第一篇:无机非金属材料专业实验预习报告要点
摘要 悬浮预热器窑和预分解窑工艺是当代水泥工业用于生产水泥的最新技术,通常称为新型干法水泥技术。新型干法水泥生产,就是以悬浮预热和预分解技术为核心,把现代科学技术和工业生产最新成就.新型干法水泥生产是一种新时期比较符合环保要求、符合高生产率要求的生产技术,本文对新型干法水泥生产的特点、生产工艺流程、生产工序以及余热发电进行的介绍。
关键字 新型干法 水泥窑 余热发电 正文
1、新型干法水泥生产的特点 1.1 优良的品质
生料设备全过程广泛采用现代均化技术,矿山开采、原料预均化、原料配料及粉磨、生料空气搅拌均化四个关键环节互相衔接,紧密配合,形成生料制备全过程的均化控制保证体系即“均化链”,从而满足了悬浮预热、预分解窑新技术对生料质量提出的严格要求,产品质量可以与湿法媲美,使干法生产的熟料质量得到了保证。1.2 低消耗
采用高效多功能挤压粉磨、新型粉体输送装置大大节约了粉磨和输送能耗;悬浮预热及预分解技术改变传统回转窑内物料堆积态的预热和分解方法,熟料的煅烧所需要的能耗下降。1.3 生产效率的大幅度提高 悬浮预热、预分解窑技术从根本上改变了物料预热、分解过程的传热状态,传热、传质迅速,大幅度提高了热效率和生产效率。1.4 减少污染,清洁环保
由于“均化链”技术的采用,可以有效地利用在传统开采方式下必须丢弃的石灰石资源;悬浮、预分解技术及新型多通道燃烧器的应用,有利于低质燃料及再生燃料的利用,同时可降低系统废气排放量、排放温度和还原窑气中产生的NO2 含量,减少了对环境的污染,为“清洁生产”和广泛利用废渣、废料、再生燃料及降解有害危险废弃物创造了有利条件。
1.5 装备大型化
装备大型化、单机生产能力大,使水泥工业向集约化方向发展。水泥熟料烧成系统单机生产能力最高可达10 000 t/d,从而有可能建成年产数百万吨规模的大型水泥厂,大大的提高了水泥生产的效率。1.6 生产控制自动化
利用各种检测仪表、控制装置、计算机及执行机构等对生产过程自动测量、检验、计算、控制、监测,以保证生产“均衡稳定”与设备的安全运行,使生产过程经常处于最优状态,达到优质、高效、低消耗的目的。1.7 管理科学化
应用IT 技术进行有效管理,采用科学的、现代化的方法对所获取的信息进行分析和处理。1.8 投资大,建设周期较长
新型干法水泥生产技术要求的生产设备科技含量高,所占资源、地质、交通运输等条件都要求比较高,而且耐火材料的消耗亦较大,因此整体投资比较大
2、新型干法水泥生产工艺流程
2.1 生料制备
来自矿山的石灰石由自卸卡车运入破碎喂料仓,经石灰石破碎系统的破碎后由皮带输送机定量的送往预配料的预均化堆场。黏土用自卸汽车运入或者从工厂的黏土堆棚中用铲斗车卸入黏土喂料仓,经喂料机喂入¢1 200 rnm×1 080 mm 双辊破碎机,在双辊破碎机中破碎到85 %的黏土小于25 mm 后,经计量设备送入预配料的预均化堆场。破碎后的石灰石、黏土和其他辅助原料各自从堆场由皮带输送机送往磨头喂料仓,经配料计量后,定量喂入原料磨进行烘干并粉磨。烘干磨的热气体由悬浮预热器排出的废气供给,开启时则借助热风炉供热风。
粉磨后的生料用气力提升泵送入两个连续性空气均化库,进一步用空气搅拌均化生料和储存生料。2.2 预热分解
预热分解就是利用预热器把生料的预热和进行部分的分解,从而代替回转窑部分功能,以达到缩短回窑长度,同时使窑内以堆积状态进行气料换热的一个过程,移到预热器内在悬浮状态下进行,可以使生料与同窑内排出的炽热气体充分混合,因此,可以增大气料接触面积,使得传热速度加快,热交换效率大大提高,达到提高窑系统生产效率、降低熟料烧成热耗的目的。预分解技术的出现是水泥煅烧工艺的一次技术飞跃。它是在预热器和回转窑之间增设分解炉和利用窑尾上升烟道,设燃料喷入装置,使燃料燃烧的放热过程与生料的碳酸盐分解的吸热过程,在分解炉内以悬浮态或流化态下迅速进行,使入窑生料的分解率提高到90 %以上。将原来在回转窑内进行的碳酸盐分解任务,移到分解炉内进行;燃料大部分从分解炉内加入,少部分由窑头加入,减轻了窑内煅烧带的热负荷,有利于生产大型化;由于燃料与生料混合均匀,燃料燃烧热及时传递给物料,使燃烧、换热及碳酸盐分解过程得到优化。因而具有优质、高效、低耗等一系一系列优良性能及特点。2.3 熟料煅烧
均化库中的生料经卸料、计量、提升、定量喂料后由气力提升泵送至窑尾悬浮预热器和分预分解窑水泥生产过程解炉中,经预热和分解后的物料进入回转窑煅烧成熟料。回转窑和分解炉所用燃料煤由原煤经烘干兼粉磨后,制成煤粉并储存在煤粉仓中供给。熟料经冷却机冷却后,由裙板输送机、计量秤、斗式提升机分别送入熟料库内储存2.4 水泥制成熟料、石膏经定量喂料机送入水泥磨中粉磨。水泥磨与选粉机一起构成所谓的圈流水泥磨,粉磨时也可根据产品要求加入适量的混合材料与熟料、石膏一同粉磨生产不同种类或标号的水泥品种。粉磨后的水泥经仓式空气输送泵送至水泥库储存,一部分水泥经包装机包装为袋装水泥,经火车或汽车运输出厂,另一部分由散装专用车散装出厂。其他不同规模的预分解窑水泥生产线、同规模而不同生产厂家的预分解窑水泥生产线的工艺流程大体上与前述相似,不同之处主要是生产过程中的某些工序和设备不尽相同。新型干法水泥生产工序
从上述的日产4 000 t 熟料的预分解窑水泥生产线的工艺流程不难看出,新型干法水泥生产可以概括成生料制备、熟料煅烧、水泥制成这三大生产过程,但具体生产工序之多,远不只是“两磨一烧”三个工序。一般而言,具体生产主要包括以下几大工序:①原料、燃料、材料的选择及入厂;②原料、燃料、材料的加工处理与预均化;③原材料的配合;④生料粉磨;⑤生料的调配、均化与储存;⑥熟料煅烧;⑦熟料、石膏、混合
材料的储存与准备;⑧熟料、石膏、混合材料的配合及粉磨(即水泥粉磨);⑨水泥储存、包装及发运。
