张军变电站直流系统故障几起实例分析与处理

时间:2019-05-13 15:47:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《张军变电站直流系统故障几起实例分析与处理》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《张军变电站直流系统故障几起实例分析与处理》。

第一篇:张军变电站直流系统故障几起实例分析与处理

变电站直流系统故障几起实例分析与处理

张 军

(宿迁市泗阳县供电公司,江苏 泗阳 223700)

摘要 直流系统在变电站中为控制、信号、继电保护、自动装置及事故照明等提供可靠的直流电源,它还为开关操作提供可靠的操作电源。直流系统的可靠与否,对变电站的安全运行起着至关重要的作用。本文对220KV泗阳变电所发生的几起直流系统故障实例,结合当时的分析处理情况,进行了较为详细的总结,为今后可能发生的类似情况提供了分析处理的参考方法。关键词 直流系统 故障 分析 处理

引言

直流系统在变电站中为控制、信号、继电保护、自动装置及事故照明等提供可靠的直流电源。它还为开关操作提供可靠的操作电源。直流系统的可靠与否,对变电站的安全运行起着至关重要的作用,是变电站安全运行的保证,是变电站的重要组成部分,必须高度重视直流系统,必须把对直流系统的日常检查、测试以及维护工作放在重要位置,并在发生各类事故的时候优先考虑恢复直流系统的供电。

以笔者工作的220KV泗阳变电所为例,自2007年11月至2008年9月,短短的十个多月的时间,就发生了6次直流系统故障,其中有3次较为严重,直接危胁到对直流负载的可靠供电以及系统设备的安全运行,在变电站二次设备故障中占据相当大的比例,必须引起我们的高度重视和警觉。2008年9月,220KV泗阳变电所1#充溃电屏直流系统绝缘降低,最后经查为220KV泗电线4977开关端子箱至开关汇控柜的直流电缆外绝缘破坏,导致电缆对地放电烧毁。2008年8月,1#充电屏1#充电模块故障,导致1#充电屏跳闸。2008年9月,1#充电屏整流器故障,连接的蓄电池组对直流负载供电,导致蓄电池电压快速降低等等。导致这几次故障产生的原因各不相同,在直流系统故障中具有典型性,本文根据现场值班员以及继电保护工作人员当时的分析处理情况进行总结,并对照直流系统的相关管理规定和处理原则,进行初步分析和探讨,希望起到抛砖引玉的作用,和同行进行交流提高。

1泗阳变电所直流系统概述

220KV泗阳变电所直流系统采用烟台东方电子生产的DF0210A型装置系统,包括充馈电屏、电池屏,对全所直流负荷供电以及对电池组进行充电。正常时从所用电屏分别供交流电源至两组充馈电屏,两组充馈电屏同时运行,各自带部分直流负载,2#直流屏上的直流联络闸刀(1、2组联络闸刀)断开。一组充馈电屏供35KV控制、中央信号、事故照明、220KV控制用,二组充馈电屏供直流电压表、故障录波器、遥控屏电压监视以及1#、2#主变控制用。当其中一组充馈电屏停用或由于其它原因,导致本屏不能代供直流负载以及对本屏蓄电池组进行充电时,应将2#直流屏上的1、2组联络闸刀合上,转由另一充馈电屏代供。为保证停役的充电装置检修工作的安全,必须分开相应的充馈电屏在所用电屏上的交流电源空气开关以及整流输出空气开关。直流充馈电屏上还装设了微机接地巡检仪,可供及时发现直流系统绝缘降低、直流接地等故障。

以上为本所直流系统原理图

2直流系统故障情况处理及分析 2.1 1#充馈电屏直流系统绝缘降低

当日恰逢本文笔者当班,微机接地巡检仪报警,绝缘降低指示红灯闪烁,装置显示:1#充馈电屏直流正对地电阻为0,负对地电阻为-999.9K;正对地电压0V,负对地电压-108.5V。微机接地巡检仪内监测的各分支对地电阻均在正常范围。故障发生时间为上午9:30左右,天气晴朗干燥,变电所直流系统及二次回路均无人工作。

笔者立即汇报继电保护专职人员,然后会同班内其他人员对变电所内的直流系统部分进行了初步排查:

1、考虑到充馈电屏经常发生充电模块故障,有无可能是其导致的故障发生?而实际1#充馈电屏上的充电模块均正常运行,无故障现象,又对屏内的直流小母线进行了检查,在可视的范围内没有明显的放电及接地现象,故这种可能被排除。

2、对220KV及110KV室外端子箱、机构箱进行重点排查,虽有部分端子箱内水气较重,导致接线端子排有水珠较潮湿,但并没有放电及接地痕迹,端子箱及机构箱内也无小动物及其它异物可能造成接地。(为排除潮湿原因造成绝缘降低,把水气较重的端子箱门打开,进行通风晾干。)35KV室内端子箱也通过检查而被排除。

3、对继电器室的保护、自动装置以及控制电源等进行检查,无异常及接地现象。

4、到蓄电池室对第Ⅰ组蓄电池组进行检查,没有发现放电及接地现象,电池屏上的电池检测仪显示每节电池电压正常。

继电保护工作人员到达现场后,笔者向其汇报了故障及检查排除情况。继电保护工作人员然后重新进行类似的检查,亦没有发现故障点。为了更进一步查明故障原因,继保人员和值班员商量后,决定先停用第Ⅰ组蓄电池。在分开第Ⅰ组蓄电池空气开关,将第Ⅰ组蓄电池退出运行后,经微机接地巡检仪重新巡检,故障没有消失,说明第Ⅰ组蓄电池组不存在故障。继保人员又决定将1#充电装置从整流输出空气开关处进行隔离,检查充电模块及直流小母线有无故障。按照要 求,值班员合上2#充馈电屏上1、2组直流联络闸刀,将1#充电屏所供直流负载及第Ⅰ组蓄电池充电都由2#充电屏承担,然后分开1#充电屏上整流输出空气开关,但微机接地巡检仪的故障信号并没有消失。

为了经快查出故障,在汇报相关领导后,决定拉路查找。为了慎重起见,继保人员又分析了可能产生这种故障的原因:为什么微机接地巡检仪显示正对地电阻为0,各分支检测的对地电阻却正常?有没有无法巡检到的地方有故障存在?和微机接地巡检仪厂家联系,证实了这种可能性的存在。继电保护工作人员突然想起新上间隔220KV泗电4977、4978当初投运时,有关直流部分没有接入微机接地巡检仪。在厂家的指导下,在将泗电4977、4978直流部分接入接地巡检仪后,装置果然显示泗电4977间隔直流电阻较低。经继保人员排查,确定是开关端子箱到开关汇控柜的电缆存在问题。经过开挖,果然发现其中一段有放电烧焦痕迹。分析认为:当初新建施工时,电缆绝缘皮遭到损坏,恰好此处为两节钢管的接头处,绝缘降低引起电缆对地放电烧焦,导致故障发生。

