3年。
不同类型动力电池金属含量各不相同,根据东莞锂辉电池市场部对各类电动汽车占比以及单车锂电容量的预测,对于我国未来动力锂电池的报废量进行了预测。预计到2018年,我国新增报废的动力电池将达到11.8Gwh,对应可回收利用的金属为:镍1.8万吨、钴0.3万吨、锰1.12万吨、锂0.34万吨;预计到2023年,新增报废的动力电池将达到101Gwh,对应可回收利用的金属为:镍11.9万吨、钴2.3万吨、锰7.1万吨、锂2万吨。
东莞锂辉电池市场部预计,除金属钴外,其他几种金属价格在未来几年都将有不同程度的下降,据此推算,到2018年,可回收的有价金属的市场规模将达到镍14亿元、钴8.7亿元、锂26亿元;到2023年,可回收的有价金属的市场价值可以达到镍84亿元、钴73亿元、锰8.5亿元、锂146亿元。
通过建立经济性评估模型针对动力电池回收过程中投入成本和回收材料产出的收益,可以以以下数学模型进行表示:
B pro = C totalC use-C tax
B pro 表示废旧动力电池回收的利润;C total 表示废旧动力电池回收的总收益;C depreciation 表示废旧动力电池设备的折旧成本;C use 表示废旧动力电池回收过程的使用成本;C tax 表示废旧动力电池回收企业的税收。
废旧动力电池回收和再资源化过程的使用成本主要包括以下几项:
(1)原材料成本;(2)辅助材料成本;(3)燃料动力成本;(4)设备维护成本;(5)环境处理成本;(6)人工成本。
从毛利率、可行性和可持续性三方面看,东莞锂辉电池市场部认为:电池厂商直接回收利用形成闭环的模式以及第三方专业拆解机构向电池厂商购买废旧电池的模式是目前主流的动力锂电回收模式,且在锂电综合回收的情况下具有较好的经济性。
假设:
(1)目前的金属价格(钴21.5万元/吨、镍7.77万元/吨、锰1.1万元/吨、锂70万元/吨、铝1.26万元/吨、铁0.2万元/吨)且不考虑其他回收产生的收益;
(2)考虑各类动力电池的使用占比(磷酸铁锂70%、锰酸锂7%、三元23%)综合回收锂电池;(3)除原材料之外其他成本相同
结论及分析:
第三方专业机构从小作坊收购废旧锂电池并进行拆解加工的毛利率最高,达到60%;其次是行业联盟回收加工的形式,毛利率达到45%。但这两种方式中,前者(第三方:购于小作坊)存在安全和环保性问题,且目前小作坊尚未认识到锂电回收产业的巨大价值,收购价格较低,因此这种方式不具有可持续性;后者(行业联盟)目前由于相关管理条例和法律环境不完善,可行性仍然较低,但未来将是趋势之一;其他三种方式可行性和可持续性都较好,但其中电池生产商直接回收利用和第三方专业拆解机构向生产商购买废旧电池的模式毛利率较高,因此东莞锂辉电池市场部认为这两种方式将构成目前主流的回收模式。
三元电池材料的回收价值较其他动力电池更高,如单独考虑回收三元动力电池的情况,则电池厂商回收利用模式和向电池厂商购买废旧电池的第三方拆解模式皆具备优质的投资价值(2016年测算到毛利率分别达到55%和48%
东莞锂辉电池市场部认为,动力锂电回收产业将在未来5年内逐步实现规范化、规模化,行业联盟的回收模式有望在产业发展中后期形成,由于其规模效应,将拥有较高的毛利率。此外,原有的生产者回收利用模式和向生产者购买废旧电池的第三方拆解模式仍具备较强经济性。
第三篇:电池市场分析
整治中的铅酸蓄电池市场现状及其影响分析 从5月6日大规模的铅酸蓄电池企业接受国家整治开始,部分规模较小或者是实行零库存策略的企业陆续进入停产断货期。即使原有一定库存量的企业,如果是单一地域建厂,没有跨省发展,这些企业在6月中旬以后,库存也已经彻底告罄。同时受整治影响,整个铅酸蓄电池产能下降超过50%,仅剩的一些产能大多用于二级市场的开拓和维护,这直接导致相当一部分的整车企业没有电池可以配套。一些知名整车企业的“掌门人”甚至亲自赶赴铅酸蓄电池的主要产地浙江长兴进行业务洽谈,抢占货源。
