为什么锂电池用钴酸锂做正极材料,而不用磷酸铁锂或锰酸锂做正极材料

时间:2019-05-13 02:42:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《为什么锂电池用钴酸锂做正极材料,而不用磷酸铁锂或锰酸锂做正极材料》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《为什么锂电池用钴酸锂做正极材料,而不用磷酸铁锂或锰酸锂做正极材料》。

第一篇:为什么锂电池用钴酸锂做正极材料,而不用磷酸铁锂或锰酸锂做正极材料

为什么锂电池用钴酸锂做正极材料,而不用磷酸铁锂或锰酸锂做正极材料

最佳答案 : 首先,楼主必须明白锂离子电池都是由什么部分组成的!也就是说锂离子电池内部的主要部件都有什么?

锂离子电池的正极材料一般有如下几种:钴酸锂、锰酸锂、三原材料、磷酸铁锂。其中,前三者是已经量产多年的正极材料,而磷酸铁锂是新型的动力电池正极材料,还没有完全市场化。

因此,如果按正极材料来命名的话,锂离子电池可以分类为:钴酸锂锂离子电池、锰酸锂锂离子电池、三原材料锂离子电池、磷酸铁锂锂离子电池等等。

锂离子电池的负极材料一般都是石墨,因此,极少有按负极材料来为锂离子电池分类的。但是如果负极材料不是石墨,那么就可以叫出具体的负极材料名称,比如:钛酸锂负极锂离子电池。

说到这里我必须明确一下,单从以上两种命名方式是无法完全知道锂离子电池的所有情况的。比如即使说了我叫王建彬,那么全中国叫这个名字的还有成百上千个呢,三个字怎么可能代表我的一切信息呢?

最后说你问到的“锂离子电池”和“锂聚合物电池”是什么意思。

首先你要知道,除了正负极材料之外,锂离子电池第三重要的就是电解液了。而你所说的两种命名方式,正是从电解液方面命名的。

现今我国的锂电行业,同时也包括大多数市面上的国际品牌,所用的电解液都是含有锂离子的溶液,说白了是液体。对于这种用液体作为电解液的锂离子电池,由于它是现在的主流,因此不加任何前缀,直接叫做“锂离子电池”。

但是后来有人发现用有机聚合物做电解液(此时虽然还叫电解液,但是已经是固体电解液或者是胶体电解液了,不是液体了)时,可以得到更好的效果。因此就有少数国外先进企业开始适用聚合物做电解液的锂离子电池。为了与传统的用液体做电解液的锂离子电池区分开来,这种用固体或者胶体聚合物做电解液的电池就叫做“锂聚合物电池”了,当然也可以叫做“聚合物锂离子电池”。

你的问题我又仔细看了一遍,现在的命名的确很乱。“锂离子电池”可以说有两种解释,并且这两种解释都是对的,看你个人说话习惯了。

第一种就是全部的锂离子电池,不论电解液是液态溶液还是固态聚合物。如果按这个解释的话,那么“聚合物锂离子电池”就是“锂离子电池”。

第二种就是人们为了方便,把用液态溶液作为电解液的电池简称为了“锂离子电池”,那么此时的“锂聚合物电池”(也就是“聚合物锂离子电池”)就不再属于这时的“锂离子电池”了。这时的“锂离子电池”仅指电解液为液态溶液时候的电池。

还是我刚才说的意思,单单从一个名字上,是不可能完全知道这类电池的一切信息的。我命名一个表达信息全一点的电池:磷酸铁锂正极、钛酸锂负极18650S 2200mah锂离子动力电池。这个才算是一个电池比较全面的命名。其中说明了正极材料、负极材料、电池大小、容量、用途。

不知道你注意到没有,上面命名没有提到电解液是什么,原因就是它所用的电解液是现在主流的含锂离子的溶液,由于是主流,不是特例,因此在命名的时候就不用加电解液名称了。就好像说了我的名字“王建彬”之后,不用再在后面加一个“人”字一样,多次一举啊。

对于人类,我们可以从性别上分为男人和女人,也可以从职业上分为老师、学生、工人,更可以从年龄上分为孩子、成年人、老人。

同样,锂离子电池的命名也可以按正及材料分、按负极材料分、按电解液分、你说的情况就是很常见的按电解液分的。

为什么按电解液分很常见呢?因为现今的锂离子电池的正负极材料基本都是相似的,即使不同,性能差别也不大。因此,除非所用正负极材料特殊,也就没有必要按正负极材料来分类了。

我从事锂电工作,对这个方面也颇感兴趣。所以说了这么多,希望能对你有所帮助。咱家可是尽心尽力的帮助你啦!

第二篇:磷酸铁锂正极材料全球主要专利权人分析

磷酸铁锂正极材料全球主要专利权人分析

目前,越来越多的汽车厂商选择采用锂电池作为新能源汽车的动力电池,在动力锂电池中,正极材料是其最为关键的原材料,直接决定了电池的安全性能和电池能否大型化。目前动力锂电池普遍使用的正极材料有钴酸锂、锰酸锂、镍钴锰酸锂以及磷酸铁锂(LiFePO4),其中磷酸铁锂最被业界看好,一方面是因为铁原料的价格大大低于其他稀有金属;另一方面,磷酸铁锂电池寿命是普通锂电池寿命的4至5倍,还有高于其他类型锂电池8至10倍的高放电功率(可瞬间产生大电流),再加上同样能量密度下磷酸铁锂电池整体重量较其他类型锂电池要小,并且具有良好的安全性等性能,这些都使磷酸铁锂电池被视为最适合用于大扭力电动车辆的二次电池。