4余热发电近年来, 随着我国水泥工业工艺及装备技术得以迅速发展, 数百条数千吨级新型干法水泥熟料生产线(简称水泥窑)的陆续投产, 为水泥窑纯低温余热发电技术及装备的开发、推广、应用创造了市场条件。在这个背景条件下, 目前国内具有水泥窑余热发电工程设计、技术开发能力的数家单位, 推出了几种水泥窑纯低温余热发电的热力循环系统并已在水泥工业陆续推广应用。世纪90 年代中期, 天津水泥院通过转化吸收一些国家低温余热的回收利用技术, 在完成引进日本川崎公司技术和主机设备的海螺集团宁国水泥厂纯低温余热电站工程设计以后, 经过近十年的艰苦努力, 利用“八五”国家重大科技攻关项目———鲁南水泥厂2×2000t /d 带补燃锅炉的中、低温余热发电技术及装备的研究和开发成果(12kW 机组), 不仅开发出了我国具有自主知识产权的纯低温余热发电的系统技术, 填补了国内空白, 同时, 还会同国内的锅炉和汽轮机生产制造厂家, 开发出适于700t /d、2000t /d、5000t /d 级规模的预分解生产线纯低温余热发电的主要设备, 并得到普遍的推广和应用
5中国发展水泥窑余热发电技术的目的
1.水泥熟料锻烧过程中, 由窑尾预热器、窑头熟料冷却机等排掉的400 ℃以下低温废气余热, 其热量约占水泥熟料烧成总耗热量30%以上, 造成的能源浪费非常严重。水泥生产, 一方面消耗大量的热能(每吨水泥熟料消耗燃料折标准煤为100~115 kg), 另一方面还同时消耗大量的电能(每吨水泥约消耗90~115 kWh)。如果将排掉的400 ℃以下低温废气余热转换为电能并回用于水泥生产, 可使水泥熟料生产综合电耗降低60%或水泥生产综合电耗降低30%以上, 对于水泥生产企业: 可以大幅减少向社会发电厂的购电量或大幅减少水泥生产企业燃烧燃料的自备电厂的发电量以大大降低水泥生产能耗;可避免水泥窑废气余热直接排入大气造成的热岛现象, 同时由于减少了社会发电厂或水泥生产企业燃烧燃料的自备电厂的燃料消耗, 可减少CO2 等燃烧废物的排放而有利于保护环境。
2.水泥生产企业建设余热电站, 投资小, 见效快, 可以大幅降低水泥生产能耗既成本, 相应地可以大幅提高企业经济效益。
3.支持并促进“水泥窑余热发电技术”的研究、开发、推广工作, 可以使中国水泥窑余热发电的总体技术水平达到或接近当前国外先进工业国家已经达到的技术水平
6.余热发电技术
目前水泥行业已经推广应用的几种纯低温余热发电技术, 以蒸汽参数来分, 基本上有两类: 一类为0.69~1.27MPa-280~340℃的低压低温系统, 另一类为1.57~2.47MPa-325~400℃的次中压中温系统。对于0.69~1.27MPa-280~340℃的低压低温系统,其热力系统构成有以下三种模式:其一: 单压不补汽式纯余热发电技术。其二: 复合闪蒸补汽纯余热发电技术。其三: 多压补汽式纯余热发电技术。技术要点: 利用水泥窑窑尾预热器排出的350℃以下废气设置1台窑尾预热器余热锅炉(简称SP锅炉)、利用水泥窑窑头熟料冷却机排出的400℃以下废气设置1台熟料冷却机废气余热锅炉(简称AQC炉)、两台锅炉设置1台蒸汽轮机、发电系统主蒸汽参数为0.69~1.27MPa-280~340℃。
上述三种技术没有本质的区别, 共同的特点: 都是利用在窑头熟料冷却机中部增设抽废气口或直接利用冷却机尾部废气出口的400℃以下废气及窑尾预热器排出的300~350℃的废气余热;最重要的特点是采用0.69~1.27MPa-280~340℃低压低温主蒸汽。区别仅在于: 窑头熟料冷却机在生产0.69~1.27MPa-280~340℃低压低温蒸汽的同时或同时再生产0.1~0.5MPa-饱和~160℃低压低温蒸汽、或同时再生产85~200℃的热水;汽轮机采用补汽式或不补汽式汽轮机;复合闪蒸补汽式适用于汽轮机房与冷却机距离较远的情况而多压补汽式适用于汽轮机房与冷却机距离较近的情况。
对于1.57~2.47MPa-325~400℃的次中压中温系统, 其热力系统构成有如下两种模式: 其一: 冷却机多级取热纯余热发电技术。其二: 冷却机多级取热及循环风纯余热发电技术。
技术要点: 利用水泥窑窑尾预热器排出的350℃以下废气设置1台窑尾预热器余热锅炉(简称SP锅炉)或同时利用窑尾C2级预热器内筒设置过热器;利用熟料冷却机排出的400℃以下废气设置1台熟料冷却机废气余热锅炉(简称AQC炉), 或者通过改变窑头熟料冷却机废气排放方式: 利用熟料冷却机排出的部分360℃以下废气设置1台AQC余热锅炉、利用熟料冷却机排出的部分500℃以下废气设置1台熟料冷却机废气余热过热器(简称ASH过热器);将AQC炉排出的废气部分或全部返回冷却机, 窑头熟料冷却机冷却风采用循环风方式;利用两台锅炉或者增设的余热过热器设置补汽式蒸汽轮机, 发电系统主蒸汽参数为1.57 ~3.43MPa-340 ~435℃、补汽参数为0 ~0.15MPa-饱和~160℃。7研究、开发、应用水泥窑纯低温余热发电技术应遵循的基本原则 水泥窑纯低温余热发电技术是以节能降耗从而降低水泥生产成本为目的, 它的内涵是: 将水泥生产
过程中产生的并且水泥生产过程本身已不能再利用的余热回收从而转化为电能的技术, 因此, 研究、开发、应用水泥窑纯低温余热发电技术应遵循的基本原则: 不影响水泥生产、不增加水泥熟料热耗及电耗、不改变水泥生产用原燃料的烘干热源、不改变水泥生产的工艺流程及设备。
结束语
世界水泥技术的发展趋势是以节省资源、节约能源和环境保护为中心,进行清洁生产和高效集约化生产,加强水泥生态化技术和设备的研究、开发,逐步减少天然资源和天然能源的消耗,最大程度地减少环境污染,最大限度地接收、消纳工业废弃物和城市生活垃圾等,使水泥工业达到与环境友好、和谐、共存。新型干法水泥生产技术代表着当今世界水泥生产的潮流,发展新型干法水泥是实现中国水泥工业现代化的必由之路。虽然中国先进的新型干法水泥生产线与国际先进水平已经相接近,但从整体来看,还存在较大差距。为了使中国新型干法水泥生产工艺与设备的主要技术经济指标逐步赶上,甚至超过国际先进水平,同时在环境保护和生态建设方面逐步达到国际先进水平,我们还需要不懈努力
参考文献 柴春省.新型干法水泥生产线实现污泥资源化利用的实践与探索[J].中国科技信息,2010(02)时晓初.抢抓机遇谋发展 提速增效创佳绩——云南水泥工业2009 年经济运行报告[J].中国水泥,2010(02)3 刘寿绵、艾 军.水泥行业低碳化生产方法和设想[J].中国水泥,2010(02)张凤刚等.CEMAT 系统在大型水泥企业中的应用[J].水泥,2004(10)[9]张轶. 中外水泥窑纯低温余热发电对比[J]. 中国建 材,2005,(6).
