第一篇:小学数学《平行四边形的面积》教学设计及反思(推荐)
小学数学《平行四边形的面积》教学设计
课题负责人 郑晓银
教学内容:人教版小学五年级数学上册《平行四边形的面积》计算。
教材分析:《平行四边形面积》教学是在学生已经掌握并能灵活运用长方形面积计算和平行四边形特征的基础上进行教学的,它将为后面学习梯形、三角形、圆的面积及立体图形的表面积奠定基础,因此起到承上启下的作用。
学情分析:学生虽然已经学过了长方形面积计算方法和平行四边形特征,但小学生的空间想象能力不够丰富,推动平行四边形面积计算公式有困难,因此,本节课将让学生充分运用已有的知识,全面参与新知识的发生、发展和形成过程。
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点:理解公式并正确计算平行四边形的面积。
教学难点:理解平行四边形面积公式的推导过程。学具准备:每个学生准备一个平行四边形,一把剪刀。
教学过程:
一、导入新课 1.什么是面积?
2.请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习习近平行四边形面积计算。
二、民主导学
(一)数方格法 用展示台出示方格图
1.这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)2.这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
3.请同学看方格图填80页最下方的表,填完后请学生回答发现了什么? 小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1.这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2.然后指名到前边演示。
3.教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4.观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。5.引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)6.教学用字母表示平行四边形的面积公式。板书:S=a×h 说明在含有字母的式子里,字母和字母中间的乘号可以记作“•”,写成a•h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a•h,或者S=ah。
7.完成第81页中间的“填空”。8.验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?
三、检测导结
1.学生自学例1后,教师根据学生提出的问题讲解。2.判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()(2)平行四边形底越长,它的面积就越大()3.做书上82页2题。4.小结
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的? 5.作业:练习十五第1题。
附:板书设计
平行四边形面积的计算
长方形的面积=长×宽平行四边形的面积=底×高 S=a×h S=a•h或S=ah 《平行四边形面积的计算》教学反思 本节课的教学模式大部分是在新授时采用先复习长方形的面积计算公式,接着出示一平行四边形,让学生求其面积,学生很茫然而导致不知其面积,老师就教会学生用数方格的方法让学生数出面积,紧接再比较平行四边形和长方形,它们的什么变了,什么没变,长方形长、宽和平行四边形的底、高有什么关系,既而猜测出平行四边形的面积计算公式,最后进行验证。
结合我班的实际情况,我改变了这种教学模式,先出示一个已经画过方格的不规则图形,采用数方格的方法知道其面积,紧接我把这一图形反过来,问:“如果没有这些方格,你有办法知道它的面积吗?略停了一会,其中一生说把凸出的部分剪下来补到凹的地方,这样割补的前后图形的面积没有发生变化,同时也把一个不规则的图形转化成已学的图形,学生顿时恍然大悟,明白了“割补”把问题转化的简单一些,学生在不知不觉中感受了“转化”思想在数学学习中的价值,尤其在学习习近平面图形的面积时作用非常大,这样既积累了学生的活动经验,又为今后学习其他平面图形的面积打好基础。
第二步:我出示一个长方形框架,告诉长和宽,让学生求面积,学生很快完成,我拉动两角,它变成一个平行四边形,它的面积会发生怎样的变化呢?学生兴致很浓地说出它的变化,平行四边形的面积与什么有关呢?带着这些问题,学习今天的内容。
第三步:学生拿出准备好的平行四边形,让他们测量出需要的数据,求其面积,学生充分调动自己的脑、手、口,参与到探究的过程中。
第四步:想办法验证自己求的面积是否正确?有的学生剪、拼,有的学生看书帮忙,有的小组商议,学习气氛热烈,很快验证完毕,并总结出计算公式。
通过本节课的教学,我认为老师应给学生“做数学”的机会,并提供“做数学”的活动,让学生不仅知其然,而且知其所以然,这样的学习才是有效的,也是学生自己需要的。再一方面,在这种总结公式类型的课,我们不妨多给学生充足的时间和空间,把学生放在主体地位上,多让学生自己去探索、去建构数学模型,这样,学生经历了自我探索,自我发现的过程,学生学习的积极性和主动性也充分发挥出来,同时也树立学习的自信心,学习效率也自然高起来。
第二篇:《平行四边形面积》数学教学反思