目前,磷酸铁锂材料已成为全球电池行业研发热点,各大公司、高校和科研院所均提交了大量有关磷酸铁锂材料的专利申请,而拥有大量磷酸铁锂基础专利的国外公司在中国、乃至全球都进行了周密的专利部署,这必将会对我国磷酸铁锂产业的发展产生影响。

笔者通过德温特世界专利创新索引(Derwent Innovation Index,简称DII)、中国专利检索系统(CPRS)、世界专利索引(WPI)、欧洲专利局专利文献(EPODOC)数据库,对磷酸铁锂领域相关专利申请及其申请人进行分析发现,该领域多数专利申请都集中在少数几个申请人手中(样本涉及在2010年7月15日之前上述数据库中收录的专利文献)。笔者对该领域7个主要专利申请人进行了重点分析,这7个申请人在磷酸铁锂领域拥有较强的科研实力,与此同时,他们也在很多国家提交了专利申请,抢占了全球大部分的磷酸铁锂技术市场。因此,他们的一举一动都影响着整个市场的局势,也决定着磷酸铁锂市场的未来发展动向。

美国德州大学

笔者经过检索发现,美国德州大学有关磷酸铁锂有3个专利族共22件专利申请,而且没有同时进入国家数目在5个以上(含5个)的专利族。此外,美国德州大学只在美国、日本、欧洲和加拿大提交了专利申请,因此,其目前还不会对中国国内产生影响。

图1 美国德州大学专利申请量国别/地区分布图

图1为美国德州大学在全球各个国家和地区的专利申请量及已授权的专利量统计图(该图以单篇专利申请为单位进行统计)。从图中可以看出,美国德州大学在美国的专利申请最多,有9件专利申请;其次是在日本和欧洲,分别为6件和5件;而在加拿大提交的专利申请量相对较少,仅有2件。其中,22件专利申请中已经有6件在上述国家获得了专利授权。

表1为美国德州大学专利申请涉及技术主题随年代的分布,从表1可以看出,从1997年至2007年,美国德州大学专利申请技术主题涉及了磷酸铁锂材料的铁位掺杂,只有在2007年的专利申请中才涉及到了碳包覆型的磷酸铁锂材料,以及通过微波烧结法制备磷酸铁锂材料的方法。由此可见,美国德州大学关于磷酸铁锂材料的专利保护点比较单一。

此外,美国德州大学有一个专利族的6件专利申请获得授权,该专利族的部分同族专利申请以及另2个专利族均在待审状态。美国德州大学被授权的专利族为WO9740541A1,这也是磷酸铁锂的基础专利之一,截至目前,该专利申请已经在加拿大、欧洲、日本、美国获得授权,该专利族主要要求保护一种化学物质,其中已授权的US5910382C1与US6514640C1要求保护的都是用通式表示的化合物产品,把Fe位掺杂和P位掺杂的多种可行性都包括在内,是磷酸铁锂领域最为基础的专利之一,从DII数据库中的记录可以看出,该专利族的被引用次数达到99次,远远超出磷酸铁锂领域其他专利族。上述2件专利的权利稳定性较强,在美国已经卷入多次专利纠纷。

美国威能科技有限公司

美国威能科技有限公司(下称威能科技公司)从1997年就开始在欧洲、日本和美国提交有关Fe位掺杂或取代磷酸铁锂活性材料的专利申请,截至目前,其在磷酸铁锂领域已申请了26个专利族,分散在各个国家共131件专利申请。

图2 美国威能科技有限公司专利申请量国别/地区分布图

图2是威能科技公司在全球各个国家和地区的专利申请量以及已获得授权的专利量(该图以单篇专利申请为单位进行统计)。从图中可以看出,该公司在美国的专利申请量最多,达到了39件,而且其在美国的授权率也相当高;其次是在欧洲,专利申请量达到了18件;在韩国、日本、中国以及加拿大的专利申请量均超过了10件。此外,威能科技公司在印度也提交了5件专利申请,可见其对亚洲市场全面兼顾。除了澳大利亚之外,该公司在多个国家均获得了专利授权。值得一提的是,威能科技公司在中国提交的有关磷酸铁锂的专利申请共有13件,其中有10件已获得授权。

笔者对威能科技公司专利申请进行技术主题分析发现,其一直很注重对磷酸铁锂产品在掺杂方面的研究,涉及该方向的专利申请族数远远超出其他技术点。此外,该公司对于合成方法也有深入研究,分别涉及到了高温固相法、碳热还原法、机械固相合成法、复合方法等技术主题。

此外,威能科技公司在磷酸铁锂类化合物的制备方法方面也拥有一大批数目可观的专利,其主要分布在美国、中国、欧洲、日本、韩国、加拿大等国家和地区,其主要关注点围绕业界通称的“碳热还原法”合成路线。通过对威能科技公司目前拥有的授权专利的独立权利要求保护范围进行分析发现,其在磷酸铁锂合成方法的研究主要集中在碳热还原法,少数涉及前驱体制备和水热合成法、机械固相法、高温固相法。

加拿大魁北克水电公司

加拿大魁北克水电公司(下称魁北克水电)是世界第三大水电供应公司,早在上世纪80年代,该公司就开始了针对锂电池的研发工作。2007年,魁北克水电成立了加拿大佛斯泰克公司(2007年后被德国南方化学公司收购),专业生产锂电池材料。在磷酸铁锂电池和材料领域,无法绕行的两大核心技术专利之一的包敷碳技术专利,就是魁北克水电和法国方面合作研究的成果,后将该专利转入Phostech名下。2009年6年,魁北克水电加入了福特PHEV(插入式混合动力车)研究计划。