[10]张富,张福滨. 水泥行业纯低温余热发电技术及现 状[J]. 建材发展导向,2007,(1).
[7]谭业锋. 工业窑炉废气余热的回收与利用研究[D]. 济南: 山东大学,2006 [3]赵宗燠. 余热利用与锅炉节能[M]. 银川: 宁夏人民 出版社,1984.
第二篇:无机非金属材料专业实习报告
无机非金属材料专业实习报告
6月22日至27日是我们无机非金属材料专业的实习周,我们无机非金属材料专业先后参观了中铁九局和沈阳泰丰混凝土有限公司,使我受益匪浅!
23日,我们在老师的带领下,来到著名的中铁九局,中铁九局集团有限公司系国务院国资委监管的中央企业,隶属于中国铁路工程总公司,无机非金属材料专业实习报告。是集设计、施工、科研、房地产开发、机加工为一体的多功能、大型企业集团,年施工能力100亿元以上,为中国500家最大建筑企业之一。集团总部设在中国沈阳。
来这样的企业参观真是荣幸。我们在工程师的带领下参观了中铁九局的T梁的生产流程。通过学习基本上掌握T梁的设计原理,其主要流程图:模板初装-钢筋制作-吊装钢筋-穿钢绞线-质量检验-整体砼浇注-蒸汽养护-强度测验-拆模养护-张拉-压浆-出模吊移-模外封堵挡头-质量验收评定。
我们休息一天后,又来到了沈阳泰丰特种混凝土有限公司公司,沈阳泰丰特种混凝土有限公司是具有雄厚实力的大型预拌商品混凝土生产企业。被辽宁省信誉评级委员会评为AA***单位;沈阳质量信誉保证单位;是 ISO9001国际质量体系、ISO14001环境管理体系、GB/T28001职业健康安全管理体系认证单位,实习报告《无机非金属材料专业实习报告》。被沈阳市质量技术监督局推荐为名牌产品。作为全国混凝土协会常务理事、辽宁省混凝土协会副会长、沈阳市混凝土协会会长的公司董事长兼总经 理瞿庆华先生被评为中国混凝土行业优秀企业家。公司亦被中国混凝土协会和辽宁省混凝土协会分别评为2005-2006全国混凝土行业先进企业和辽宁省 混凝土行业先进企业;被沈阳市科委认定为沈阳市外商投资先进技术企业。
老师首先给我们介绍了什么是混凝土,混凝土-概述混凝土也称砼,是当代最主要的土木工程材料之一。它是由胶结材料,骨料和水按一定比例配制,经搅拌振捣成型,在一定条件下养护而成的人造石材。混凝土具有原料丰富,价格低廉,生产工艺简单的特点,因而使其用量越来越大;同时混凝土还具有抗压强度高,耐久性好,强度等级范围宽,使其使用范围出十分广泛,不仅在各种土木工程中使用,就是造船业,机械工业,海洋的开发,地热工程等,混凝土也是重要的材料。
然后又带领我们参观其生产流程,首先看到的是混凝土的原料,沙子、碎石、水泥。水泥、沙子、碎石等材料与水拌和使混凝土拌合物具有可塑性;进而通过化学和物理化学作用凝结硬化而产生强度。一般说来,饮用水都可满足混凝土拌和用水的要求。水中过量的酸、碱、盐和有机物都会对混凝土产生有害的影响。集料不仅有填充作用,而且对混凝土的容重、强度和变形等性质有重要影响。
为改善混凝土的某些性质,可加入外加剂。由于掺用外加剂有明显的技术经济效果,它日益成为混凝土不可缺少的组分。为改善混凝土拌合物的和易性或硬化后混凝土的性能,节约水泥,在混凝土搅拌时也可掺入磨细的矿物材料──掺合料。它分为活性和非活性两类。掺合料的性质和数量,影响混凝土的强度、变形、水化热、抗渗性和颜色等。混凝土的制备
1、配合比设计:制备混凝土时,首先应根据工程对和易性、强度、耐久性等的要求,合理地选择原材料并确定其配合比例,以达到经济适用的目的。混凝土配合比的设计通常按水灰比法则的要求进行。材料用量的计算主要用假定容重法或绝对体积法。
2、搅拌:根据不同施工要求和条件,混凝土可在施工现场或搅拌站集中搅拌。流动性较好的混凝土拌合物可用自落式搅拌机;流动性较小或干硬性混凝土宜用强制式搅拌机搅拌。搅拌前应按配合比要求配料,控制称量误差。投料顺序和搅拌时间对混凝土质量均有影响,应严加掌握,使各组分材料拌和均匀。
3、输送与灌筑:混凝土拌合物可用料斗、皮带运输机或搅拌运输车输送到施工现场。其灌筑方式可用人工或借助机械。采用混凝土泵输送与灌筑混凝土拌和物,效率高,每小时可达数百立方米。无论是混凝土现浇工程,还是预制构件,都必须保证灌筑后混凝土的密实性。其方法主要用振动捣实,也有的采用离心、挤压和真空作业等。掺入某些高效减水剂的流态混凝土,则可不振捣。
第三篇:无机非金属材料专业毕业论文
新型无机非金属材料的发展与挑战
金属材料、高分子合成材料、无机非金属材料与人们的衣、食、住、行关系非常密切。材料是人类生活必不可少的物质基础。没有感光材料,我们就无法留下青春的回忆;没有特殊的荧光材料,就没有彩色电视;没有高纯的单晶硅,就没有今天的“奔腾IV”;没有特殊的新型材料,“神舟号”宇宙飞船就无法上天。随着科学和生产技术的发展以及人们生活的需要,一些具有特殊结构、特殊功能的新材料相继研制出来,如半导体材料:超硬材料、耐高温材料、发光材料等,我们称这些材料为新型无机非金属材料。水泥、玻璃、陶瓷等都属于传统的非金属材料,像玻璃刀上的人造金刚石、作为手表轴承的人造红宝石、煤气炉中用于电子打火的压电陶瓷、传输信息的光导纤维都属于新型无机非金属材料。
