第一篇:粉末冶金现状及发展
粉末冶金技术
摘要:粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。粉末冶金材料是指用几种金属粉末或金属与非金属粉末作原料,通过配料、压制成形、烧结等工艺过程而制成的材料。这种工艺过程成为粉末冶金法,是一种不同于熔炼和铸造的方法。其生产过程与陶瓷制品相类似,所以又称金属陶瓷法。粉末冶金法不仅是制取具有某些特殊性能材料的方法,也是一种无切削或少切削的加工方法。它具有生产率高、材料利用率高、节省机床和生产占地面积等优点。但金属粉末和模具费用高,制品大小和形状受到一定限制,制品的韧性较差。粉末冶金法常用于制作硬质合金、减摩材料、结构材料、摩擦材料、难熔金属材料、过滤材料、金属陶瓷、无偏析高速工具钢、磁性
材料、耐热材料等。
关键词:粉末冶金、基本工序、应用、发展方向、问题及机遇
Powder metallurgy technology Abstract: Powder metallurgy is used for preparing metal or metal powder(or metal powder and metal powder mixture)as raw material, after forming and sintering, manufacture of metal materials, composite and various types of products technology.Powder metallurgy method and the production of ceramic have similar place, therefore, a series of new powder metallurgy technologies can also be used for preparing ceramic material.Powder metallurgy materials refers to the use of several kinds of metal powder or metal and non metal powder as raw material, through mixing, pressing, sintering process and made of materials.The process to become powder metallurgy method, is different from the melting and casting method.Its production process and ceramic products are similar, so called ceramic metal.Powder metallurgy method not only has some special properties of material preparation method, is also a kind of without cutting or less cutting processing method.It has high productivity, high material utilization rate, saving machine tools and production area etc..But the metal powder and high mold cost, product size and shape are subject to certain restrictions, flexibility is poor.Powder metallurgy method often used for the production of hard alloy, antifriction material, structural material, friction material, refractory metal materials, filter materials, metal ceramic, no segregation in high speed tool steel, magnetic materials, heat resistant materials.Key words: powder metallurgy, basic process, application, development trend, problems and opportunities
一、世界粉末冶金工业概况
2003年全球粉末货运总量约为88万吨,其中美国占51%,欧洲18%,日本13%,其它国家和地区18%。铁粉占整个粉末总量的90%以上。从2001年起,世界铁粉市场持续增长,4年时间增加了近20%。
汽车行业仍然是粉末冶金工业发展的最大动力和最大用户。一方面汽车的产量在不断增加,另一方面粉末冶金零件在单辆汽车上的用量也在不段增加。北美平均每辆汽车粉末冶金零件用量最高,为19.5公斤,欧洲平均为9公斤,日本平均为8公斤。中国由于汽车工业的高速发展,拥有巨大的粉末冶金零部件市场前景,已经成为众多国际粉末冶金企业关注的焦点。
粉末冶金铁基零件在汽车上主要应用于发动机、传送系统、ABS系统、点火装置等。汽车发展的两大趋势分别为降低能耗和环保;主要技术手段则是采用先进发动机系统和轻量化。
欧洲对汽车尾气过滤为粉末冶金多孔材料又提供了很大的市场。在目前的发动机工作条件下,粉末冶金金属多孔材料比陶瓷材料具有更好的性能优势和成本优势。
工具材料是粉末冶金工业另一类重要产品,其中特别重要的是硬质合金。目前制造业的发展朝着3A方向,即敏捷性(Agility)、适应性(Adaptivity)和可预测性(Anticipativity)。这要求加工工具本身更锋利、刚性更好、韧性更高;加工材料的范围扩大到吕合、镁合金、钛合金以及陶瓷等;尺寸精度要求更高;加工成本要求更低;环境影响要减到最小,干式加工比例更大。这些新要求加快了粉末冶金工具材料的发展。硬质合金的晶粒(<200nm=和超粗晶粒(>6um);涂层技术发展很快,CVD、PVD、PCVD技术日益完善,涂层种类也很多,从常用的CVDTiCN/Al2O3/TiN到CVDPCBN(聚晶立方BN)以及PVDTiAIN,Al2O3,cBN(立方BN)和SiMAlON等,满足加工场合的需要。