图3 加拿大魁北克水电公司专利申请量国别/地区分布图

目前,魁北克水电关于磷酸铁锂已经有13个专利族共54件专利申请,该公司主要向美国、加拿大、中国以及欧洲等国家和地区提交了专利申请。图3为魁北克水电在全球各个国家和地区的专利申请量以及其中已授权的专利量统计图(该图以单篇专利申请为单位进行统计)。从图中可以看出,魁北克水电在加拿大本国的专利申请量最多,有15件专利申请;其次是在美国提交了6件专利申请,在欧洲提交了3件专利申请,在中国和韩国各提交了1件专利申请。

魁北克水电专利申请技术点涉及到产品和方法。记者研究发现,2005年以前,该公司专利申请重点在于磷酸铁锂材料掺杂改性;2005年以后,其专利申请量减少,而且重点除了包覆处理之外,还包括与具体磷酸铁锂材料本身性质无关的宏观应用层面,如使用磷酸铁锂电池的用电器等。

魁北克水电进入中国的专利申请共有3件,均涉及了磷酸铁锂的Fe位掺杂和P位掺杂,早期的2件专利申请涉及碳复合的磷酸铁锂材料的组成及其碳热还原制备方法;2007年提交的专利申请涉及了正极材料混合物的制备方法,从材料本身上升到了电极层面。

美国A123系统公司

美国A123系统公司(下称A123系统公司)于2001年在美国麻省理工学院成立,由于该公司与美国麻省理工学院素有渊源,合作密切,故笔者将A123系统公司与美国麻省理工学院2个申请人合并考虑,将美国麻省理工学院单独拥有的2个专利族也纳入A123系统公司旗下一并进行统计分析。

A123系统公司在磷酸铁锂领域目前已经有14个专利族共72件专利申请,这些专利申请主要进入了美国、欧洲、韩国、中国、日本等国家和地区。

图4 美国A123系统公司专利申请量国别/地区分布

图4为A123系统公司在全球各个国家和地区的专利申请量以及其中已授权的专利量统计图(该图以单篇专利申请为单位进行统计)。目前,该公司已经获得授权的专利申请情况为:中国2件,美国4件,印度1件。从图4可以看出,A123系统公司在美国本国的专利申请量最多,有15件专利申请;其次在欧洲和韩国各有10件专利申请;在中国和印度各有9件,在日本有8件。

在A123系统公司涉及磷酸铁锂的专利申请中,仅有美国麻省理工学院独立拥有的一个专利族涉及了包覆结构的磷酸铁锂材料的制备方法,其余的主要集中在磷酸铁锂的产品方面,如用特定参数限定的磷酸铁锂产品,通过掺杂、包覆等手段对磷酸铁锂的改进,以及与其他材料混合使用的磷酸铁锂等,另外该公司对磷酸铁锂电池的充放电检测控制方法以及磷酸铁锂电池的使用等方面的专利申请比其他公司要多。

笔者还发现,A123系统公司在中国有9件专利申请涉及磷酸铁锂,均是以《专利合作条约》(PCT)途径进入中国的,均涉及了磷酸铁锂的Fe位掺杂,有5件专利申请还涉及了Li位掺杂和P位掺杂。另外,A123系统公司的专利申请还涉及材料在应用于电池中时的参数,如充放电过程中相的变化、阻抗的变化、比表面积等。该类专利申请保护范围较广,但由于特定参数特征的存在,容易获得授权;而其他企业在实际生产过程中要规避该类专利难度较大。

此外,A123系统公司共有3个专利族获得授权,其中包括美国麻省理工学院独立拥有的一个专利族,共涉及7件专利申请,在美国、中国和印度已获得授权。

加拿大佛斯泰克公司/德国南方化学公司

加拿大佛斯泰克公司(下称Phostech公司)于2001年在加拿大魁北克省成立,是德国南方化学公司(下称南方化学公司)的全资子公司。Phostech公司拥有加拿大魁北克省水力公司和蒙特利尔大学关于磷酸铁锂材料在电池中的应用的专利的独家使用权。Phostech公司/南方化学公司(这里将Phostech公司与南方化学公司放在一起讨论)共有9个专利族共55件专利申请涉及磷酸铁锂。

图5 Phostech/南方化学公司专利申请量国别/地区分布

图5为Phostech公司/南方化学公司在全球各个国家和地区的专利申请量以及其中已授权的专利量统计图(该图以单篇专利申请为单位进行统计)。从图5可以看出,Phostech公司/南方化学公司在欧洲的专利申请量最多。

图6 Phostech/南方化学公司专利申请技术主题申请量分布图

如图6所示,Phostech公司/南方化学公司涉及磷酸铁锂的专利申请的技术点分布比较广泛。在2003年的专利申请中,Phostech公司/南方化学公司在磷酸铁锂材料的制备方法上涉及水热合成法和高温固相法,产品方面涉及铁位掺杂的磷酸铁锂材料和碳包覆型的磷酸铁锂材料;2005年的专利申请又进一步涉及了对用参数限定磷酸铁锂材料以及磷酸铁锂的制备方法液相共沉淀法的保护;2006年和2007年的专利申请又进一步增加了对磷位掺杂的磷酸铁锂材料的保护。

