第一篇:太阳能语音提示器在防火防汛中起重要作用
太阳能语音提示器在防火防汛中起重要作用
通讯员:艾茵徽
日期:2017年8月日
据北京市昌平区南口镇街道办居委会介绍,近期,街道通过财政拨款,采购了一批太阳能语音提示器,通过立杆安装在林区入口,地质灾害易发地带,对来往人员进行宣传教育,经过1年多以来的实践检验,宣传教育效果非常好,值得在全国范围内推广。
当你进入南口镇村上山路口时,人还在路口10米远处,你就能听见声音“你已经进入南口镇林区上山路口,请不要携带火种进山,禁止一切野外用火”。抬头一看,原来是一个立杆机器在说话。这个就是森林防火语音宣传杆,它是一款太阳能语音提示器。不用拉电线,依靠太阳能供电,适合安装在各个山头角落,来人就说话宣传教育,人走就不响,节省能源又环保。高科技的东西真好。
但你以为这个太阳能语音提示器只能作防火宣传就简单了,它可是多功能的。每当6-8月,进入汛期的时候,这个太阳能语音提示器它又可以说另外一种语音:你已经南口镇,防汛指挥部提醒你,汛期来临,为保障你的安全,请不要进入山区沟道,地质灾害易发区域游玩。
这样的功能是不是很强大,是不是很得人喜欢呢。
随着人工智能的发展,广州市嘉阳电子有限公司必然会提供更多先进的、高效的电子设备来服务社会、服务森林防火、服务三防办、服务每一个人。
第二篇:在选修4-5不等式选讲中起重要作用的数学思想的分析
在选修4-5不等式选讲中起重要作用的数学思想的分析
a)恒等关系是义务教育数学学习中的一种基本的关系。在义务教育的学习过程中,有哪些恒等关系是重要的?是需要学生掌握的?决定这些恒等关系的基本数学思想是什么?这些数学思想是怎么发挥作用的?
b)在义务教育阶段也引入了事物之间的不等关系,同时也引出了一些重要的不等关系,例如,实数中的不等关系。我们还引出了一些不等关系的性质,例如,a>b>0,b>c>0就可以得出,a>c。建议同学们梳理一下在义务教育阶段所学的不等关系,体会不等关系与恒等关系的区别。
c)在高中的必修5,我们设置了不等式的内容。它大体上由四部分内容组成。我们同学们梳理复习这四部分内容。
第一部分是,一些基本不等式的性质,例如,a>b,c>0得出,ac>bc等。第二部分是,在学会解一元一次不等式的基础上,引入了一元二次不等式。第三部分是,介绍了我们一个经常使用的不等式,这个重要的不等式有许多不同的呈现形式,值得一提的是,它还有很多重要的几何形式。
第四部分是,简单的线性规划问题。解决线性规划问题是按照以下基本步骤实现的:
1)确定目标函数
2)确定目标函数的约束条件,即讨论这个目标函数的可行区域。利用不等式刻画目标函数的约束条件。
3)观察目标函数在可行区域内的变化趋势。
4)确定使得目标函数达到最大或最小值的解。
同学们应该思考的是,在讨论这些不等式的过程中什么思想发挥了作用。
d)在我们上面分析的这些内容的学习中,我们可以体会到由运算思想所体现的恒等变换的能力。这种能力在研究不等式中发挥了重要的作用。建议同学们在教师的帮助下更好的发挥这种能力。
e)由运算思想所体现的恒等变换的能力,是一种重要的逻辑推理的能力。在本专题中,提高这种能力是本专题的基本定位。建议教师思考在本专题中,如何体现这样一个基本定位。
f)我们知道基本不等式,a2+b2≥2ab,它有着重要的几何背景。如图所示:
令AF=a,BF=b,则AB2=a2+b2,而S正方形ABCD≥4S⊿ABF
即,所以,a2+b2≥2ab,当AF=BF时,正方形EFGH缩为一点,S正方形ABCD=44S⊿ABF
实际上每一个好的不等式都有重要的数学背景,特别是重要的几何背景。
教师应思考这样的问题,如何引导学生体会和认识不等式的几何背景,以及这些几何背景在证明不等式的过程中发挥的几何意义?
g)本专题我们主要介绍以下内容
(1)不等式的基本性质和基本不等式;
(2)绝对值不等式及其几何意义,并能利用绝对值不等式的几何意义证明和求解一些绝对值不等式;
(3)认识柯西不等式的几种不同形式及其几何意义,用参数配方法讨论柯西不等式的一般情况;
(4)用向量递归方法讨论排序不等式;
(5)了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题;
(6)会用数学归纳法证明贝努利不等式;
(7)会用上述不等式证明一些简单问题。能够利用平均值不等式、柯西不等式求一些特定函数的极值;
(8)通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法。
教师应该思考,如何让学生构架起本专题的知识结构。
教师还应该思考,如何帮助学生总结、概括高中阶段有关不等关系的内容,并能写出一个好的读书报告与学生进行交流,总结在不等关系学习中的重要的数学思想。h)教师应了解学生学习不等式选讲的基础,并思考如何根据学生的起点设计本专题的教学方案。
作者:王尚志、张饴慈、马芳华