7月份是传统意义上电动车的销售旺季,加上终端市场电动车电池更换高峰的到来,产能本已严重不足的铅酸蓄电池出现各大品牌先后集体大量缺货甚至是断货的情况,截止到7月4日,天能、超威、永达、双登、浦能等多个品牌价格均出现了上涨,12ah基本涨幅为每组40元,20ah为每组60元,即便如此,铅酸蓄电池也是有价无货,供不应求。超杰电池山西总代理陈磊表示,现在不仅仅是售后需要电池周转,刚刚开拓的新客户也需要货源。一般是连续几天都没有货,一旦到货,马上抢购一空。
浙江、广东、河南等几个主要的铅酸蓄电池重要产地均对省内相关企业进行了停产整顿。浙江273家电池企业,停产约250家,江苏电池企业100多家,停了40多家。即使一些大型企业在主要产地之外还建立了其它生产基地,但一般规模较小,基本没有富余产能。浙江省虽然在6月17日出台了验收标准和验收规程,并且在6月24日
首批验收合格的企业进行了恢复生产,但也仅仅是试生产,具体能否正式恢复生产,还要看能否通过7月中旬的二次验收。
一方面是旺季到来市场需求日益加大,一方面是产能短期内无法得到有效恢复,这样的现状表明短期内铅酸蓄电池的市场空窗将会进一步扩大,价格也会进一步提升。
与此对应的是由于铅蓄电池停产导致铅回收再利用规模缩水,部分铅厂囤积了大量的铅,上游铅价振荡下跌,但铅贸易商均表示看好市场行情回暖。而下游电动车整车的价格则跟随电池及其他零配件价格呈现上涨趋势。
央视网《每日资讯》7月5日供稿
第四篇:各种电池优缺点
一、铅酸电池 主要优点:
1、原料易得,价格相对低廉;
2、高倍率放电性能良好;
3、温度性能良好,可在-40~+60℃的环境下工作;
4、适合于浮充电使用,使用寿命长,无记忆效应;
5、废旧电池容易回收,有利于保护环境。主要缺点:
1、比能量低,一般30~40Wh/kg;
2、使用寿命不及Cd/Ni电池;
3、制造过程容易污染环境,必须配备三废处理设备。
二、镍氢电池 主要优点:
1、与铅酸电池比,能量密度有大幅度提高,重量能量密度65Wh/kg,体积能量密度都有所提高200Wh/L;
2、功率密度高,可大电流充放电;
3、低温放电特性好;
4、循环寿命(提高到1000次);
5、环保无污染;
6、技术比较锂离子电池成熟。主要缺点:
1、正常工作温度范围-15~40℃,高温性能较差;
2、工作电压低,工作电压范围1.0~1.4V;
3、价格比铅酸电池、镍氢电池贵,但是性能比锂离子电池差。
三、锂离子电池 主要优点:
1、比能量高;
2、电压平台高;
3、循环性能好;
4、无记忆效应;
5、环保,无污染;目前是最好潜力的电动汽车动力电池之一。
四、超级电容 主要优点:
1、功率密度高;
2、充电时间短。主要缺点:
能量密度低,仅1-10Wh/kg,超级电容续航里程太短,不能作为电动汽车主流电源。
电池储能的优缺点(九种储能电池解析)
五、燃料电池 主要优点:
1、比能量高,汽车行驶里程长;
2、功率密度高,可大电流充放电;
3、环保,无污染。主要缺点:
1、系统复杂,技术成熟度差;
2、氢气供应系统建设滞后;
3、对空气中二氧化硫等有很高要求。由于国内空气污染严重,在国内的燃料电池车寿命较短。
六、钠硫电池 优势:
1、高比能量(理论760wh/kg;实际390wh/kg);
2、高功率(放电电流密度可达200~300mA/cm2);
3、充电速度快(充满30min);
4、长寿命(15年;或2500~4500次);
5、无污染,可回收(Na,S回收率近100%);
6、无自放电现象,能量转化率高;不足:
1、工作温度高,其工作温度在300~350度,电池工作时需要一定的加热保温,启动慢;
2、价格昂贵,万元/每度;
3、安全性差。
七、液流电池(钒电池)优点:
1、安全、可深度放电;
2、规模大,储罐尺寸不限;
3、有很大的充放电速率;
4、寿命长,高可靠性;
5、无排放,噪音小;
6、充放电切换快,只需0.02秒;
7、选址不受地域限制。缺点:
1、正极、负极电解液交叉污染;
2、有的要用价贵的离子交换膜;
3、两份溶液体积大,比能量低;
4、能量转换效率不高。
八、锂空气电池 致命缺陷:
固体反应生成物氧化锂(Li2O)会在正极堆积,使电解液与空气的接触被阻断,从而导致放电停止。科学家认为,锂空气电池的性能是锂离子电池的10倍,可以提供与汽油同等的能量。锂空气电池从空气中吸收氧气充电,因此这种电池可以更小、更轻。全球不少实验室都在研究这种技术,但如果没有重大突破,要想实现商用可能还需要10年。
九、锂硫电池(锂硫电池是一类极具发展前景的高容量储能体系)优点:
1、能量密度高,理论能量密度可达2600Wh/kg;
2、原材料成本低;
3、能源消耗少;
4、低毒。
虽然锂硫电池研究已经经历了几十年,并且在近10年时间取得了许多成果,但离实际应用还有不小距离。
第五篇:电池公司简介
电池公司简介:
1.比亚迪股份有限公司:
比亚迪股份有限公司由王传福创立于1995 年,2002 年7 月31 日在香港主
板发行上市(股票代码:1211.HK),是一家拥有IT 和汽车两大产业群的高新技 术民营企业。目前,比亚迪在全国范围内,已在广东、北京、陕西、上海等地共 建有九大生产基地,总面积将近700 万平方米,并在美国、欧洲、日本、韩国、印度、台湾、香港等地设有分公司或办事处,现员工总数已超过13 万人。比亚迪股份(01211)表示,集团未来均衡发展旗下汽车、二次充电电池及手
机部件及组装3 大业务,预计全年资本开支为50 亿元(人民币,下同),当中下 半年为20 亿元,主要用于厂房建设及提升3 大业务的产能。
公司于1995年2月成立,是一家具有民营企业背景的H股上市公司,依靠镍氢和锂离子等二次电池起
家,2003年进入汽车行业,现拥有IT零部件制造
和汽车制造两大产业群,是一家集研究、开发、生产、销售为一体的国家级高新技术企业.截止2008
年底,该公司总资产额为328.91亿元人民币,净
资产超过130亿人民币,2008年销售额约268亿
元,利润总额超过13亿元,纳税总额约8.8 亿
元。
2.天津力神
力神公司是一家专业从事高能锂离子蓄电池的研发和生产
经营的国有股份制高科技企业,成立于1997年12月25日,是目前国内投资规模最大、技术水平较高的锂离子电池专
业生产企业之一,产业规模稳居国内前几名。注册资金
8.5亿元,总投资28亿元,员工总数6000人;主要生产方
型、圆型、聚合物、动力锂离子电池电芯,以及相应的电
池集成系统,年产能达2.5亿只。其生产线自动化程度
高,生产控制和质量管理体系完善,2008年销售收入达到
16.8亿元人民币。
力神公司引进国外先进的自动化生产设备,目前已具有2.5 亿只电池的年生 产能力,产品包括圆型、方型、聚合物和塑料软包装、动力电池四大系列几百个 型号
3.万向电动汽车有限公司
万向电动汽车有限公司成立于2002年3月,是万向集团
全资子公司,该公司注册资金1.55亿元,占地约8万平
方米,设有电池、电机、电控等在内的多个事业部。
该公司目前有员工405人,在动力电池研发方面,该公
司先后承担并完成了多项国家和省级科研项目。
万向集团自1999年起开始研发以锂电池为动力的电动
汽车,至今投资已累计超过4亿多元,在大功率、高能
量聚合物锂离子动力电池等方面取得了显著成果。
用于锂离子电池产业化项目
一期工程建设,设备从日本、韩国、美
国进口,已经有5条自动化生产线,达
到1000-2000辆电动大客车的电池供应
能力。预期将于2009年8月底竣工,生
产线设计年产能1.28亿瓦时;后续再投
资10亿元,计划通过新厂房建设和引进
大规模自动化制造设备,准备再增加3-
5条自动化生产线。至2012年万向将达
到年产1000辆纯电动商用车、10亿Wh锂
离子动力电池的产业规模。
按照“电池—电机—电控—电动汽车”的发展战略,公司在大功率、高能量聚合物锂离子动力电池、一体化电机及其驱 动控制系统、整车电子控制系统、汽车工程集成技术以及试验试制平台等方面取 得了显著的成果。杉杉股份:锂电新贵 超常发展
公司的控股子公司,上海杉杉科技,锂离子电池正极材料销售收入后来居上,已经成为国内最大,世界前三甲的正极材料供应商。目前公司的锂离子电池材料 销售收入已占公司总收入比重已达40%左右,增速极为惊人。中信国安:锂电上下游一体化 发展潜力巨大