Phostech公司/南方化学公司在中国有8件专利申请涉及磷酸铁锂,其在磷酸铁锂材料的产品方面要求保护具有特定参数限定的磷酸铁锂材料(如限定了平均粒径,或者XRD的选择峰强度,或者平棱柱形状等)、碳包覆型的磷酸铁锂材料、Fe位掺杂的磷酸铁锂、P位掺杂的磷酸铁锂。而在制备方法方面,其要求保护水热合成法、高温固相法以及液相共沉淀法。可见Phostech公司/南方化学公司对磷酸铁锂材料的涉及面非常广泛,无论是针对产品还是方法,都进行了周密的专利布局。

日本电信电话株式会社

日本电信电话株式会社(下称NTT公司)是日本最大的电信服务公司,是目前日本通讯产业最重要的旗舰企业,该公司有4个专利族共4件专利申请涉及磷酸铁锂。

NTT公司的4件专利申请均是在日本提交的,其中2件专利申请已经在日本得到了授权,其专利公告号为JP4153288B2和JP3504195B2。由于NTT公司有关磷酸铁锂的专利仅在日本提交了申请,因此不会对中国国内,以及除日本之外的其他国家和地区产生影响。

NTT公司的专利申请技术主题仅涉及了磷酸铁锂材料的铁位掺杂和磷位掺杂。表2为NTT公司专利申请涉及的技术主题随年份的分布。从表2可以看出,1999年,NTT公司提交的2件专利申请均仅涉及到了铁位掺杂(1BB)的磷酸铁锂材料,而2002年的专利申请涉及到了磷位掺杂(1BC)的磷酸铁锂材料,2004年的专利申请仍然是关于铁位掺杂的磷酸铁锂材料。可见,NTT公司关于磷酸铁锂材料的保护点还比较单一。

台湾立凯电能科技有限公司

台湾立凯电能科技有限公司(下称立凯电能公司)成立于2005年,具有磷酸铁锂动力电池正极材料的制造能力,在磷酸铁锂领域目前已经有6个专利族共43件专利申请。

图7 台湾立凯电能科技有限公司专利申请技术主题申请量分布图

图7为立凯电能公司专利申请涉及的技术主题随年代的分布(该图以专利族为单位进行统计)。由图11可见,立凯电能公司专利申请技术点分布比较广泛,在2005年的专利申请中,立凯电能公司对磷酸铁锂材料的制备方法、碳热还原法和液相共沉淀法进行了保护;2006年,立凯电能公司的专利申请涉及到了特定参数限定的磷酸铁锂材料,以及碳包覆型的磷酸铁锂材料;在2007年的专利申请中涉及到了碳包覆型的磷酸铁锂材料以及与氧化物复合型的磷酸铁锂材料,在制备方法上则涉及喷雾干燥法与高温固相法的结合。

立凯电能公司专利申请的6个专利族中,同时进入5个以上(含5个)国家的专利族共有4个,进入的国家和地区主要包括美国、加拿大、欧洲、日本、韩国等。

分析立凯电能公司在国内的专利申请可以看出,其在磷酸铁锂材料的产品着眼点在于保护具有橄榄石结构或钠硅康(NASICON)结构,并且限定一次粒子和二次粒子的粒径;或者明确表示要求保护磷酸铁锂材料与过渡金属氧化物的复合型材料;在制备方法方面,则涉及到了喷雾干燥法以及高温固相法。

立凯电能公司授权专利的产品关注点在于活性物质的粒径和聚集状态,方法类则为碳热还原反应。

总结及建议

从技术角度来看,磷酸铁锂电池两个最为核心的技术即为铁位掺杂的磷酸铁锂材料和碳包覆的磷酸铁锂材料。铁位掺杂和碳包覆这两项技术极大地改进了磷酸铁锂的电导率,为磷酸铁锂材料的实际应用铺平了道路。而与此相关的最为核心的2个专利族均未进入中国,因此这2个专利族不会对中国国内相关产品的生产、销售产生影响。但是,这并不意味着中国国内技术市场没有被抢占。通过上述分析可以看出,对于磷酸铁锂电池领域2项核心技术,国外公司在中国早已提交了专利申请,专利权人为美国威能科技有限公司和加拿大魁北克水电公司。

现如今,有关磷酸铁锂电池的专利纠纷已经在几大巨头之间上演,一场持续的跨国磷酸铁锂电池专利纠纷将愈演愈烈。参与这几场纠纷的几个专利权人以及业内其他几家举足轻重的大公司手中握有大量磷酸铁锂的核心技术专利,基本上封锁了磷酸铁锂领域的主要发展方向;而且,他们仍然在继续着有关磷酸铁锂的专利布局,在美国、欧洲以及亚洲市场的商业推进步伐从未停止。短期来看,中国企业在中国国内研发、生产磷酸铁锂正极材料的风险不是很大,但未来必将面临严峻的专利考验。

第三篇:先进锂离子电池正极材料磷酸铁锂的研究进展

先进锂离子电池正极材料LiFePO4的研究进展

2010年01月26日 作者:陈东 关勇辉 陈苗 戴扬 刘辉 来源:《中国电源博览》第104期 编辑:李远芳

摘要:锂离子电池大型化应用的主要障碍包括成本、寿命和安全问题。磷酸亚铁锂正极材料是解决这些问题的关键材料之一,但该材料极低的本征电导率增加了其应用的困难。本文从颗粒纳米化、表面包覆碳,本体掺杂等方面综述了提高磷酸亚铁锂材料电子和离子导电能力的的改性研究及产业化进展。