经值班员和省调联系将泗电4977开关进行旁代停电后,对端子箱到汇控柜的这段电缆进行更换。恢复泗电4977开关正常供电后,直流系统绝缘降低故障现象消失,直流系统恢复正常。

2.2 1#充电模块故障致充电装置跳闸

运行中的直流系统报警,经现场检查为1#充电装置跳闸,所用电屏上供充馈电屏的交流电源空气开关没有跳闸,直流负载各空气小开关及蓄电池空气开关均在正常合位。为保证对1#充电屏上直流负载的可靠供电及第Ⅰ蓄电池组的正常充电,在分开1#充电装置的整流输出空气开关后,合上2#充电屏上的1、2组直流联络闸刀。根据相关现象,值班员首先将1#充馈电屏后门打开检查,发现第Ⅰ组交流电源输入空气开关跳闸,在确信不会危及直流系统正常运行的情况下,将此交流输入电源空气开关试合闸。该空气开关立即跳开,同时1#充馈电屏上的1#整流模块后部有放电声音及冒烟现象,初步判定为1#整流模块故障导致1#充电装置跳闸。汇报继电保护工作人员,在继保人员到达现场并取下1#整流模块后,重新合上1#充馈电屏后交流电源输入空气开关,1#充电装置恢复正常。

2.3运行中1#充电屏整流器故障

运行中1#充馈电屏有语音提示“整流器故障”,值班员到现场检查后发现:1#充馈电屏上六组整流模块故障灯同时亮,交流电压及其他指示仪表显示均无异常。但从浮充电监测单元显示屏却发现对蓄电池的浮充电流为-3A,1#蓄电池组整组电压降低为220V左右,低于蓄电池组正常浮充电时的合格电压值,其中9#电池单节电压降为12.06V,电池检测仪巡检到此节电池时就出现报警。

根据出现的各种信号,以及浮充电流不正反而为负值,蓄电池的电压较正常浮充时有明显降低,值班员判定1#充电装置整流器出现故障,充电装置对蓄电池不再进行浮充电,1#充馈电屏上直流负载由本屏蓄电池组进行供电,可能故障时间较长致蓄电池组的电压降低超过限值报警。为了保证对1#充馈电屏上直流负载的可靠供电,防止蓄电池组因长时间放电电压过低而损坏,决定将1#充馈电屏上的直流负载改由2#充电装置代供,Ⅰ组蓄电池改由2#充电装置进行充电。在分开1#充电装置整流输出空气开关后,合上2#充馈电屏上1、2组直流联络闸刀,实现以上功能。继电保护专职人员根据故障现象试着将1#充馈电屏上的六 组整流模块一一取出,故障现象没有消失。后联系东方电子厂家,其工作人员到现场将装置系统的数据部分进行更改后,1#充电装置恢复正常运行。

以上是对笔者所工作的变电所最近一段时间发生的直流系统故障中的部分实例进行的分析,现场发生的远不止这些,故障的原因、现象也各不相同,但是都对直流系统的稳定运行产生不利的影响,必须引起我们的足够重视。

3对策及建议

3.1严把直流系统的施工验收

对新建、扩建以及改造工程,凡涉及到直流系统的部分,须制定详细的验收计划,严格验收,不留隐患死角。对某些细节也应考虑周祥,如各种直流电缆的外绝缘也必须在填埋、放线时做全面外观检查,防止人为损坏。增加和改造的直流系统分支在微机接地检测仪中及时添加、调整,做到和现场对应。3.2加强直流系统的巡视检测

值班员要加强对直流充电装置及整个直流系统的巡视检查力度,并定期检查测试,及时发现直流系统存在的安全隐患和故障,及早进行排查和恢复,保证直流系统的健康稳定运行。

3.3制定详细的直流系统故障处理预案

根据变电所直流系统具体情况,结合已经发生的各类直流系统故障实例,以及调度规程、现场规程对直流系统故障处理的要求,制定详细的直流系统故障处理预案,使之成为变电所直流系统故障处理的指导文书。3.4开展直流系统相关培训

鉴于直流系统在变电站中的重要作用,要通过技术培训、事故预想、反事故演习等形式,积极开展直流系统原理、故障原因分析及处理等培训工作。

4结束语

直流系统是变电站中最大的系统,也是故障发生最为频繁、查找及处理最为困难的系统。当值班员在现场遇到直流系统发生故障时,必须根据相关信息尽快做出判定,在无法自行处理且不能保证安全的情况下,须立即汇报继电保护专职人员,切忌盲目处理。本文探讨的几例故障的分析与处理尚有许多不足之处,请专家同行指正。

参考文献:

[1]泗阳供电公司 220KV泗阳变电所现场运行规程[M]2008 [2]烟台东方电子DF0210A型装置说明书

第二篇:35kV变电站断路器跳闸异常分析与处理

2012年新疆电力行业专业技术监督工作会议论文

35kV变电站断路器跳闸异常分析与处理

[内容摘要]35kV宁清变电站2号主变35kV侧3502断路器跳闸,运行人员试送不成功,检修人员对一次、二次设备进行检查后送电,送电过程中初步判断为1号升压变故障,遂退出一号升压变。3502断路器再次跳闸后,经过仔细检查研究发现为直流蓄电池故障,导致控母、合母电压异常,在导闸操作过程中造成装置异常,产生误动。[关键词]升压变;蓄电池;控母 1 前言

35kV石清线带35kV宁清变,35kV宁清变35kV2号主变运行,35kV2号主变10kV侧1002断路器连接在10kV宁清水电站10kV母线上,10kV清牧线、10kV清团线、10kV清塔线在10kV宁清水电站10kV母线上运行,10kV清团线连接团结水电站,10kV宁清水电站1号、2号发电机组通过400V变10kV升压变压器连接于10kV宁清水电站10kV母线上,厂用电和35kV宁清变站用电源连接在宁清水电站升压变压器400V侧。2 设备基本概况

35kV宁清变电站于1982年投入运行。35kV2号主变3502断路器保护装置型号为华电生产的WKT-F2型线路微机保护装置,投运日期为2003年12月。2009年2月9日配电工区曾与生技部协调,35kV 2号主变后备保护更改为3502断路器保护装置,CT变比为75/5,1002断路器无保护运行。3 发现故障及原因分析

2009年9月19日接到局生技部通知,9月19日12:41分35kV宁清变35kV 2号主变3502断路器跳闸。配电工区保护班于9月19日17:402012年新疆电力行业专业技术监督工作会议论文