中信国安盟固利(简称MGL)是中信国安股份有限公司控股90%的子公司。MGL
始建于2000 年4 月,主要从事锂离子二次电池关键材料和高能量密度动力锂离 子二次电池的研发、生产与销售。MGL 目前是国内最大的锂电池正极材料钴酸锂 和锰酸锂的生产厂家,同时也是国内外唯一大规模生产动力锂离子二次电池的厂 家。佛塑股份:比亚迪“铁电池”的合作者
公司与比亚迪共同出资281 万美元组建合资成立佛山市金辉高科光电材料
有限公司,生产经营特种电池用离子渗析微孔薄膜。特种电池用离子渗析微孔薄 膜具有良好的市场前景和优厚的利润空间,本公司协同该薄膜产品的主要用户共 同投资介入相关产业领域,有利于实现产品结构的优化调整。随着锂电板块的迅 速发展,以及比亚迪“铁电池”的逐步推进,作为比亚迪“铁电池”合作方的佛 塑股份,有望迎来春天。
此外,咸阳偏转(000697)控股子公司咸阳威力克技术也相对成熟,但缺乏 资金批量生产。深圳比克
深圳比克公司是一家锂离子电池的专业生产厂家,于
2001年成立,注册资金8260万美元,2006年5月在美
国NASDAQ(CBAK)上市,员工总数约6,000人。主要生产方形、圆柱、聚
合物和动力锂离子电池产品,月产量为3,000万只。电动工具用小容量磷酸铁锂 动力电池已实现了规模化生产。2008年销售收入达
到17.8 亿元人民币。
未来5年,该公司计划在动
力电池领域再投资2亿美元,其中贷款和融资各1
亿美元。
企业产能:
09年国内车辆用动力电池生产企业有许多家,但
是水平比较高的企业不多,目前比较好的企业及
动力电池年产量有:深圳比亚迪(1.4-1.8亿Wh/
年)、深圳比克(0.8-1.2亿Wh/年)、天津力神
(1.0-1.2亿Wh/年)、东莞ATL(1.0-1.2亿Wh/
年)、杭州万向(1.6-1.8亿Wh/年)、苏州星恒
(3600万Wh/年)、江苏春兰(2600万Wh/年)、浙江佳贝思(7600万Wh/年)、浙江赛恩斯(3800
万Wh/年)、哈尔滨中强(4000万Wh/年)。其它
企业的动力电池产量总合不超过2亿Wh/年。国内
目前车辆用动力电池产能上限是13亿Wh/年。
BY 锂电池,镍氢电池,燃料电池:
1.锂电池:
锂离子动力电池经过十余年发展,在国内已经形成或初具一定的产业规模或产业基础;
2.镍氢动力电池
镍氢动力电池的产业规模发展速度远远低于锂离子动力电池;
主要企业有:春兰集团、科力远、中炬高新、湖南神舟、湖南科霸、凯恩股份、四川宝生新能源电池有限公司、淄博正大电源有限公司、江苏奇能电池有限公司等。
3.燃料电池
燃料电池技术门槛和从业要求很高,尚达不到产业化的阶段。
主要有:新源动力股份有限公司(分公司有江苏新源动力有限公司和上海新源动力有限公司)、上海燃料电池汽车动力系统有限公司、博信电池(上海)有限公司、北京长力联合能源技术有限公司等。
国际:
主要锂电池生产厂商:
1.三洋电机(市场份额约为20%)
供应给:大众集团+铃木 HEV(约860万辆)
丰田公司 PHEV
2.松下:
(1)PEVE :丰田(80.5%)与松下(19.5%)的合资公司,供应给:丰田公司HEV
(2)获得大半三洋电机股份
(3)参与共同开发Tesla电动汽车
3.SB LiMotive: 三星(50%)与博世(50%)合资
供应给:宝马
4.LG化学
供应给:通用PHEV,现代-起亚集团HEV
5.GS汤浅
(1)Blue Energy Japan: GS汤浅(51%)与本田(49%)合资,供应给本田公司HEV
(2)Lithium Energy Japan: GS汤浅(51%),三菱汽车(15%),三菱商事(34%)合资,供应给三菱汽车EV
6.NEC Energy Device(原NEC 东金)
全资子公司NEC(49%)与日产-雷诺集团(51%)合资建立AESC,供应日产-雷诺集团EV,HEV
7.A123 Systems
属于美国新兴企业
供应给菲丝克汽车PHEV和麦格纳国际
8.美国江森自控公司
供应给:福特EV,PHEV
戴勒姆HEV
SB Limotive EV