关键词:锂离子电池;正极材料;磷酸亚铁锂

引言

锂离子电池是一种高效致密的储能器件。锂离子电池技术的发展趋势是追求更高的质量与体积比能量、更高的比功率、更长的循环与服役寿命、更低的使用成本,同时更加强调器件的环境适应性和安全性,其应用领域已从手机、笔记本拓展到电动工具、轻型电动车、混合电动车、电信备电、空间航天等领域。锂离子电池的安全问题一直是产业界和科研界关注的焦点。解决方法主要包括:设计安全的电芯物理结构、采用热稳定性更高的电极材料、采用有机或无机电解液添加剂、隔膜采用三层复合或有机/无机(陶瓷)复合结构、变革传统氧化还原反应电极材料为有机自由基反应材料等。

从安全问题发生的化学反应机理看,选择电化学和热稳定的锂离子电池电极材料是预防电芯滥用导致安全问题的最基础也是最重要的手段。高容量的正极材料LiNi0.5Mn0.5O2和以LiNi1/3Co1/3Mn1/3O2为基准的镍钴锰三元层状材料(3M专利)在安全性上较LiCoO2有了较大提高,但这些氧化物的热稳定性还不能令人满意。以LiFePO4为代表的聚阴离子结构磷酸盐材料由于其突出的内禀安全、超长循环寿命、宽电化学窗口、低成本等特点受到了广泛关注。磷酸盐材料还包括高电位的单电子氧化还原嵌入化合物如LiMnPO4LiCoPO4[11, 12]

[5-7]

[4]

[8-10]

[3]

[2]

[1]、LiVPO4F、、LiNiPO4[13][11]

和具有高电化学容量特点的多电子氧化还原嵌入化合物如

[14, 15]Li2NaV2(PO4)3和Li3V2(PO4)3。本文主要介绍最成熟的磷酸盐-磷酸亚铁锂材料的最新研究及产业化进展。磷酸亚铁锂的本征结构、物理特性与应用壁垒

LiFePO4是一种橄榄石结构的聚阴离子磷酸盐,P-O键非常强,材料热力学稳定,使用安全可靠,是当前最受关注的锂离子电池正极材料之一。该材料电化学完全脱嵌锂时,晶格a,b轴方向分别收缩5%和3.6%,c轴方向伸长2%,晶格体积畸变较小,约6.6%,晶格形变小,材料结构稳定,循环寿命极长。LiFePO4还具有无毒、对环境友好、原料丰富、比容量(理论容量为169 mAh/g)与库仑效率高、充放电平台平稳(3.45V vs.Li/Li)、比能量和

+

比功率高等优点,因此该材料非常适合于对安全性、循环寿命、功率特性、使用成本等极为敏感的大型电池应用领域。

LiFePO4 的充放电过程可大致表述为:LiFePO4?FePO4+Li+e。在室温下LiFePO4的脱嵌锂行为实际是一个形成FePO4和LiFePO4的两相界面的两相反应过程。NewmanDodd[18]

[4]

[16]

+、Yamada

[17]、等分别系统地研究了LixFePO4充放电过程中的相变过程(见图1)。

图1 磷酸亚铁锂充放电过程的相变

LixFePO4是一种典型的电子离子混合导体,禁带宽度为0.3 eV,室温电子电导率相当低,约10-9S/cm;LixFePO4室温离子导电率也相当低(~10-5S/cm),橄榄石的特征结构使得锂离子的体扩散通道少(仅能实现准一维扩散),在LixFePO4脱嵌锂的两相反应中,LiFePO4和FePO4中的理论锂离子扩散系数约为10cm/s和10 cm/s-162[20]

2-7

2[19],而实际测量发现锂离子在-1

42LiFePO4和FePO4中的“有效”扩散系数可能比理论值低7个数量级,分别为1.8×10 cm/s和2×10 cm/s。因此要使LiFePO4用作锂离子电池正极材料必须同时提高其电子电导和离子电导,改善其电化学界面特性。

磷酸盐亚铁锂材料改性方法

提高磷酸亚铁锂材料电导率的主要方法包括:颗粒纳米化;表面包覆导电层,如纳米碳层;对磷酸亚铁锂进行体掺杂;合成过程中在磷酸亚铁锂材料表面生成良好电子电导的Fe2P、Fe3P和Fe15P3C2相;改善磷酸亚铁锂材料的表面形貌,如Valence Technology公司提出采用CTR(Carbothermal Reduction)方法

[21]

将导电碳分散在磷酸盐颗粒间。颗粒纳米化是提高锂离子电池材料电导率最常用方法之一。通过降低磷酸亚铁锂的颗粒尺寸,缩短锂离子的有效扩散行程,能有效提高材料的离子电导率。颗粒纳米化会降低材料的电子电导率,因此材料合成时通常也引入金属离子掺杂和导电材料包覆,另一方面,碳包覆尤其是原位碳包覆又能有效调控磷酸亚铁锂材料的纳米颗粒尺度。在磷酸亚铁锂材料的实际合成时,经常是几种方法同时采用,几种机理作用共存。

掺杂改性是提升电学功能材料的电子和或离子电学输运特性、提高材料的结构稳定性的最常用手段。常用来对磷酸亚铁锂进行体相掺杂的金属离子包括Mg、Ni、Co、Al、Ti、Zr、Nb、W等4+5+6+[21-24]