到达35kV宁清变电站进行停电检查。

3.2 初步检查情况 1、35kV宁清变电站于1982年投入运行。35kV 2号主变3502断路器保护装置,型号为华电生产的WKT-F2型线路微机保护装置,投运日期为2003年12月。保护装置动作信号灯点亮,且装置报文如下:

装置时间 10:27:40.641 10:28:56.521 11:38:12.269 11:40:45.337

装置报文 过流跳闸 开关分闸 过流跳闸 开关分闸

(保护装置动作时间确认:根据9月19日保护班工作人员在35kV宁清变所做试验时记录的报文时间和实际时间(保护报文时间为05:15,实际时间为13:19)推测,报文时间滞后实际时间9小时)。

其他保护装置并无任何报文,初步判断为3502断路器后备保护装置动作跳闸。

2、根据运行值班人员所述,35kV 2号主变跳闸,汇报调度后重新试投依然不成功,将2号主变及10kV线路转换为冷备状态。

3、此次事故为35kV2号主变跳闸,办理事故抢修单后保护班对2号主变低压侧、高压侧二次回路及高压侧保护装置进行初步检查,试验班对一次设备进行了直阻、及绝缘测试,检修班对二侧断路器机构进行了检查。

4、检查继电保护调试记录,2月9日配电工区曾与生技部协调,35kV 2号主变后备保护更改为3502断路器保护装置,CT变比为75/5,1002断路器无保护运行,主变本体铭牌为高压侧最大短路电流为30A,低压侧为109.9A,35kV2号主变后备保护装置定值为:速断:32A,时间0S;过流:3.3A,时间0.3S,判断2号主变高压侧断路器跳闸,低压侧不跳为正确动2012年新疆电力行业专业技术监督工作会议论文

作。5、10kV清塔线CT变比50/5,定值为54A;10kV清团线CT变比200/5,定值为140A; 10kV清牧线CT变比200/5,定值为170A。

6、用钳型电流表测量3502断路器保护装置电流,A相为0.02A,C相为0.03A,B相电流回路在断路器机构箱处被短接;初步检查电流回路二次接线正确。7、3502断路器机构箱密封严实,跳合闸回路二次电位正确,外观检查良好。8、3502断路器保护装置过流脱扣保护于2008年9月进行过定检,向运行人员协调要对断路器进行传动试验,运行人员汇报调度不同意因此并未对断路器进行传动试验。

9、对35kV2号主变3502断路器保护装置进行校验,从端子排处A421通入1A电流,保护装置显示A相保护电流为1A,测量电流显示为15A;从端子排处C421通入1A电流,保护装置显示C相二次电流为1A,测量电流显示为15A;验证了保护装置采样正确。

10、按35kV 2号主变保护定值单:(昌电继字第2-2006471号)进行保护装置定值核对并验证装置试验:

速断:Idz=32A/0S 由于试验仪器通入电流较大,因此将速断值更改为11A后装置实际动作值为11.2 A/0S 过流:Idz=3.3A/0S

装置实际动作值为3.5A 重合闸退出

CT变比75/5 2012年新疆电力行业专业技术监督工作会议论文

11、因35kV 2号主变施工图纸并未移交于配电工区,因此保护班人员在对保护装置二次回路检查时只能与保护装置背板进行核对检查,经检查判断二次回路正确无误。

12、对保护装置进行定值试验、二次回路、及一次设备检查无误后由运行人员向调度汇报要求再次送电,在送电过程中,根据调度要求将2号主变低压侧10021隔离开关断开对2号主变送电,9月19日12:35分2号主变送电正常,后调度要求将1002断路器拉开,合上10021隔离开关,最后合上1002断路器,12:57分送电正常。

13、运行人员汇报调度后要求将10kV1号升压变并网,在运行人员对10kV1号升压变送电至高压侧时,35kV 2号主变再次跳闸,保护班人员在检查保护装置报文时发现2号主变后备保护装置不能显示,复位装置后现象依然存在,将保护装置电源拉开后给上正常。

14、初步判断为1号升压变故障,在重新办理事故抢修单并做好安全措施后由试验班对1号升压变本体及电缆进行绝缘测试,检查均正常。

15、与生技部协调后并告知调度要求运行人员不投入10kV1号升压变,运行人员根据调度命令再次投入35kV 2号主变后正常。16、2009年9月20日35kV宁清变电站35kV 2#主变再次跳闸,其原因为:1)13:45分宁清变电站站内切割机电源为低压厂用电源(直接从所变低压侧接取,未经过空开),切割机电源有短路情况,值班员在查找故障时因拉开低压厂用屏、断开3502断路器二次保护电源时造成3502跳闸;2)14:14分,第一次对35kV 2号主变试送:宁清变电站2#主变3502断路器在合位,值班人员在合第二条10kV清牧线时(第一条出线10kV清塔线已2012年新疆电力行业专业技术监督工作会议论文

合好),使35kV 2号主变3502断路器再次跳闸;3)15:15分,第二次试送:宁清变电站35kV 2号主变3502断路器在合位时,合1002断路器正常后,合10kV电压互感器时,35kV 2号主变3502断路器又一次跳闸。

17、配电工区于18:58分到达35kV宁清变电站,由于35kV2号主变已投入运行,协调调度与生技部不能将2号主变退出。询问运行人员告知为:2号主变主保护中保护动作灯点亮,保护报文为重瓦斯动作,运行人员根据调度命令断开主保护装置电源,退出35kV2号主变保护分闸压板。

18、保护班人员检查报文时发现3502断路器保护装置测量电流A相为40.6A,C相没有电流,确认装置采样不正确。

19、配电工区对1号升压变及10kV电压互感器进行绝缘、直阻、耐压测试,试验数据正常,于2009年9月21日凌晨12:47分结束工作。

20、接配电工区领导电话于2009年9月21日早晨11:08分再次到达35kV宁清变电站对变电站内二次回路进行检查。

21、检查35kV 2号主变3502断路器机构箱、主变本体端子箱、1002断路器端子箱、保护屏二次回路、压板二次接线,回路正确。

22、对站内直流系统进行检查时发现:蓄电池型号为NP65-12 12V

65Ah 蓄电池屏有17节电池,电池有鼓肚及漏液现象,测量控制电源:271V,合闸电源:302V,正对地:+166V,负对地:-134V,测量单节电池电压:

(1)13.6V

2)13.7V

3)13.6V

4)13.7V

5)13.7V

6)13.6V

7)13.68V

8)80.0V

9)12.3V

10)13.6V

11)13.6V

12)13.7V

13)13.7V

14)13.6V 15)13.6V

16)13.5V

17)13.6V 2012年新疆电力行业专业技术监督工作会议论文

第八节电池已坏,由此也可判断蓄电池电压过高,造成控制电源过高,在装置上对断路器进行操作时控制电源对装置冲击,长期运行使得保护装置运行不稳定,造成保护装置采样不准确,保护装置有误动的可能性。

23、与生技部协调后,退出35kV2号主变保护压板(软压板、硬压板)运行,再将10kV1号升压变并网运行。

24、在将1号升压变投入运行前操作厂用变低压侧励磁开关时,发现3502断路器保护装置报文显示为“开关分闸”,保护装置未发保护出口信号。

3.2 缺陷及处理

(1)根据保护装置的报文判断,9月19日3502断路器跳闸是因为故障造成的;保护装置正确动作。

(2)由于该变电站直流系统与保护装置长时间无人维护,蓄电池投运至今从未进行过蓄电池电压测试,造成直流系统的崩溃。电池电压过高(控制274V)造成保护装置采样不准确,CPU板损坏,值班员在倒闸操作时系统有一点波动就造成保护装置出口。

(3)35kV宁清变10kV三条线路保护均为过流脱扣保护,而主变3502断路器有保护装置,动作灵敏度远远大于过流脱扣保护的动作灵敏度。9月19日保护装置过流动作值3.3A换算为一次值是49.5A(CT变比75/5),已经远大于10kV线路保护的定值。判断为10kV线路故障越级造成3502断路器保护装置动作跳开了3502断路器,过流脱扣时间和动作值无法准确验证。

(4)而运行人员在操作10kV1#升压变时1001断路器没有跳开原因是2009年3月份将原1001断路器被换下,而现在的1001断路器保护是否为过2012年新疆电力行业专业技术监督工作会议论文

流脱扣,而实际变比是多少并不知道,而此次并没有先动作,可判断此断路器定值、时间均大于线路及3502断路器保护装置定值。

(5)35kV 3502断路器保护装置为线路保护装置且严重老化不满足主变保护装置要求,对3条10kV线路保护均为过流脱扣,无法与3502断路器进行时限配合。

(6)系统电池损坏造成电压长期运行过高,保护装置运行不可靠,有误动的可能性。

(7)站和升压站一次系统接线不规范,容易造成低压简单故障越级,扩大事故范围。4 防范措施

(1)对该站直流系统与3502断路器保护装置进行更换。

(2)对保护装置二次线进行整理,并进行标记,严防产生寄生回路。(3)配合10月11号停电对3502断路器进行传动试验并进行小修。(4)对1002断路器加装保护装置,以实现和10kV三条线路的保护配合。

(5)尽快协调进一步完善对35kV宁清变电站和35kV宁清发电站的运维职责划分。

(6)对值班员进行保护装置的基础培训;加大水电管理和设备巡视、维护力度。

(7)通过技改、大修项目上报,全面整治35kV宁清变一次、二次设备,提高运行可靠性。5 结束语 2012年新疆电力行业专业技术监督工作会议论文

在电网安全运行中,保护装置的性能与运行维护起着决定性的作用,因此工作人员务必要时刻关注保护装置的运行性能并加强运行维护,使保护装置的运行性能提到到最大限度,使电网运行在让社会最放心的状态下。

第三篇:软弱膨胀土的地基处理与实例分析

软弱膨胀土的地基处理与实例分析

摘要:软弱膨胀土地基是一种比较特殊的地基。当利用这种土作为建筑物地基时,必须采取必要的处理措施,以消除土的膨胀潜势。处理措施一般分深层和浅层处理,本文通过工程实例,分析了不同建(构)筑物在相同的地质条件下的几种处理方法。

关键词:膨胀土地基处理灌注桩砂石垫层砂包基础1概述膨胀土系指粘粒成分主要由强亲水性矿物组成,具有吸水膨胀和失水收缩特性的粘性土。由于膨胀性土会因为土中含水量的变化而发生相应的膨胀或收缩变形,特别是在场地膨胀性土层厚度不一,均匀性不

一、不同部位处含水量的变化以及建筑物基底压力不等等原因时,就会导致地基土不均匀的隆起或下陷,使得建筑物产生墙体开裂、地面隆起或下陷等破坏。因此,必须对膨胀性土场地进行处理,以满足自由膨胀率δef均小于0.4的要求。2软弱膨胀土地基处理的一般原则膨胀土地基的处理应根据当地的气候条件、地基的胀缩等级、场地的工程地质及水文地质情况和建筑物结构类型等。结合建筑经验和施工条件,因地制宜采取治理措施。如果能够采用换填非膨胀土或采取化学等方法,从根本上改变地基土的性质,则是根治的最好方法。如果用桩基或深埋的

办法,使基础落到含水量较稳定的土层,就能大大减少建筑物的危害;对于上部荷重较轻的小型建(构)筑物,亦可浅埋基础但必须避免扰动下部膨胀土。由此可知,软弱膨胀土地基的处理应根据场地土胀缩性能、水文地质条件,考虑具体建筑物适应变形的能力,采取相应的处理措施。同时加强结构的整体变形能力,切断基底下外界渗水条件,以保证地基的稳定性。3工程实例3.1工程概况云南个旧电解铝厂位于云南省个旧市大屯镇,地面绝对标高为1293.6~1297.57m,地形平坦。在地貌上场地属于盆地边缘平坦地貌。据地质勘察资料,本场地为膨胀性填土场地。各地层由上而下为:①1层填土(Qm1):褐红色,稍湿,稍密~中密,主要由灰岩碎石、角砾及粘土等组成,层厚0.5~1米。①2层耕植土(Qm1):褐红色,稍湿~湿,松散,含植物根系。层厚0.4~0.5米。②1层粘土(Qa1+p1):褐红色,可塑状态,局部硬塑或软塑,局部含砂岩圆砾,局部夹薄层圆砾、砾砂,成分主要为砂岩。层厚0.5~2.10米。②2层卵石(Qa1+p1):褐红色、褐灰色,稍湿~湿,稍密,砂及粘土充填。层厚1.20~1.30米。③1层粘土(Qp1+1):黑灰色、灰色、灰黄色,可塑状态,局部软塑状态,局部含砂、砾石,次棱角状,顶部偶见动物残骸,夹细砂、中砂。层厚3.2~8.4米。③2层中砂(Qp1+1):灰色、浅灰色、灰黄色,很湿,松散~稍密,分选性较差,含卵石、圆砾,次棱角状,含量5~10%,含粘粒。④1层粘土(Qa1+p1):