新课标要求我们教师要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。所以,在《平行四边形的面积》一课的教学中,我让学生动手实践,自主探究,让他们经历了知识的形成过程。而本节课大部分时间都是学生活动,例如:学生借助已有的经验和方格图,让他们初步感知平行四边形的面积可能与它的底和其对应的高有关,再通过剪、拼等活动,让学生在操作、观察、比较中,概括平行四边形的面积的计算方法,在此过程中教师还应注意数学思想方法的渗透,即“转化”思想的渗透,让学生学会用以前的知识来解决现有的问题(例如放手让学生将自己准备的平行四边形,通过剪拼转化成长方形,这样学生有非常直观的“转化”感受。)此时,教师可以这样对学生说:“探索图形的面积公式,我们可以把没学过的图形转化为已经学的图形来研究。”这样一来,学生比较容易想到将新的、陌生的问题转化成相对熟悉的问题。从而促进学生主动探索解决问题的方法,体会解决问题的策略,提高学生的数学应用意识。
除此之外,在课堂练习设计分了3个部分:
1、基础练习
2、提升练习
3、思维训练,题目以多种形式呈现,排列遵循由易到难的原则,层层深入,吸引了学生的注意力,使各个层次的学生都有面对挑战的信心,激发了学生兴趣、引发了思考、发展了思维。
第三篇:数学《平行四边形面积》教学反思
在多边形的面积这一单元的教学中,都是以引导学生自主探索为教学目标。让学生通过剪拼、平移、旋转等方法,把未知转化成已知,并在动手实践的过程中,发现各种图形之间的内在联系,从而探索出平面图形的面积公式。
平行四边形面积公式的基础是长方形的面积公式,学生在三年级已经掌握,所以教材首先引导学生探索平行四边形的面积公式。例1出示了两组不规则图形,让学生比较每组的两个图形面积是否相等?通过交流运用剪拼、平移的方法转化成长方形后发现每组的两个图形面积相等。接着进入例2的教学环节:出示一个平行四边形,提出“你能把平行四边形转化成长方形吗?”带着学生进入了平行四边形面积的探索过程。先让学生感受转化思想再运用转化方法探索新知,但是学生在这一过程中真正是自主探索吗?教师是引导还是支配?如何真正引导探索呢?我产生了这样的想法:沟通知识间的联系,引发对新知的自主探索。
呈现第一个问题:“有四根小棒,两根8厘米,两个4厘米,你能拼成学过的平面图形吗?请画在方格纸上”。(学生在方格纸中画出了平行四边形或长方形)
呈现第二个问题:“这两个图形有什么联系吗?”
(学生出现争议:周长相同,面积相同;周长相同,面积不同;周长和面积都不同。)
对学生出现的争议,最好的办法就是让学生自己解决。于是辩论开始了:
生1:“都是由两根8厘米和两根4厘米的小棒围成的图形,周长是相等的”。对于周长相等,大家都达成了共识;生2:“长方形面积是长乘宽,8×4=32,平行四边形的面积也是8×4=32,所以面积相等”;生3:“不对,平行四边形的边是斜的,长方形的这条边是直的,不能都用8×4”;对于面积的比较产生了异议。
师:“认为平行四边形的面积是8×4的同学请说明这样算的道理;认为不是8×4的同学请想办法算出这个平行四边形的面积?”同学们拿出课前剪下的平行四边形忙开了,自主探索的过程自然开始了。
第四篇:平行四边形面积数学教学设计
新课堂优秀教学设计评选
课题:平行四边形的面积 学校:响河小学 作者:刘庆祥
时间:2017年10月30日
一、教学内容:
人教版五年级上册第六单元87-88页
二、【教学目标】
1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,理解和掌握平行四边形的面积计算公式,能正确求平行四边形的面积。
2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较活动,初步认识转化的方法,发展学生的空间观念。
3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。【教学重点、难点】
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。【教具、学具准备】
多媒体课件、平行四边形纸片、剪刀、三角板等。
【教学过程】
(一)成长热身
1、出示情境图:
2、师:这个花坛什么形状?以前我们学习了长方形的面积,同学们,知道怎样求长方形的面积吗?
生:长方形面积=长×宽。(板书:长方形面积=长×宽。
师:有了这个成果,人们也会以此类推求出其他平面图形的面积,比如说,这个花坛,它是什么形状?(平行四边形)它的面积怎么求呢?这节课我们就来研究平行四边形的面积。(板书:平行四边形的面积)
(二)、成长呈现
1、猜一猜:
师:先来猜猜平行四边形的面积与什么相关? 出示情景图,平行四边形
师:我把平行四边形向上拉,同学们观察出谁变了,谁没变? 生:平行四边形底没变,高变大了,面积变大了
师:我把平行四边形向下拉,这次呢?有什么变化? 生:平行四边形底没变,高变小了,面积变小了 师:同学们发现平行四边形与什么相关? 生:平行四边形的面积与底和高相关 师:平行四边形面积可能怎么求呢? 生:平行四边形面积=底×高
2、数一数:
师:好,用我们的面积格直接测量一下,验证一下。
生1:先数整格的,一共有20格,再看半格的,合成4个整格,所以一共就要24格,也就是24 m2。
生2:我把左边这部分移到右边,变成长方形,全部都是整格的,4×6=24格。
生3:我在中间沿着高把它分开,左边的一道右边去,变成长方形,长方形面积=长×宽,4×6=24格 师:第二、三种方法特别有创意,特别快,把这个部分移过来,平行四边形就变成了什么形?(长方形)这样数起来既简单、又快、又方便。把平行四边形转化成长方形,利用旧知识解决新问题,多么好的方法呀!
3、剪一剪,拼一拼:
师:(出示一个平行四边形)这个平行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)这条虚线也就是平行四边形的哪部分?(高)还记得怎样画高吗?