在材料中,有一类叫结构材料主要制利用其强度、硬度韧性等机械性能制成的各种材料。金属作为结构材料,一直被广泛使用。但是,由于金属易受腐蚀,在高温时不耐氧化,不适合在高温时使用。高温结构材料的出现,弥补了金属材料的弱点。这类材料具有能经受高温、不怕氧化、耐酸碱腐蚀、硬度大、耐磨损、密度小等优点,作为高温结构材料,非常适合。
氧化铝陶瓷(人造刚玉)是一种极有前途的高温结构材料。它的熔点很高,可作高级耐火材料,如坩埚、高温炉管等。利用氧化铝硬度大的优点,可以制造在实验室中使用的刚玉磨球机,用来研磨比它硬度小的材料。用高纯度的原料,使用先进工艺,还可以使氧化铝陶瓷变得透明,可制作高压钠灯的灯管。
高温氧化物结构陶瓷
指熔点高于1728℃的氧化物(如氧化硅晶体)或某些复合氧化物(如氧化铝、氧化锆、氧化镁、氧化钙和氧化钍等)。它们的重要特点是高温下的化学稳定性好,尤其是抗氧化性能好。但弱点是脆性较大,耐机械冲击性差。利用氧化锆相变作用增韧氧化物陶瓷在20世纪70年代末获较大进展,氧化锆增韧氧化铝,断裂韧性参数由2.9MPa/m2提高到 15MPa/m2,抗折强度由 350MPa提高到1200MPa。加有氧化钇的半稳定氧化锆,断裂韧性参数也高达 9~16MPa/m2。增韧氧化物陶瓷可用于制造锤子、水果刀、剪刀、轴和发动机部件等,可以承受一定冲击而不碎裂。高温氧化物陶瓷可用作高温炉衬,熔炼稀有金属和纯金属的坩埚,以及磁流体发电装置的高温电极材料和热机材料。
氧化铝结构陶瓷的生产,采用γ-氧化铝(见氧化铝)为原料与少量添加剂(如MgΟ等),经粉碎和混合后按产品的形状,尺寸及用途,采用不同的方法成型。干压成型时需先将混合后的坯料造粒,然后用油压机压制成坯样。采用注浆成型时,则将混合后的粉料制成悬浮料浆,注入石膏模中成型。采用热压注时,用适量石蜡与混合料制成料浆,用热压注机成型。烧成的坯体需按使用的要求,进行机械加工或研磨。
高温非氧化物结构陶瓷
包括氮化物、碳化物、硅化物、硼化物等。其中有发展前途的是氮化硅、碳化硅和氮化硼等材料。与氧化物比较,难熔化合物的热导率较高,热膨胀系数较低,因此具有良好的抗热震性。氮化硅与碳化硅还具有较高强度,硬度仅次于金刚石,耐磨性好,是很好的热机材料。采用氮化硅或碳化硅作为燃气轮机和陶瓷发动机的高温部件,与金属部件比较,可承受较高的工作温度,省去水冷却系统,减轻自重,因而节能效果显著。由于氮化硼具有优良的热稳定性,而且对金属熔体有很好的耐蚀性,用它作为水平连续铸钢的分离环,可较氮化硅有更长的使用寿命。
氮化硅结构陶瓷的烧成,按氮化硅合成的方式可分为反应烧结法和烧结法。反应烧结法是将硅粉预先成型,然后在通氮的情况下烧结,使氮化硅(Si3N4)的形成和烧结同时完成。烧结法是将预先合成的氮化硅粉末在高温与压力同时作用下热压烧结,或是将氮化硅粉末压成坯体后,在高温下无压烧结。
近20年来,世界各工业发达国家对于发动机用高温结构陶瓷复合材料的研究与开发—直十分重视,相继制定了各自的国家发展计划,并投人了大量的人力、物力和财力,对这一新型材料寄予厚望。如美国NASA制定的先进高温热机材料计划(HITEMP)、DOE/NAsA的先进涡轮技术应用计划、美国国家宇航计划(NASP)、美国国防关键技术计划以及日本的月光计划等都把高温结构陶瓷基复合材料作为重点研究对象,其研制目标是将发动机热端部件的使用温度提高到1650℃或更高,从而提高发动机涡轮进口温度,达到节能、减重、提高推重比和延长寿命的目的,满足军事和民用热机的需要。由于陶瓷材料具有高耐磨性、耐高温和抗侵蚀能力,国外目前已将其应用于发动机高速轴承、活塞、密封环阀门导轨等要求转速高和配合精度高的部件。在航空发动机高温构件的应用上,到目前为止已报道有的法国将CVI法SiC/Cr用于狂风战斗机M88发动机的喷嘴瓣以及将SiC/SiCr用于幻影2000战斗机涡轮风扇发动机的喷管内调节片。此外,有许多陶瓷基复合材料的发动机高温构件正在研制之中。如美国格鲁曼公司正研究跨大气层高超音速飞机发动机的陶瓷材料进口、喷管和喷口等部件;美国碳化硅公司用Si34N/SiCw制造导弹发动机燃气喷管; 杜邦公司研制出能承受1200-1300℃、使用寿命2000h的陶瓷基复合材料发动机部件等。目前导弹、无人驾驶 飞机以及其它短寿命的陶瓷涡轮发动机正处在最后研制阶段,美国空军材料实验室的研究人员认为,12O4-1371℃发动机陶瓷基复合材料已经研制成功。由于提高了燃烧温度,取消或减少了冷却系统,预计发动机热效率可从目前的26%提高到46%。英国罗—罗公司认为,未来航空发动机高压压气机叶片和机匣、高压与低压涡轮盘及叶片、燃烧室、加大燃烧室、火焰稳定器及排气喷管等都将采用陶瓷基复合材料。预计在21世纪初,陶瓷基复合材料的使用温度可提高到1650℃或更高。
氮化硅陶瓷陶瓷也是一种重要的结构材料,它是一种超硬物质,密度小、本身具有润滑性,并且耐磨损,除氢氟酸外,它不与其他无机酸反应,抗腐蚀能力强;高温时也能抗氧化。而且它还能抵抗冷热冲击,在空气中加热到1000以上,急剧冷却再急剧加热,也不会碎裂。正是氮化硅具有如此良好的特性,人们常常用它来制造轴承、汽轮机叶片、机械密封环、永久性模具等机械构件。