黄绿色、浅黄色,可塑~硬塑状态,局部含少量碎石、角砾。层厚0.6~4.80米。④2层中砂(Qa1+p1):浅灰色、灰色、黄绿色,湿,稍密~中密,分选性一般,含圆砾、卵石,含量3~10%,含粘粒。层厚0.6~2.9米。④层粘土(Qa1+p1):浅黄色、褐黄色、黄绿色,硬塑状态,局部可塑或硬塑状态,含碎石、圆砾,含量约5%左右,局部夹粉质粘土。钻孔未揭穿,层顶埋深6.00~13.40米。本场地地下水稳定埋深0~1.3米。上述各土层的物理力学指标见表1,各土层的容许承载力见表2。表1各主要土层主要物理力学指标表土层编号土层名称天然含水量(%)重力密度rKN/m3含水比aW孔隙比e液性指数IL压缩系数a1-2MPa-1压缩模量Es1-2MPa粘聚力CkkPa内磨擦角Φk度②1粘土34190.760.960.40.44.9459.5③1粘土3318.80.660.910.30.454.7359.2③2中砂20.8④1粘土2520.50.490.670.050.29.08014④

2细

土2320.40.550.660.060.29.07513.5表2各层土的承载力标准值土层编号土层名称土的状态地基承载力标准值(KPa)①1填土稍密70①2耕植土松散②1粘土可塑135②2卵石稍密180③1粘土可塑140③2中砂松散~稍密150③3砾石中密~密实250④1粘土可塑~硬塑240④2细砂稍密~中密135④粘土硬塑2403.2地基处理方案的选择因全厂新建建筑物较多,结构型式多样,对不均匀胀缩变形的适应能力和使用要求均不同。因此慎重研究比较,合理选择运用地基处理方案,对于保证

建筑物安全可靠,节省投资,加快工程进度都具有十分具有重要的意义。3.2.1电解车间3.2.1.1概况电解车间全长313.0米,柱距6.2米,跨度24.0米,钢筋混凝土排架结构,屋架下弦标高16.0米,轨顶标高9.15米,车间内设有标高为2.4米钢筋混凝土操作平台,操作荷载50KN/m2,两台电解铝多功能起重机及一台20t普通天车,多功能起重机最大轮压Pmax为410KN。3.2.1.2地基处理方案的选择根据本工程框架内力分析结果,各柱脚内力为N=3940kN,M=2200KN.m,V=141KN。基础方案选择如下:方案一:砂石垫层法。能够充分利用天然地基强度,减少基底附加应力和调整基础变形沉降,较深层处理经济,且施工机具简单,材料来源广,通常是一种优先考虑的地基处理方案。由于本场地地下水位高,且与电解区域内净化系统除尘烟道较近,烟道开挖较深,如采用本处理方法使得基槽开挖较宽较深,不利于机械碾压,如果采用人工分层夯实,质量不易保证,往往压实系数达不到设计要求,施工工期较长,由于该地区雨量丰富,工期拖延会给工程地基处理及基础的施工质量造成不利影响,且砂石用量较大。方案二:沉管灌注桩。该桩单价低,施工快。但根据地质勘探报告,沉管灌注桩端阻力小,所需桩数多,因而对上部土层的破坏较为严重,且该桩的成桩质量人为因素很大,容易产生质量缺陷桩。方案三:人工挖孔护壁灌注桩。该处理方案施工简单,机具设备少,进度快,成本低,也能有效地克服膨胀土对建筑物的危害。根据地质勘探报告,人工挖孔护壁灌注桩桩端阻力大,通过扩底等技术处理,可节约桩数量,根据当地人力情况,可大面积开挖施工,以加快施工进度。经过技术及经济分析比较,本工程采用人工挖孔护壁灌注桩。由于桩的长度主要取决于地层的结构和上部结构传下来的荷载,加上机械器具的因素,本工程采用Φ800人工挖孔护壁灌注桩,扩底直径为1.7m。3.2.1.3试桩及分析为了验证人工挖孔扩底桩在本工程的适宜程度,在本场地做了两组挖孔桩的试桩。分析以上两组P—S曲线可得出单桩极限承载力可取为3200kN,满足设计要求。由此可见,采用人工挖孔扩底桩对本工程是适宜的。3.2.250米砖烟囱3.2.2.1地基处理方案的选择根据当地处理膨胀土的经验,工程采用桩基较为稳妥。但根据现场具体情况,该烟囱位于电解区域内,周边建(构)筑物已基本完工,如采用桩基,施工周期要加长,且工程造价也要提高。如果将基础深埋,即把基础直接座在第④层土上。这种方法虽然施工简单,但基础高度需加高3米,不仅增加了基础的造价,且对周边建(构)筑物也有一定影响,同时,对下部膨胀土层扰动过大。经过分析比较,决定采用换填级配良好的砂石垫层。3.2.2.2砂石垫层的设计参数3.2.2.2.1配合比设计根据当地以往砂石垫层级配的配比经验,决定选用表3所示的重量比砂石级配,并进行了室内压缩试验。试验表明,该级配 的砂石,室内压实下取得了较好的密实度。表3颗粒组成(%)干重度γd(kN/m3)压缩系数a1-2(kPa-1)压缩模量Es(1-2)(kPa)粒径(mm)50~2020~5砂松散状态45.030.025.019压

态42.132.025.926.34×10-533.4×1043.2.2.2.2垫层厚度的确定根据《建筑地基基础设计规范》(GBJ7-89)及《建筑地基处理技术规范》(JGJ79-91)的规定,经计算本工程垫层厚度取1.2m,宽度宽出基础边缘1.0米。3.2.2.3砂石垫层的施工在砂石垫层施工前,作为持力层的膨胀土层应避免人为扰动。级配填料在掺加总重4.5%的水后,以搅拌机搅拌均匀,并以0.3~0.5米的厚度分层铺垫。然后采用120kN的振动碾压机振碾,碾压时采取分条叠合搭接,每次重叠1/2的碾轮,纵横交错,重叠振压各四遍。垫层碾压结束后,对垫层进行了现场检验,经测定,砂石垫层的压实系数λc>0.95.满足规范要求,可以做为本构筑物的地基。3.2.3单层附属建筑对于场地内单层附属建筑,由于其上部结构荷载较小,设计采用了砂包基础的处理形式。由于砂包基础能释放地裂应力,在膨胀土发育地区,中等胀缩性土地基,采用砂包基础、地基梁、梁下油毡滑动层以及加宽散水坡四者相结合的处理措施,能够取得良好效果。砂采用中砂或当地自然级配土加石,基础下处理厚度不小于300mm,每边宽出基础宽度不小于250mm。通过对已建成建筑物的沉降观测,平均沉降