2+

2+

2+

3+

4+

[22]。Chunsheng Wang等研究发现(见表1),掺Mg能显著提高磷酸盐亚铁锂的电子电导,并小幅提高离子电导,综合效果是电子电导和离子电导处于同一数量级;掺Ni后电子电导率的提高率更为显著,但离子导电率几乎不变;在25℃下,LiFe0.95Mg0.05PO4倍率特性明显优于LiFe0.95Ni0.05PO4。2002年MIT材料系Y.M.Chiang研究组报道的结果引人注目[24]

5+,该研究发现磷酸亚铁锂材料掺杂Nb等金属离子进入Li 4a位置后生成空穴载流

2-3-5子,材料的电导率提高到了3×10~4×10 S/cm,甚至超过氧化物正极材料LiCoO2(~10S/cm)和LiMn2O4(~10 S/cm)的电导率。

表1 LiFe0.95Mg0.05PO4、LiFe0.95Ni0.05PO4和LiFePO4电子和离子电导率

[24]

但是Y.M.Chiang的结论存在很大争议,主要是:掺杂能大幅提高材料的电子电导率,而实际上此时材料电导率的限制步骤可能是锂离子的扩散能力或离子电导率,纳米化降低锂离子的扩散难度可能才适合于解释文中现象;如此大幅度提高材料电子电导率的本因可能并不是掺杂形成“Li1-xNbxFePO4”,而是有其他导电能力更好的物质生成所致。Nazar等

[25]

认为,磷酸亚铁锂材料体电导率的显著提高并不是由掺杂引起,而是因为合成过程中特别是高温下容易在磷酸盐表面生成如Fe2P等纳米金属磷化物导电网络所致,导电网络提高磷酸盐晶界电导。Prosini等[26]

发现未掺杂的纳米或亚微米级(100~150nm)磷酸亚铁锂材料在3C

[27]以下倍率放电时同样具有良好的倍率特性。Masquelie等发现即使不掺杂、不包覆碳,粒

[28]径在140 nm左右的磷酸亚铁锂在5C放电倍率下具有147mAh/g的高比容量;他们还认为

根本无法将Nb掺杂进入磷酸亚铁锂生成所谓的“Li1-xNbxFePO4”,提高磷酸亚铁锂材料电子电导率、改善其电化学性能的主因在于NbOPO4和/或(Nb, Fe, C, O, P)导电网络的生成。实际上,早在2001年,Yamada等

[29]

就已经提出降低材料的粒度是克服磷酸亚铁锂中锂离子扩散受限问题的有效方法。Y.M.Chiang等在近年也开始集中于磷酸亚铁锂的纳米颗粒效应的研究(美国应用专利:US2007/0031732A1 和US2007/0190418A1)。

碳包覆也是提高磷酸亚铁锂材料性能的最常用改性手段,碳包覆不仅可以提高磷酸亚铁锂材料的电子电导率,还可以有效控制磷酸亚铁锂粒子的晶粒长大,是获取纳米颗粒、提高锂离子扩散能力的有效手段。加拿大蒙特利尔大学、Hydro-Quebec研究院、和德州大学Goodenough小组对有机物碳源碳包覆方法进行了一系列卓有成效的研究,其影响也最大。1999年,Ravet和Goodenough等

[30]

最先提出了有机物(蔗糖)作为碳源对磷酸亚铁锂材料

[4]进行原位碳包覆改性,发现在高温下含1%碳的磷酸亚铁锂材料在1C倍率下的放电容量高达160 mAh/g,已接近理论容量,这较Padhi和Goodenough在1997年报道的结果有了质的飞跃,自此碳包覆改性研究成为磷酸亚铁锂最重要的改性方法之一。2001年,Nazar等

[31]

结合碳包覆和纳米粒子的概念,第一个真正意义上显示了碳包覆的纳米或亚微米尺度的磷酸亚铁锂具有极优的倍率特性(5C倍率下,容量高达120mAh/g),结果表明,采用碳包覆可以同时提高磷酸亚铁锂的电子电导和离子电导。但Nazar等未对碳的含量以及磷酸亚铁锂的粒度进行优化,也未考虑材料的体积比能量问题(文中碳含量高达15%,将极大降低材料的振实密度)。Dahn等[32]随后尝试了多种碳包覆的方法期许降低LiFePO4/C复合电极中碳的含量来全面提高材料的质量比能量、体积比能量和振实密度,他们指出对磷酸亚铁进行碳包覆改性时,必须综合考虑合成与制备方法对材料容量、倍率能力以及振实密度的影响。2003年,Valence的Baker等[21]报道了采用“碳热还原”(CTR-Carbothermal Reduction)方法制备碳包覆(采用碳改性的提法可能更为恰当)的磷酸亚铁锂材料,该方法采用磷酸二氢锂、氧化铁等为主要原材料,碳为还原剂和碳源,使用碳热还原法合成的材料其放电容量可达156 mAh/g;该合成方法的一个显著特点是材料合成中掺入金属离子,同时碳能分散在微小的一次颗粒间,同时弥散在二次颗粒间,材料导电能力非常好。结合Valence公司提供的产品信息看,CTR不仅是正如文中所提是最可能实现产业化的方法,似乎也是一种综合优化材料容量、倍率能力以及振实密度的理想方法。

碳包覆作为有效提高磷酸亚铁锂性能的方法现已越来越受到重视。研究者开始系统研究不同碳源、包覆碳层的组成、包覆碳层厚度等对磷酸亚铁锂电化学性能的影响。浙江大学赵新兵等[33, 34]采用聚丙烯替代无机碳粉作为碳源,分别以FePO4和Fe2O3 为铁源经一步固相反应法