外观与性状:润滑,易吸潮.氮化硼是白色、难溶、耐高温的物质。将B2O3与NH4Cl共熔,或将单质硼在NH3中燃烧均可制得BN。通常制得的氮化硼是石墨型结构,俗称为白色石墨。另一种是金刚石型,和石墨转变为金刚石的原理类似,石墨型氮化硼在高温(1800℃)、高压(800Mpa)下可转变为金刚型氮化硼。这种氮化硼中B-N键长(156pm)与金刚石在C-C键长(154pm)相似,密度也和金刚石相近,它的硬度和金刚石不相上下,而耐热性比金刚石好,是新型耐高温的超硬材料,用于制作钻头、磨具和切割工具。
高温结构陶瓷除了氮化硅外,还有碳化硅(SiC)、二氧化锆(ZrO2)、氧化铝等。
透明陶瓷一般陶瓷是不透明的,但光学陶瓷像玻璃一样透明,故称透明陶瓷。一般陶瓷不透明的原因是其内部存在有杂质和气孔,前者能吸收光,后者使光产生散射,所以就不透明了。因此如果选用高纯原料,并通过工艺手段排除气孔就可能获得透明陶瓷。早期就是采用这样的办法得到透明的氧化铝陶瓷,后来陆续研究出如烧结白刚玉、氧化镁、氧化铍、氧化钇、氧化钇-二氧化锆等多种氧化物系列透明陶瓷。近期又研制出非氧化物透明陶瓷,如砷化镓(GaAs)、硫化锌(ZnS)、硒化锌(ZnSe)、氟化镁(MgF2)、氟化钙(CaF2)等。这些透明陶瓷不仅有优异的光学性能,而且耐高温,一般它们的熔点都在2 000 ℃以上。如氧化钍-氧化钇透明陶瓷的熔点高达3 100 ℃,比普通硼酸盐玻璃高1 500 ℃。透明陶瓷的重要用途是制造高压钠灯,它的发光效率比高压汞灯提高一倍,使用寿命达2万小时,是使用寿命最长的高效电光源。高压钠灯的工作温度高达1 200 ℃,压力大、腐蚀性强,选用氧化铝透明陶瓷为材料成功地制造出高压钠灯。透明陶瓷的透明度、强度、硬度都高于普通玻璃,它们耐磨损、耐划伤,用透明陶瓷可以制造防弹汽车的窗、坦克的观察窗、轰炸机的轰炸瞄准器和高级防护眼镜等。
光导纤维从高纯度的二氧化硅或称石英玻璃熔融体中,拉出直径约100 μm的细丝,称为石英玻璃纤维。玻璃可以透光,但在传输过程中光损耗很大,用石英玻璃纤维光损耗大为降低,故这种纤维称为光导纤维,是精细陶瓷中的一种。
利用光导纤维可进行光纤通信。激光的方向性强、频率高,是进行光纤通信的理想光源。光纤通信与电波通信相比,光纤通信能提供更多的通信通路,可满足大容量通信系统的需要。
光导纤维一般由两层组成,里面一层称为内芯,直径几十微米,但折射率较高;外面一层称包层,折射率较低。从光导纤维一端入射的光线,经内芯反复折射而传到末端,由于两层折射率的差别,使进入内芯的光始终保持在内芯中传输着。光的传输距离与光导纤维的光损耗大小有关,光损耗小,传输距离就长,否则就需要用中继器把衰减的信号放大。用最新的氟玻璃制成的光导纤维,可以把光信号传输到太平洋彼岸而不需任何中继站。
在实际使用时,常把千百根光导纤维组合在一起并加以增强处理,制成像电缆一样的光缆,这样既提高了光导纤维的强度,又大大增加了通信容量。
用光缆代替通信电缆,可以节省大量有色金属,每公里可节省铜1.1 t、铅2~3 t。光缆有质量轻、体积小、结构紧凑、绝缘性能好、寿命长、输送距离长、保密性好、成本低等优点。光纤通信与数字技术及计算机结合起来,可以用于传送电话、图像、数据、控制电子设备和智能终端等,起到部分取代通信卫星的作用。
光损耗大的光导纤维可在短距离使用,特别适合制作各种人体内窥镜,如胃镜、膀胱镜、直肠镜、子宫镜等,对诊断、医治各种疾病极为有利。
生物陶瓷人体器官和组织由于种种原因需要修复或再造时,选用的材料要求生物相容性好,对肌体无免疫排异反应;血液相容性好,无溶血、凝血反应;不会引起代谢作用异常现象;对人体无毒,不会致癌。目前已发展起来的生物合金、生物高分子和生物陶瓷基本上能满足这些要求。利用这些材料制造了许多人工器官,在临床上得到广泛的应用。但是这类人工器官一旦植入体内,要经受体内复杂的生理环境的长期考验。例如,不锈钢在常温下是非常稳定的材料,但把它做成人工关节植入体内,三五年后便会出现腐蚀斑,并且还会有微量金属离子析出,这是生物合金的缺点。有机高分子材料做成的人工器官容易老化,相比之下,生物陶瓷是惰性材料,耐腐蚀,更适合植入体内。
纳米陶瓷
从陶瓷材料发展的历史来看,经历了三次飞跃。由陶器进入瓷器这是第一次飞跃;由传统陶瓷发展到精细陶瓷是第二次飞跃,在这个期间,不论是原材料,还是制备工艺、产品性能和应用等许多方面都有长足的进展和提高,然而对于陶瓷材料的致命弱点──脆性问题没有得到根本的解决。精细陶瓷粉体的颗粒较大,属微米级(10 m),有人用新的制备方法把陶瓷粉体的颗粒加工到纳米级
(10 m),用这种超细微粉体粒子来制造陶瓷材料,得到新一代纳米陶瓷,这是陶瓷材料的第三次飞跃。纳米陶瓷具有延性,有的甚至出现超塑性。如室温下合成的TiO2陶瓷,它可以弯曲,其塑性变形高达100%,韧性极好。因此人们寄希望于发展纳米技术去解决陶瓷材料的脆性问题。纳米陶瓷被称为21世纪陶瓷
红宝石和蓝宝石的主要成分都是Al2O3(刚玉)。红宝石呈现红色是由于其中混有少量含铬化合物;而蓝宝石呈蓝色则是由于其中混有少量含钛化合物。1900年,科学家曾用氧化铝熔融后加入少量氧化铬的方法,制出了质量为2g-4g的红宝石。现在,已经 能制造出大到10g的红宝石和蓝宝石。