量为50~70mm,相对倾斜仅为0.01%~0.32%,完全满足功能使用要求。4结论基础的型式很多,设计中应根据上部结构特性、工程地质、施工条件、环境条件、施工工期、经济条件和材料市场价格等方面的因素进行综合评价,选择既适应上部结构使用要求,又经济可行的地基处理方案。地基处理的方法很多,但不管采用何种方法,处理后的建筑场地必须满足强度、变形、动力稳定、透水性及特殊土地基稳定性的要求。

第四篇:基桩低应变检测的实例分析与处理方法

基桩低应变检测实例分析与处理方法

基础工程是建筑工程的重要组成部分,地基基础工程的质量直接关系到整个建筑物的结构安全。桩基础是主要的基础形式之一,由于桩的施工具有高度的隐蔽性,因此桩基工程的设计、施工、质量检测等方面往往比上部建筑结构更为复杂,更容易存在质量隐患。桩基工程的质量问题将直接危及主体结构的正常使用与安全。

桩基质量检测技术,特别是桩基动力试验,涉及到岩土力学、振动学、桩基施工技术和计算机技术等诸多学科知识,它既不同于常规的建筑材料试验,又不同于普通的建筑结构测试。因此,作为一名检测人员,应坚持不懈地学习专业理论知识,不断地积累实际工作经验,努力地提高桩基检测的技术水平,进一步完善基桩质量检测技术。

桩基在施工过程中如果控制不当,就会造成质量事故。特别是钻(冲)孔灌注桩,往往在浇注混凝土时出现质量问题。下面,本人就近几年在基桩低应变检测中测得的几例比较典型的钻(冲)孔灌注桩工程实例进行分析,供同行参考。

图1:中国南洋汽摩集团有限公司综合宿舍楼工程,该桩桩径500mm,有效桩长40m,混凝土强度C20,简易钻孔桩。该桩在2.2m附近有同向反射,并伴有多次反射,断桩,判为Ⅳ类桩。处理方法:开挖处理,开挖至2.2m左右,发现钢筋笼内空心,下去1m左右出现平整的水泥土,继续开挖至5m左右(采用人工挖孔桩的方法),出现密实的混凝土,修整后再测,桩身完整。原因分析:在浇灌至距桩顶标高5m左右,导管拔空,混凝土无法从导管中下去,拔出导管后直接把混凝土从孔口倒下,于是孔中的泥浆和砂浆的混合物就被倒下的混凝土压缩在2.2m至5m左右的钢筋笼中,水份被吸收后就形成前面的状态。经与浇灌工人核对后,情况完全符合。

图2:瑞安红旭车辆贸易公司综合楼工程,该桩桩径500mm,有效桩长45m,混凝土强度C20,简易钻孔桩。该桩在5.1m附近有同向反射,并伴有多次反射,断桩,判为Ⅳ类桩。原因分析:在该桩所在的轴线上有5根桩出现类似的情况,该轴线靠近河边,在河床底下有一层流动性淤泥,而简易钻孔桩护壁较差,所以在5m多的地方出现严重的夹泥,形成断桩。处理方法:由于问题桩较多,又靠近河边,开挖有一定的难度,所以采用机械钻孔桩补桩,成孔时增大泥浆比重,加强桩孔护壁,混凝土强度改为C30。

图3:瑞安市仙桥包装实业公司综合楼工程,该桩径600mm,有效桩长50m,混凝土强度C25,简易钻孔桩。该桩在8m附近有同向反射,并伴有多次反射,断桩,判为Ⅳ类桩。原因分析:简易钻孔桩护壁较差,在混凝土浇注至距桩顶标高8m左右时出现坍孔,使该桩在8m左右形成严重夹泥,相当于断桩。处理方法:由于桩在6m至8m附近存在流动性较大的淤泥层,开挖有一定的难度,而该桩处在四桩承台中,旁边是三桩承台,设计人员经过计算,把两个承台合并成一个大承台,并增加配筋量。

图4:瑞安市隆山小学综合楼工程,该桩径600mm,有效桩长56m,混凝土强度C30,钻孔灌注桩。该桩在14m附近有明显的同向反射,桩底信号不明显,说明该桩在14m附近严重离析或夹泥,判为Ⅲ类桩。原因分析:该工程靠近温瑞塘河,地下水较丰富,该桩在成桩与浇注混凝土时都没出现异常情况,在浇注完成后可能受地下水的影响而在14m附近造成严重离析。处理方法:该桩在动测前就被确定为静压桩,动测后我方建议另选一根桩做静载荷试验。桩基施工方对此结论有异议,坚持用问题桩做静载荷试验,结果在加载到第4级时桩身突然沉陷,试验终止。桩头清理后再用低应变测试,14m附近已经断裂。由于此桩缺陷位置较深,地质条件又 不允许用人工挖孔桩,最后采用冲击成孔灌注桩进行补桩。

图5:瑞安市岭下村返回地A地块1#楼工程,该桩径700mm,有效桩长16.3m,混凝土强度C30,冲击成孔灌注桩。该桩在8.1m附近有明显的同向反射,桩底反射信号也是同向反射。此桩为嵌岩桩,正常桩桩底应有反向反射信号。实测图形说明该桩在8.1m附近已经断裂,桩底信号为二次反射信号,缺陷处已成为实际的桩底,判为Ⅳ类桩。原因分析:该桩在浇注混凝土时埋管太浅,在浇注至缺陷位置附近时拔了空管,导管底部拔离混凝土端面,插在浮浆中(砂浆与泥浆混合物),接着倒入的混凝土就倒在浮浆中,于是在此处夹了一层浮浆,混凝土凝固后就出现一个断面。

处理方法:该处地质条件较好,桩顶至距桩顶9m处都为粘土层,采用Φ800的孔径进行人工挖孔,当开挖至距桩顶8.1m附近时,出现一个较为平整的砂浆断面,再挖0.6m左右,出现较好的混凝土,磨平桩面,重新动测,下部桩身基本完整,7.6m附近有桩底信号(反向)。清理好桩头,接上钢筋笼,用C35商品混凝土浇注。

图6:瑞安市元隆山庄7#楼工程,该桩径800mm,有效桩长29.5m,混凝土强度C25,冲击成孔灌注桩。该桩在7.3m附近有明显的同向反射, 并伴有多次反射,桩底无反射信号。此桩为嵌岩桩,正常桩桩底应有反向反射信号。实测图形说明该桩在7.3m附近严重离析或者已经断裂,判为Ⅳ类桩。原因分析:该桩在混凝土浇灌至距地面13m多的位置时出现堵管(地面距桩顶标 高5m多),后来拔出导管重下,再次浇灌。由于处理堵管的时间过长,孔内混凝土表面沉淀的浮浆过厚,第二次浇灌混凝土前没有进行清孔,首灌混凝土不足以排开混凝土表面的浮浆,于是在此处就形成了夹层,类似断桩。处理方法:该桩处在地下室的中间部位,离边坡较远,地下土层含水量少,适合采用人工开挖。为了便于操作,采用Φ900的孔径来进行人工挖孔。当开挖至距桩顶7.3m附近时,桩身出现一层砂浆层,挖掉0.7m左右的松散层,磨平桩面,重新动测,下部桩身完整,21.5m附近有桩底反向反射信号。清理好桩头,接上钢筋笼,用C30的商品混凝土浇注。