3+合成LiFePO4/C复合材料;研究结果表明,聚丙烯高温分解产生的碳有效地抑制了LiFePO4晶粒的聚集长大,不同Fe铁源得到的产物粉体均略呈球形,形貌相差很小,颗粒尺寸在300~600nm之间,二者首次放电容量相差也不大,均为160 mAh/g(0.1C)左右。赵将这种方法的优点总结为[34]:高分子聚合物的分解产物(原子态H和C)具有高于固态碳材料的还原能力,从而可降低合成温度、缩短反应时间;高分子聚合物分解的碳在反应系统中呈原子

级分散状态,从而可实现对合成产物的均匀包覆,并在颗粒之间形成相互连通的导电碳膜;固相合成中原位包覆的碳膜降低了磷酸铁锂颗粒的长大速度,从而有助于对正极材料颗粒尺寸的有效控制。Doeff等

[35, 36]

研究了不同碳源与原位包覆的表面碳层的结构对LiFePO4电化学性能的影响,他们认为碳纤维和碳纳米管能显著增强磷酸亚铁锂的性能;LiFePO4/C复合材料性能还取决于碳的结构而非含量,其电化学性能强烈依赖于表面碳层中无序碳与石墨化碳组分的比例,石墨化碳比例高的材料倍率性能更好;而且由于石墨化碳中sp杂化的碳电导率大于sp杂化和无序碳的电导率,因此LiFePO4 的电化学性能与包覆层的碳中sp/sp比例呈正相关,图2为LiFePO4/C复合材料中碳结构与材料电导率的关系。Dominko等

323[37]

2采用溶胶-凝胶法制备了不同碳层厚度的多孔、结晶良好的LiFePO4/C复合材料,研究了碳含量和碳包覆层厚度的关系,发现包覆碳层的厚度随着含碳量的增加而增加(从1nm增加到了10nm);含碳量3.2%时(包覆碳层厚度约1nm),在1C倍率下的放电其比容量约为140mAh/g。

图2 LiFePO4/C复合材料中碳结构与材料电导率的关系 重要合成路径与产业化进展

磷酸亚铁锂材料的合成方法主要分为固相法和液相化学法,在实际产业化生产过程中通常引入球磨、喷雾或冷冻干燥

[38]

及造粒、机械或气流粉碎及分级等手段提高制程能力。

磷酸亚铁锂的合成路径可根据所用的铁源不同,分为以亚铁盐为铁源的“亚铁盐化合法”和“三价铁源化合物法”。铁源采用亚铁盐的固相烧结方法其典型原料包括Li2CO3、草酸亚铁和NH4H2PO4或(NH4)2HPO4,原料均匀混合后在惰性气体保护下烧结;三价铁源的固相法以Valence和Sony的方法为代表,铁源为氧化铁或磷酸铁;上海交通大学马紫峰等

[39]

[4]

也提出了类似Sony的以磷酸铁为三价铁源的高能球磨法。固相法工艺的特点是工艺过程直观,材料的质量比容量和体积比容量均较高,生产过程可实现超低的排放。但是固相法的精确化学计量不易控制,对原料、工艺路线的选择相当重要,对过程控制的要求也非常高。Valence公司是成功采用固相法实现产业化的典型代表,该公司围绕“CTR”方法申请了大量的磷酸盐材料专利。

液相化学方法一般采用“亚铁盐化合法”,是合成碳包覆掺杂磷酸亚铁锂亚微米和纳米颗粒的有效方法,常见的液相化学合成方法主要有水热法[37, 44]

[12, 40-42]、溶剂热

[43]、凝胶-溶胶法、共沉淀法[45]等。以水热合成法为例,一般采用LiOH?H2O,H3PO4和水溶性亚铁盐(如FeSO4)为前驱体,在较低温度下通过水热反应若干小时内直接合成LiFePO4。液相法的优点是合成温度低(低能耗)、反应条件灵活可控、产物的成份结构均匀(少量合成)、能合成纳米级颗粒,缺点是大规模化生产时对设备要求很高、不容易控制亚铁离子的氧化、不易真正意义上实现名义的化学计量、材料的性能和批次稳定性不易控制、而且易产生有污染的废气和废水。对于凝胶-溶胶法,还存在合成时间太长而使生产率严重降低的问题。液相法合成方法还有一个明显的缺点是合成的材料振实密度较低,材料体积比容量偏低,电芯制程时,材料的加工非常困难(混合和涂布)。Hydro-Quebec公司是液相化学法的典型代表,磷酸铁锂材料一次粒子的粒径在50~250nm之间,室温1C倍率的放电容量高于140mAh/g,60℃下0.25C/1C充放电400次,容量保持率为98.2%

[46]。

迄今,公开宣称已批量制造基于磷酸亚铁锂正极材料的锂离子电池的公司仅有美国两家公司Valence Technology

[47]

和A123systems

[48]

。前者宣称是全球率先商业化磷酸亚铁锂电池的企业;后者宣称其纳米磷酸盐电池具有超高的功率特性,目前该公司已接收到红杉资本、通用电气、摩托罗拉、高通等公司1.5亿美金的投资,产品包括专业电动工具电池组、HEV(Hybrid Electric Vehicle)电池组、PHEV(Plug-in)电池组和BEV(Battery EV)电池组。在日本,NTT、三井也在积极开发磷酸亚铁锂材料发该材料的行列,部分厂家已取得了阶段性进展结论