综上所述是集中高温结构材料的简介,而这仅仅是无机非金属材料的一小部分而已。所以我们可以清楚的明白无机非金属材料领域是一个覆盖面极广、科学含量极高的一个学科。
我知道如果想在无机非金属材料领域有一番作为并非易事。因为科学在发展,科技在进步,各种新兴的材料不断被研发出来,所以必须时时刻刻关心当今世界材料科学的最新动态。现在,而我所能做的就是认认真真的学好所学的基础知识为将来的发展打下坚实的基础。此外,材料科学并不是理论上的,更重要的是实践上的!所以,提高自己的动手能力,创新实验能力也是必不可少的。
既然无机非金属材料是一个前沿学科,那么单单的本科学历显然是不够的,是无法满足社会对此领域的需求的,因此,考研成为了我们继续深造的基本要求。研究生会有更多的机会参与科学的研究,会有更多的机会学习的最新的理论知识,会有更多的机会进行高水平的实验,而且研究生再就业方面更具有竞争力,所以考研势在必行!
此外,我国的材料水平还没有达到世界顶尖,我国是一个材料大国,但是我们不是一个材料强国,虽然我国每年的材料需求都是巨大的,各个领域都依靠材料,但是我国的一些先进材料基本都是进口的,所以我们要赶上其他发达国家比如美国还需要国人的不断努力,不断去奋斗。如果可能的话我想我会去国外继续深造,学习更先进的理论知识,将来能为祖国贡献自己的一份力量!!
我会在河南工业努力学习,为自己的明天而奋斗!!
第四篇:无机非金属材料专业试题
(无机非金属材料专业)试卷答案及评分标准
一、单选:(每题1分,共20分)
1、影响熟料安定性的主要因素是(A)。
A.一次游离氧化钙
B.二次游离氧化钙
C.固溶在熟料中的氧化镁
D.固溶在熟料中的氧化钠
2、粉磨水泥时,掺的混合材料为:矿渣16%,石灰石5%,则这种水泥为(C)
A.矿渣硅酸盐水泥
B.普通硅酸盐水泥
C.复合硅酸盐水泥
D.硅酸盐水泥
3、以下哪种措施有利于C3S的形成?(A)
A.降低液相粘度
B.减少液相量
C.降低烧成温度
D.缩短烧成带
4、国家标准规定,通用硅酸盐水泥中各个品种的初凝时间均不得早于(A)
A.45分钟
B.55分钟
C.60分钟
D.390分钟
5、和硅酸盐水泥相比,掺有混合材料的水泥的如下那个性质较差(C)
A.耐水性
B.后期强度
C.抗冻性
D.泌水性
6、引起硅酸盐水泥熟料发生快凝主要原因是(B)
A.C3S水化快
B.C3A水化快
C.C4AF水化快
D.C2S水化快
7、水泥产生假凝的主要原因是(C)
A.铝酸三钙的含量过高
B.石膏的掺入量太少
C.磨水泥时石膏脱水
D.硅酸三钙的含量过高
8、根据GB/T175-2007,下列指标中属于选择性指标的是(C)
A.KH减小,SM减小,铝率增大。B.KH增大,SM减小,铝率增大。
C.KH减小,SM增大,铝率减小。D.KH增大,SM增大,铝率增大。
9、硅酸盐水泥熟料的烧结范围一般在(C)
A.50-80℃
B.80-100℃
C.100-150℃
D.150-200℃
10、国家标准规定矿渣硅酸盐水泥中SO3(D)
A <3.5%
B ≤3.5%
C <4.0%
D ≤4.0%
11、复合硅酸盐水泥的代号是(D)
A
P·S
B
P·O
C
P·F
D
P·C
12、国家标准规定骨质瓷的热稳定性为(A)
A.140℃
B.160℃
C.180℃
D.200℃
13、一般来说,凡烧成温度降低幅度在(C)℃以上者,且产品性能与通常烧成的性能相近的烧成方法可称为低温烧成。
A.40-60 ℃
B.60-80℃
C.80-100℃
D.100-120℃
14、电炉炉温为1250-1400℃可采用的电热体是(C)。
A.镍铬丝
B.铁铬钨丝
C.硅碳棒
D.二硅化钼棒
15、一般将日用陶瓷的烧成过程分为几个阶段。(C)
A.2
B.3
C.4
D.5
16、干燥过程中,最容易引起坯体变形的阶段是(B)
A.升速干燥阶段
B.等速干燥阶段
C.降速干燥阶段
D.平衡阶段
17、改善泥浆流动性一般不用NaOH作稀释剂的原因是(B)
A.碱性太强
B.Ca(OH)2溶解度较大
C.Mg(OH)2溶解度较大
D.与泥浆中其它物质发生反应
18、超薄型瓷片的成型可以采用的方法是(A)
A.流延法成型
B.可塑成型
C.压制成型
D.注浆成型
19、压制成型四种加压方式,坯体密度更加均匀的是(C)
A.单面加压
B.双面同时加压
C.四面加压
D.双面先后加压 20、釉与玻璃的不同之处是(D)
A.各向同性
B.无固定熔点
C.具有光泽
D.含较多的Al2O3
二、多选:(每题2分,共20分)
1、水泥的凝聚时间主要有下列哪些矿物控制(A
C)
A.C3A
B.C2S
C.C3S
D.C3A
E.C4AF
2、影响熟料烧结过程的因素有哪些(A B C E)
A.最低共熔温度
B.液相量
C.氧化钙和硅酸二钙溶于液相的速率
D.气氛
E.液相粘度
3、改善硬化水泥浆体耐久性的措施有(A C D E)
A.选择适当组成的水泥
B.提高细度
C.掺适量混合材料
D.提高施工质量
E.进行表面处理
4、当原料的变异系数Cv为(A