图7:温州昊泰汽车零部件有限公司生产车间工程,该桩桩径600mm,有效桩长29.85m,混凝土强度C25,冲击成孔灌注桩。该桩在1.4m附近有明显的同向反射, 并伴有多次反射,桩底信号不明显。实测图形说明该桩在1.4m附近严重离析或严重裂缝,判为Ⅲ类桩。原因分析:该桩可能在距桩顶1.4m附近存在离析,挖土时被挖土机的抓斗碰了一下,于是在离析处出现严重裂缝。处理方法:开挖处理,由于缺陷桩周围土质较好,就先在桩周开挖一个Φ1500左右的孔,孔径随着深度增加而减小,挖到1.6m左右时停止挖土,清理桩周泥土,把1.3m~1.5m处的地方清洗干净,可见距桩顶1.4m处桩周约1/3的地方出现裂缝,破掉桩身混凝土,在1.4m处出现较为平整的断裂面,局部有夹砂。清理干净桩面,重新动测,下部桩身基本完整,桩底附近有反向反射信号。接桩用C30的混凝土浇注。

图8:瑞安市盛丰汽车配件厂2#生产车间工程,该桩径600mm,有效桩长24.7m,混凝土强度C30,冲击成孔灌注桩。该桩在9.3m附近有明显的同向反射,而且波幅较宽,桩底无反射信号。此桩为嵌岩桩,正常桩桩底应有反向反射信号。实测图形说明该桩在9.3m以下出现严重的离析或者松散层,判为Ⅳ类桩。原因分析:该桩在浇灌混凝土时,下面掉了几节导管,到混凝土浇注结束时才发现,施工单位抱着侥幸的心理隐瞒了情况,直到动测以后才说明实情。掉导管必定是在料斗和导管内加满混凝土往上拔管或者在抖浆(先提升料斗和导管,突然松掉卷扬机刹车,让料斗和导管自由落下,再拉紧刹车,让料斗和导管靠惯性抖动,使料斗和导管里面的料插入桩孔里的混凝土中)时,接头松开而掉落。在导管底部和混凝土端面就出现了一段泥浆层,接着落下的混凝土就和泥浆混合在一起,形成了一段松散或夹泥层。这是个单桩单柱的承台,只能采取补桩或者人工开挖的方式来处理。该工程的土层条件还算不错,施工单位认为人工开挖可以减少费用,于是经设计方同意,采用Φ800的孔径来进行人工挖孔。当开挖至距桩顶8.5m附近时,混凝土中出现了导管,挖到9.3m左右时出现松散层(砂浆夹泥),割掉导管壁,发现导管里面是完整的混凝土,说明导管是带着混凝土一起掉落的。接着往下挖,一直挖到14.4m左右才出现密实的混凝土,把桩头修整后重新动测,下部桩身完整,有桩底反向反射波。清理好桩头,接上钢筋笼,用C35的商品混凝土浇注。(此桩开挖用了三十四天时间)。

通过上面这几例个案的分析和处理,我们可以看出,有好多问题都是人为的因素造成的,是可以避免的。虽然最后都解决了问题,可是都给施工方带来了一定的经济损失,延误了工期。而且采用人工挖孔桩法还具有一定的危险性,危险性随着深度的加深而增大。为了避免垃圾工程的产生,不能事事都靠亡羊补牢,加大检测力度固然重要,可更重要的还要从源头抓起,加强施工队伍的技术素质培训,规范监理人员的职责,避免工程事故的产生,特别是人为因素造成的事故,这才是保证建设工程质量的最佳方法。

第五篇:(张锦云)110kV下新线引流线断股分析与处理

110kV下新线引流线断股分析与处理

张锦云

吴增明

(大理供电局,云南 大理,671000)

110kV XiaXin line drainage line off shares analysis and processing

Zhang Jinyun Wu Zengming(DaLi Electric Power Supply Bureau, Yunnan dali, 671000)

摘要:早期设计和施工的部分110kV输电线路采用螺栓型耐张线夹,用并沟线夹连接引流线,螺栓松动导致并沟线夹与导线表面接触不良,在负荷增大时此处急剧增温,并产生恶行循环使线夹缺陷加重。110kV下新线在不到半年的时间里发生两起耐张杆塔引流断股的缺陷,本文通过现场的调查,分析影响引流线及并沟线夹、耐张线夹稳定运行的主要原因,并探讨解决上述问题的方法和措施。

Abstract:Early part of the design and construction of 110kV transmission line uses bolt type strain clamp, clamp connection and ditch drainage line, Bolts loose lead and groove clamp the wire surface to poor contact, the load increases, the sharp warming here, and a vicious cycle clamp defects increased.the 110kV Xiaxin line defects of less than half the time there were two tension towers drainage off shares, the paper through field investigation, analysis of the impact of drainage lines and groove clamp resistance, the main reason for stable operation of the clamp, and to explore the methods and measures to address these problems.关键词:引流线 并沟线夹 断股

Keywords:drainage lines

Parallel groove clamp

Wire strand loosening

一、引言

本文通过对螺栓型耐张引流发热原因及机理的分析,提出此类缺陷的近期和长期的处理措施,减少因发热造成线路故障。

二、缺陷发现、处理情况

110kV下新线为220kV下关变至110kV新七五变输电线路,起点为220kV下关变电站110kV出线构架,终点为110kV新七五变电站110kV构架;线路为单回架设,全长7.71km,该线路于2000年6月份投运。

2011年12月29日对110kV下新线常规巡视时发现110kV下新线#12杆A相耐张线夹处导线外层出现断股,A相导线从耐张线夹处滑出约80cm,引流与横担距离较近。

一、110kV下新线N12塔A相引流线熔断缺陷照片

2012年5月8日14时20分在对110kV下新线登杆检查时发现110kV下新线N22号塔A相引流线并沟线夹连接处导线有熔断现象,且铝线熔断截面达50%。

二、110kV下新线N22塔A相引流线熔断缺陷照片

(一)耐张杆塔导线引流发热的具体形式

输电线路耐张杆塔导线引流发热的部位通常有:连接引流的并沟线夹、采用螺栓连接的耐张线夹、耐张引流线本体发热。

输电线路大负荷运行只是加速了故障的发生,并不是引起发热的主要因素。发热部位的分析发

现,这一段引流的并沟线夹出现螺栓松动的缺陷。螺栓松动导致并沟线夹与导线表面接触不良,在负荷增大时此处急剧增温,并产生恶行循环使线夹缺陷加重。对其他发热器件的检查发现连接件不良连接是引起引流发热的主要原因。