内禀安全、无毒、环境友好、原料丰富、高性能的锂离子电池正极材料磷酸亚铁锂材料是实现锂离子电池从移动电话、笔记本电脑等小型应用跨越到专业电动工具、备用电源、轻型电动车、混合电动车、电力储能以及航空航天等大型应用的关键材料。为了克服该材料低的电导率带来的应用障碍,研究人员对该材料进行了包括颗粒纳米化、表面包覆碳及体掺杂

[50-52]

[49]

。大陆和台湾也有部分厂商加入开。

等大量改性研究,并尝试了各种有效合成方法来调控该材料的性能。美国公司的成功产业化将迅速带动国内磷酸亚铁锂材料及相关产业的发展。

参考文献:

[1] 赵新兵, 谢健.新型锂离子电池正极材料LiFePO4 的研究进展[J],机械工程学报, 2007, 43(1): 69-76.[2] 张淑萍, 倪江锋, 周恒辉, 张占军.溶剂热法控制合成规则的LiFePO4颗粒[J].物理化学学报, 2007, 23(6): 830-834.

第四篇:锂离子电池5V镍锰酸锂正极材料项目创业计划书摘要-江苏华东锂电

锂离子电池聚烯烃隔膜改性项目创业计划书摘要

大功率、大容量的储能或动力用锂离子电池日益为人们所关注。但其安全性能、容量等方面性能尚待进一步提高。作为电池核心材料,现有的商业化聚烯烃隔膜其热熔温度和耐高温热收缩特性及耐锂枝晶穿刺性能等方面尚难以满足下一代电池安全性的苛刻要求。现有商业化锂电池隔膜产品多为聚烯烃如聚乙烯、聚丙烯通过干法或湿法造孔技术得到。这种材料的共同点是都要经过拉伸定型工艺,其特点是拉伸过的隔膜为热力学不稳定状态,在电池温度过高情况先会产生严重的热收缩,造成隔膜崩溃,导致电池内短路,热失控,进而发生严重安全事故,因此,高安全性的耐高温隔膜是锂离子电池在动力或储能应用的必然要求。

目前,国外的锂电隔膜厂家都在加快推进新一点力点隔膜产品的研制及在现有聚烯烃隔膜基础上进行改性以提高安全性能。目前,常用的聚烯烃隔膜改性方法是在膜表面涂覆屋及陶瓷纳米颗粒,通过陶瓷颗粒的支撑作用提高隔膜的热尺寸稳定性及化学稳定性。这类方法多以无机陶瓷颗粒(如纳米SiO2、纳米TiO2、纳米Al2O3等)为主体,以聚合物为粘结剂配制浆料涂布于隔膜表面,由于要综合考虑隔膜的增强性能与锂离子穿透能力,涂敷层中陶瓷比例远高于粘结剂比例。该工艺的主要缺点是陶瓷颗粒在膜上附着力若,在电池制备过程及电池运行过程中会发生陶瓷颗粒脱落,进而造成电池内部电流不均及耐热性能下降等问题。

本项目采用新的新的陶瓷改性工艺,通过对聚烯烃隔膜预处理,然后在隔膜孔壁上进行共价接枝,然后与无机前驱体进行反应,在隔膜孔内比形成一层具有网络交联结构的陶瓷内支撑层,以改善隔膜的热尺寸稳定性。该工艺与普通陶瓷改性的区别是隔膜分子与陶瓷组分间通过化学键连接,有机-无机复合紧密,无掉粉现象;同时,无机物种在膜孔内形成一层极薄的内支撑层,隔膜表面平整,隔膜基本无增厚,即本改性工艺不会影响电池体积能量密度。

本项目还采用耐高温聚合物代替陶瓷作为支撑体,在隔膜表面复合一层多孔耐高温聚合物涂层。该聚合物与聚烯烃膜界面结合能力优良,避免了陶瓷工艺的掉粉现象。同时,多孔结构保持了隔膜良好的锂离子穿透能力。以改性隔膜装配的电池在0.1-4C倍率放电时,电池性能基本与未改性膜相当,能够满足电池要求。改性后的隔膜150℃热收缩率在5%以下,热尺寸稳定性远高于未改性隔膜,可大幅提高电池安全性能。

目前国内的众多隔膜厂商目前大多还停留在第一代隔膜的生产和研发阶段,产品质量尚待提高,且产品同质化严重且,竞争环境日趋恶劣。若能在现有隔膜基础上进行改性,提高隔膜物化品质(如产品的质量均匀性、耐热性能等),将提高产品市场适用性,大幅提高产品利润率及市场占有率。

本项目拟首期投资1200万元,成立创业公司,建立年处理100万平米级规模的生产线,将产品推向市场,如产品性能和经济效益能达到本项目的预期,再进行后续融资和扩产计划。在此基础上再融资5000万扩产、完善公司建设及铺底流动资金,达到年处理能力5000万平米,如果该类型电池能满足市场需求,可实现年收入40000万,年利润10000万元。

联系人:尚玉明

*** ymshang@tsinghua.edu.cn

清华大学核能与新能源技术研究院

江苏华东锂电技术研究院

2013/08/01

下载为什么锂电池用钴酸锂做正极材料,而不用磷酸铁锂或锰酸锂做正极材料word格式文档
下载为什么锂电池用钴酸锂做正极材料,而不用磷酸铁锂或锰酸锂做正极材料.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