B)时,不需要进行预均化
A.2
B.4
C.6
D.6
E.10
5、影响水泥水化程度主要因素是(B C
D)
A.掺入适量混合材料
B.熟料矿物组成 C.细度
D.养护温度
E.液相量
6、影响泥浆流变性的因素是(B
C
E)
A.泥浆矿物组成 B.可溶性盐类
C.陈腐
D.泥浆触变性
E.有机物质
7、骨质瓷是指以磷酸钙Ca3(PO4)2为熔剂的“磷酸盐-高岭土-石英-长石”系统瓷,烧成后坯体构成主要有(B
D
E)。A.莫来石
B.钙长石
C.方石英
D.β-Ca3(PO4)
2E.玻璃相
8、影响乳浊釉乳浊效果的因素是(A
C
E)
A.微晶与玻璃折射率的差值
B.坯体的透光度
C.微晶的大小
D.釉的厚度
E.微晶的分散均匀程度
9、晶界上的杂质往往是以(A
D
E)形式存在。
A.分散沉积物
B.渗透沉积物
C.偏析沉积物
D.扩散沉积物
E.颗粒状沉积物
10、对于什么样的产品我们采用注浆成型方法(A
D
E)
A.形状复杂
B.简单回转体
C.形状规整
D.薄壁
E.大件
三、判断:(对“”,错“”,每题1分,共15分)
1、硅酸盐矿物主要指C3A、C4AF。×
2、安定性不合格的水泥为不合格品。×
3、通过固相反应能形成的矿物有C3S。×
4、石膏是缓凝剂,石膏对水泥凝结时间的影响与掺入量成正比。×
5、熟料的热耗表示生产1kg熟料所消耗的热量。√
6、影响熟料早期强度的矿物主要是C2S。×
7、矿渣中玻璃体的含量越多,矿渣的活性越好。√
8、GB规定矿渣硅酸盐水泥,水泥中MgO的含量不得超过5.0%。×
9、石灰饱和系数表示熟料中二氧化硅被饱和成硅酸三钙的程度。√
10、陶瓷坯料酸度系数增大,坯体脆性降低,强度降低,制品透光度提高。×
11、B2O3是玻璃形成体,以硼氧三角体和硅氧四面体为结构单元,在硼硅酸盐玻璃中与硅氧四面体共同组成结构网络。×
12、干燥速度主要取决于坯体的内扩散速度和外扩散速度,同时,坯体的干燥速率也受传热效率,坯泥性能,坯体形状和厚度等影响。√
13、双面注浆的模型比较复杂,而且与单面注浆一样,注件的均匀性并不理想,通常远离模面处致密度大。×
14、粘土矿物的基本构造单位是硅氧四面体和铝氧八面体。√
15、结晶方向不同的、直接接触的同成分晶粒间的交界处称为相界×
四、简答(每题5分,共25分)
1、熟料冷却的目的是什么?为什么要急冷?
答 :熟料冷却的目是:改善熟料质量与易磨性;(1分)降低熟料温度,便于熟料的运输、储存和粉磨;(1分)部分回收熟料出窑带走的热量,预热二、三次空气,从而降低熟料热耗,提高热利用率。(1分)急冷是为了防止或减少 C 3 S的分解;避免β-C 2 S转变成γ-C 2 S;改善了水泥安定性;(1分)使熟料C 3 A晶体减少,提高水泥抗硫酸盐性能;改善熟料易磨性;可克服水泥瞬凝或快凝。(1分)
2、与硅酸盐水泥相比,为什么掺有混合材料的水泥的早期强度低而后期强度却较高? 答: 由于矿渣水泥中水泥熟料矿物相对地减少了(与硅酸盐水泥相比),而矿渣的 潜在活性早期尚未得到充分激发与发挥,水化产物相对较少,因而矿渣水泥的早期硬化较漫,所表现出来的是水泥的 3d、7d强度偏低。(2分)
随着水化不断进行,矿渣的潜在活性得以激发与发挥,虽然 Ca(OH)2 在不断减少,但新的水化硅酸钙、水化铝酸钙以及钙矾石大量形成,水泥颗粒与水化产物间的连结较硅酸盐水泥更紧密,结合更趋牢固,三维空间的稳固性更好,硬化体孔隙率逐渐变低,平均孔径变小,强度不断增长,其28d以后的强度可以赶上甚至超过硅酸盐水泥。(3分)
3、什么是泥浆触变性?解释泥浆触变性产生的原因。
黏土泥浆或可塑泥团受到振动或搅拌时,黏度会降低而流动性增加,静止后逐渐恢复原状。(2分)
黏土类矿物大多数是板状颗粒,在板面上往往带负电荷,而端面处带有一定的正电荷,端——板面相互吸引,形成棚架结构.很多水被包围在棚架中,不能自由流动,(2分)所以泥浆的流动性差.这种结构对着搅动而逐步打开,一旦静止时又渐渐恢复.(1分)
4、影响泥浆压滤效率的因素
(1)压力大小压力大小和加压方式。一般来说,送浆压力与压率速度成正比,但随着泥层的增厚,毛细管曲折,阻力加大,会降低压滤速度。(1分)
(2)加压方式。开始压滤时,用低的压力,以免泥层颗粒间的毛细管减少和滤布孔堵塞。(1分)
(3)泥浆温度。液体黏度随着温度的提高而降低。一般控制在30-50 ℃,太高影响泥料的可塑性。(1分)
(4)泥浆比重。泥浆的密度小,往往要延长压滤时间。泥浆的相对密度一般控制在1.45-1.55%(1分)
(5)泥浆的性质。颗粒越细,粘性越强的泥料滤泥越困难。(1分)
5、在我国日用陶瓷生产中,为什么北方常采用烧氧化焰而南方烧还原焰? 我国北方制瓷原料大多采用二次高岭土与耐火粘土,含铁较少而含氧化钛、有机物较多,坯体粘性和吸附性较强,适宜用氧化气氛烧成。(3分)
南方制瓷原料大多采用原生高岭土和瓷石,含铁量较多而含氧化钛、有机物较少,粘性和吸附性较小,适宜用还原气氛烧成。(2分)
五、问答、论述(每题10分,共20分)
1、硅酸盐水泥熟料中主要矿物对强度的发展有什么影响?有哪些因素影响水泥强度?