造成引流连接件不良连接的原因主要有:导线及金具氧化严重、机械力的作用、施工工艺不严格、弹簧老化4种,其具体情况如下:

1.1线路运行时间过长,因受雨、雪、雾、有害气体及酸、碱、盐等腐蚀性尘埃的污染和侵蚀,造成连接金具连接处氧化等。

1.2 引流线本身不受张力作用,在风力或振动等机械力的作用下,以及线路周期性的加载及环境温度的周期性变化,使连接件连接松弛。

1.3 安装施工不严格,不符合工艺要求。如连接件的接触表面未除净氧化层及其它污垢,在检修、安装连接中未加弹簧垫圈,螺帽拧紧程度不够,连接件弯曲不等均会降低连接质量,连接件内导线不等径等造成接触面积减少。

1.4 长期运行引起的弹簧老化,也会使连接件连接松弛,造成发热。

直接原因:由于并沟线夹螺栓松动且导线存在泡股,导致放电发热,将导线熔断。间接原因:由于该线路运行年限长,连接金具存在腐蚀、生锈、有间隙。

(二)耐张杆塔引流线发热的主要机理

耐张杆塔引流线发热属于电流致热效应缺陷,当载流导体投入运行时,由于存在一定的电阻,必然有一部分电能损耗,从而使载流导体的温度升高。由此产生的发热功率为

PKfI2R

P为发热功率(w):I为通过的电流强度(A);R为载流导体的直流电阻(Ω);Kf为附加损耗系数,表明在交流电路中及趋肤效应和邻近效应时而使电阻增大的系数。

2.1接触电阻的大小及与之间的关系 接触电阻Rj的大小可用经验公式表示

Rj(K/Fn)103

F为接触压力(Kg);K为与接触材料和接触面形状有关的系数,取0.07-0.1之间;n为取决于接触形式的指数(在O.5-0.75之间)2.2接触电阻与温度之间的关系

2RjRj01at

3式中Rj0为在温度为O'C时的接触电阻值(Ω);a为的一相上,其它两相没有出现这样的情况,因此线接触金属的电阻温度系数(1/℃);t为工作温度(℃)。

流缺陷部位及对应温度。在交流电路中及趋肤效应和邻近效应时而使电于一般缺陷;并沟线夹发热部位的最高测试温度为阻增大的系数。

通过上述分析,输电线路中的各种连接件在理想情况下,接触电阻低于相连接导线部位的电

阻,连接部位的损耗发热不会高于相邻载流导体的发热。只有在接触电阻异常且电流通过时,才会产生发热缺陷,并且接触电阻随温度的变化而变化,当接触部分温度达到70℃以上时,金属氧化开始剧烈,氧化后生成物使接触电阻增加更为迅速,甚至引起恶性循环,接触部位会进一步过热,导致烧毁。降低引流连接器件的温度,就要减小发热功率。根据发热功率的公式,减小通过的电流强度和减小接触电阻都可以实现降低发热功率。发生引流故障的线路都是高负荷的线路,因此减小电流强度是不容易实现的。比较容易的方法就是减小引流的等效电阻,对通过故障引流线的电流进行分流。

(三)解决耐张引流发热的方法 3.1解决耐张引流发热的原理分析

根据耐张杆塔引流线发热的主要机理结合电路并联分流的原理,采取并联一条新的支路(导线分流器),新的支路与导线的接触电阻以及支路本身的电阻远远小于发热部位的接触电阻,使线路电流的大部分通过这条新的支路,以实现减少通过发热部位的电流,从而达到降低发热部位的温度。

目前已有成熟的导线分流器并可以通过带电进行安装,带电安装导线分流器能够快速的解决耐张引流发热的问题,但属于临时性的处理方法。

3.2两次缺陷的处理情况

因110kV下新线在2012年即将进行水泥杆换铁塔,同时更换耐张金具的技改工作,故对110kV下新线的两次紧急缺陷时未采用导线分流器。下面是二次故障的处理情况:

三、110kV下新线N12塔A相引流线熔断缺陷处理图

将N12塔A相一端(熔断)更换成液压型耐张线夹,中间仍采用并沟线夹连接引流。

下新线熔

四、110kV线N22塔A相引流断缺陷处理图

110kV下新线采用(切用并式处

N22塔A相引流线加一段引流线除熔断部分后)沟线夹连接的方理。

缺陷处理后,耐张线夹及引流连接部位进行测温,均未发现温度过高等现象。

3.3运行维护的思考

两次缺陷中分别是在技改前期测量、登杆检查过程中发现,而通过与常规巡视(3个月一次)巡视记录(包括照片)对比可知,常规巡视中对电气部分的巡视因距离远、缺乏检查工具和手段,很难发现细微的变化,当缺陷进一步发展,可通过外观检查发现时,往往已经形成重大或紧急缺陷。在对其他老旧线路进行登杆检查过程中也发现了日常巡视中未检查出的缺陷,对老旧线路进行登杆检查不失为一种有效地手段。其次,在对线路进行红外测温时,亦应将采用螺栓型耐张线夹的线路或杆段纳入重点维护范围。从长期来看,结合反措等相关要求,将螺栓型线夹进行改造(更换为液压型耐张线夹)是一项永久性的工作,清理所有线路中耐张线夹采用螺栓型的、引流线采用并沟线夹连接的线路,根据实际情况申报大修技改进行改造。

参考文献

『1』 董吉谔.电力金具手册.北京:中国电力出版社,2001. 『2』 赵志大.浙江大学,高电压技术,中国电力出版社.作者简介 张锦云(1985-),男,云南大理人,大学本科,毕业于重庆大学,现工作于大理供电局,助理工程师,从事输电线路运行维护工作。

联系方式:通信地址:云南电网公司大理供电局、邮编:671000、手机号码:***、电子邮件地址:zhangjy0707@sina.com.cn。

吴增明(1989-),男,云南大理人,大学本科,毕业于昆明理工大学,现工作于大理供电局,助理工程师,从事输电线路运行维护工作。

联系方式:通信地址:云南电网公司大理供电局、邮编:671000、手机号码:***、电子邮

运维班组多次对

件地址:2472173378@qq.com

下载张军变电站直流系统故障几起实例分析与处理word格式文档
下载张军变电站直流系统故障几起实例分析与处理.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