师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!拿出课前老师发给你的平行四边形,动手剪一剪、拼一拼,把它转化一个长方形。学生动手操作)。汇报结果。
4、议一议:
师:老师有几个问题,小组讨论:
⑴ 原来平行四边形的面积和拼成的长方形的面积相等吗?
⑵ 原来平行四边形的底与拼成的长方形的长有什么关系?
⑶ 原来平行四边形的高与拼成的长方形的宽有什么关系?
汇报:沿着平行四边形的高剪成两部分,平移过去拼成了长方形。平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,长方形的的面积=长×高,所以,平行四边形的面积=底×高。
师:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=ah(板书S=ah)
(三)、成长训练
1、基本练习:
例1:平行四边形花坛的底是6厘米m,高是4m,它的面积是多少?
2、综合练习:
1)只列式不计算:只列式,不计算。
2)你能想办法求出下面平行四边形的面积吗?先说说你会怎样做?(先画出一条高,量出高和底的长度,再用底×高就求出平行四边形的面积)㈢ 扩展练习:
4、下面图中平行四边形的面积相等吗?你想到了什么?
(四)、成长总结
师:这节课你有什么有收获?
师:同学们学得非常认真,我们通过把平行四边形转化成长方形推导出了平行四边形的面积,这种方法很好,变新知识为旧知识,在以后的学习中我们会常用到这种方法,希望同学在以后的学习中也多动脑筋。
第五篇:平行四边形面积教学设计 和反思
《平行四边形的面积》教学设计 张倩楠
教学目标
1、理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算的方法。
2、运用平行四边形的面积公式解决实际问题。
3、体验数学知识在生活中的作用,并从中感受到学习数学的乐趣。重点难点
教学重点:理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算方法。
教学难点:理解平行四边形面积公式的推导过程 【导入】
一、课前导学
引导学生复习长方形的面积计算公式、指认平行四边形的底和高等,为学习习近平行四边形的面积作铺垫。
师:我们学过的图形中你最喜欢什么图形?关于它你知道哪些数学知识?
学生汇报:长方形、正方形的周长、面积公式,以及平行四边形的对边相等、容易变形等特点。师:那么这节课你想研究什么呢? 学生:平行四边形的面积 导入:这节课我们就来研究平行四边形的面积。教师板书课题。
二、探究展示
1.师(出示一个平行四边形):猜想这个平行四边形的面积是多少? 2.师(出示自学提示)
(1)借助手中的学具,用自己喜欢的方法研究平行四边形的面积。(2)并在小组内交流方法。学生阅读自学提示。
3.学生借住透明1平方厘米格、剪刀、平行四边形图形以及长方形、平行四边形对比表格在小组内动手操作演示平行四边形的面积公式。学生自主学习„„
(教师教师巡视,了解实验情况,物色并指导展示小组进行操作和汇报)
4.组织学生进行学习成果汇报:
师:哪个小组愿意上来把你们的操作实验的过程和结果展示给全班同学们看? 用什么方法,发现了什么,得到什么结论?这个小平行四边形的面积是多少?
生1:我用数方格的方法,得到的这个小平行四边形的面积是24平方厘米;
生2:我通过剪一剪,把平行四边形分成了一个三角形和一个梯形,最后拼成一个长方形,平行四边形和长方形的面积不变,还发现长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形的面积就等于底乘高;
生3:我沿着平行四边形的高剪一剪,把平行四边形分成了两个梯形,最后拼成一个长方形,平行四边形和长方形的面积不变,还发现长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形的面积就等于底乘高;
生4:我沿着平行四边形侧底的高剪一剪,把平行四边形分成了一个三角形和一个梯形,最后拼成一个长方形,平行四边形和长方形的面积不变,还发现长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形的面积就等于底乘高。
5.课件演示学生的剪拼接的过程。师:老师综合大家的方法演示你们的方法。
6.教师小结: 通过剪我们把平行四边形最后拼接成长方形,这期间面积不变,并发现长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形的面积就等于底乘高。
三、课堂练习
1.师:(出示例题):平行四边形花坛的底是6m,高是4m,它的面积是多少? 学生读题并解答。2.解答刚才大家猜想平行四边形的面积到底是多少?你想提示大家注意什么?
学生汇报:平行四边形的面积公式当中的底和高必须是相对应的。看书质疑
3.师(出示题目):测量你手中的平行四边形的底和高,并求一求它的面积是多少? 学生动手测量平行四边形的底和高,并计算出它的面积。
四、课堂小结
1.师:今天我们自主探究了什么知识?在这节课里,你觉得给自己印象最深刻的地方是什么?
2.学生汇报:这节课我们通过猜测、验证的方法得到了平行四边形的面积,知道可以把平行四边形剪拼成长方形,得到平行四边形的面积公式=底×高 教学反思:
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。” 《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。我设立的教学目标是(1)使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;(2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、注重数学思想方法的渗透
在教学设计方面,我先是让学生大胆猜测两块香蕉地(等底等高的长方形与平行四边形)的面积哪一个大,再让学生通过动手操作、验证平行四边形的面积,其实它们的面积是一样大的。
二、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动
新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
四、我的遗憾
课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种,后两种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第二、三种剪法。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。