答:1)主要矿物对经强度发展的影响: C 3 S早期强度高,强度的绝对值和强度的增进率较大;(2分)C 2 S:早期强度低,但28d以后强度仍能较快增长,一年后其强度可以赶上甚至超过阿利特的强度;(2分)C 3 A早期强度较高,但绝对值不高。它的强度3d之内就大部分发挥出来,以后却几乎不再增长,甚至倒缩;(2分)C 4 AF早期强度类似于铝酸三钙,而后期还能不断增长,类似于硅酸二钙。(2分)2)影响水泥强度的因素有:熟料的矿物组成;水泥细度;施工条件包括水灰比及密实程度、养护温度、外加剂等。(2分)
2、烧结过程中出现晶粒长大现象可能与哪些因素有关?其对烧结是否有利?为什么?
答:晶粒的异常长大是指在长大速度较慢的细晶基体内有少部分区域快速长大形成粗大晶粒的现象。(2分)在单相和复相材料中如果混料不均匀就很容易造成晶粒异常长大,通常情况下,在烧结过程中发生异常长大与以下主要因素有关:
① 材料中含有杂质或者第二相夹杂物(2分)
② 材料中存在高的各向异性的界面能,例如固/液界面能或者是薄膜的表面能等(2分)
③ 材料内存在高的化学不平衡性。(2分)烧结过程中的晶粒异常长大同样会降低烧结驱动力,对烧结样品的结构均匀性和性能均匀性都不利,通常提高原始材料的纯度及混料均匀性等方法均能避免晶粒异常长大现象的发生。(2分)
第五篇:无机非金属材料专业毕业论文
新型无机非金属材料的发展与挑战
(李婷 无机非金属08-1班 14号)
无机非金属材料、金属材料、高分子合成材料与人们的衣、食、住、行关系非常密切。材料是人类生活必不可少的物质基础。没有感光材料,我们就无法留下青春的回忆;没有特殊的荧光材料,就没有彩色电视;没有高纯的单晶硅,就没有今天的“奔腾IV”;没有特殊的新型材料,“神舟号”宇宙飞船就无法上天。随着科学和生产技术的发展以及人们生活的需要,一些具有特殊结构、特殊功能的新材料相继研制出来,如半导体材料:超硬材料、耐高温材料、发光材料等,我们称这些材料为新型无机非金属材料。水泥、玻璃、陶瓷等都属于传统的非金属材料,像玻璃刀上的人造金刚石、作为手表轴承的人造红宝石、煤气炉中用于电子打火的压电陶瓷、传输信息的光导纤维都属于新型无机非金属材料。
近20年来,世界各工业发达国家对于发动机用高温结构陶瓷复合材料的研究与开发—直十分重视,相继制定了各自的国家发展计划,并投人了大量的人力、物力和财力,对这一新型材料寄予厚望。美国国防关键技术计划以及日本的月光计划等都把高温结构陶瓷基复合材料作为重点研究对象,其研制目标是将发动机热端部件的使用温度提高到1650℃或更高,从而提高发动机涡轮进口温度,达到节能、减重、提高推重比和延长寿命的目的,满足军事和民用热机的需要。此外,有许多陶瓷基复合材料的发动机高温构件正在研制之中。如美国格鲁曼公司正研究跨大气层高超音速飞机发动机的陶瓷材料进口、喷管和喷口等部件;美国碳化硅公司用Si34N/SiCw制造导弹发动机燃气喷管; 杜邦公司研制出能承受1200-1300℃、使用寿命2000h的陶瓷基复合材料发动机部件等。目前导弹、无人驾驶 飞机以及其它短寿命的陶瓷涡轮发动机正处在最后研制阶段,美国空军材料实验室的研究人员认为,12O4-1371℃发动机陶瓷基复合材料已经研制成功。
由于提高了燃烧温度,取消或减少了冷却系统,预计发动机热效率可从目前的26%提高到46%。英国罗—罗公司认为,未来航空发动机高压压气机叶片和机匣、高压与低压涡轮盘及叶片、燃烧室、加大燃烧室、火焰稳定器及排气喷管等都将采用陶瓷基复合材料。预计在21世纪初,陶瓷基复合材料的使用温度可提高到1650℃或更高。
我知道如果想在无机非金属材料领域有一番作为并非易事。因为科学在发展,科技在进步,各种新兴的材料不断被研发出来,所以必须时时刻刻关心当今世界材料科学的最新动态。现在,而我所能做的就是认认真真的学好所学的基础知识为将来的发展打下坚实的基础。此外,材料科学并不是理论上的,更重要的是实践上的!所以,提高自己的动手能力,创新实验能力也是必不可少的。
既然无机非金属材料是一个前沿学科,那么单单的本科学历显然是不够的,是无法满足社会对此领域的需求的,因此,考研成为了我们继续深造的基本要求。研究生会有更多的机会参与科学的研究,会有更多的机会学习的最新的理论知识,会有更多的机会进行高水平的实验,而且研究生再就业方面更具有竞争力,所以考研势在必行!
此外,我国的材料水平还没有达到世界顶尖,我国是一个材料大国,但是我们不是一个材料强国,虽然我国每年的材料需求都是巨大的,各个领域都依靠材料,但是我国的一些先进材料基本都是进口的,所以我们要赶上其他发达国家比如美国还需要国人的不断努力,不断去奋斗。如果可能的话我想我会去国外继续深造,学习更先进的理论知识,将来能为祖国贡献自己的一份力量!!