信息行业的发展也为粉末冶金工业提供了新的契机。日本电子行业用的粉末冶金产品已经达到了每年4.3亿美元,其中热沉材料占23%,发光与点极材料占30%。前者主 要包括散热材料,如Si/SiC,Cu-Mo,Cu-W,Al-SiC,AlN以及Cu/金刚石等材料;后者则主要包括钨、钼材料。
二、粉末冶金技术简介
粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。
粉末冶金工艺的基本工序是:
1、原料粉末的制备。现有的制粉方法大体可分为两类:机械法和物理化学法。而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。其中应用最为广泛的是还原法、雾化法和电解法。
2、粉末成型为所需形状的坯块。成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。
3、坯块的烧结。烧结是粉末冶金工艺中的关键性工序。成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。
4、产品的后序处理。烧结后的处理,可以根据产品要求的不同,采取多种方式。如精整、浸油、机加工、热处理及电镀。此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。粉末冶金材料和工艺与传统材料工艺相比较:
1.粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品,比如金属与非金属组成的摩擦材料等,控制制品的孔隙率和孔隙大小,可生产各种多孔性才材料和多孔含油轴承。
2.提高材料性能。用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细 4 小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。3.利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。提高材料利用率,降低成本。粉末冶金工艺的优点:
1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。
2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。
3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。
4、粉末冶金法能保证材料成分配比的正确性和均匀性。
5、粉末冶金适宜于生产同一形状而数量多的产品,特别是齿轮等加工费用高的产品,用粉末冶金法制造能大大降低生产成本。粉末冶金工艺的缺点:
1、在没有批量的情况下要考虑 零件的大小.2、模具费用相对来说要高出铸造模具.三、粉末冶金技术的应用与发展
1、用用于机械零件的制造
现代粉末冶金技术在机械制造中的应用范围正沿两个方向扩展:一是制取承受高负荷的零件;二是制取几何尺寸复杂、尺寸精度高的零件,并使最终机械加工量减至最小限度。
在承受高负荷零件的制造中,后致密化技术中的锻造(以下简称粉末锻造)和热等静压起到了非常重要的作用。
粉末锻造又称预型坯热端,是粉末冶金预热段组成的复合工艺。用这种方法制成的零件,其密度可达理论密度的99.4%。它主要用于铁基零件,用用的材料主要是碳钢和低合金钢,也用也高温合金。用这种方法制造的锦基高温合金零件的强度—温度性能已经超过了传统方法制造的同一合金零件。
热等静压是在高温高压下同时实现粉末的成型和烧结,一次制成成品零件。用热等静压制得的零件晶粒细小均匀,密度接近理论密度,并且分布均匀,且具有优异的机械性能和物理性能。
制造形状复杂、尺寸精度高的零件所辖用的工艺方法主要有粉末锻造、注射成型、热等静压和粉末冶金的组合工艺。
用于这一用途的粉末锻造有两种:一种是采用松装烧结制成接近最终制品的压坯,再放入模内进行锻压的方法。这种方法制成的铁基零件密度虽较低(约为7.2g/ cm3), 但粉末分布均匀(密度差不超过0.05g/cm3), 适用于制造汽车发动机水泵叶轮, 四磁芯电磁仪表零件及多管接头零件。另一种是前述的预型坯热锻法。它特别适用于制造环形零件, 如齿轮、离合器毂、凸轮和轴承座等。
用注射成型法可使所制零件密度达到理论密度的96%。以波音707 和波音727 飞机机翼传动机构的螺纹部分用镍圈为例, 这种圈结构复杂且有内螺纹, 过去用锻坯需经14 道工序加工而成, 采用注射成型, 可以制造几乎无余量的零件, 只需少量的磨削和校准, 并且该零件具有高的抗腐蚀性和好的机械性能。
热等静压工艺拟用于用高温合金制造的滚刀、涡轮发动机轴承和轮, 及用钛合金制造的飞机涡轮发动机和机身零件, 可减少机加工作量, 提高材料利用率。
粉末冶金组合工艺可用于制造形状复杂、用常规方法不能制造的零件或大型粉末冶金零件;可用于制造不同部位具有不同化学成分、密度及物理—力学性能的零件;还可与不同材料(如钢或铝等)组合烧结成适用于某种专门用途的零件。2、应用于合金性能的改进
随着对材料要求的不断提高, 传统的铸锭冶金(IM)方法对合金的性能改进已趋于顶峰, 粉末冶金(PM)技术成为改进和研制合金的一种手段。2.1 铝合金
到目前为止, 用PM 方法改进或研制的铝合金按性能可分为4 类: 高强度, 高弹性模量, 低密度, 热强和功能铝合金。
7090, 7091, MR61, MR64, CW67, IN9021 和IN9052 属PM 高强度铝合金。前5 种是RSP(快冷合金粉末)合金, 是在7
系合金的基础上添加少量的Co, Zr 或Cr 作为附加剂和稳定剂而制得的;后两种是用机械合金化方法制得的, 它们在抗拉强度、抗蚀性、断裂韧性等方面具有良好的综合性能。
PM 高弹性模量、低密度铝合金大多数是在IN2024 合金的基础上(也有降低Cu, Mg 含量及用Zr取代Cr 的)添加1% ~ 3% Li 的铝锂合金。Al-Cu-Li-Zr, Al-Li-Zr 及Al-Cu-Mg-Li-Zr 是发展高弹性模量、低密度铝合金的主要方向。对于要求更高模密比的合金, 可考虑用Be 或Mn 来取代或部分取代Cu, Mg, 或研制Al-Li-Be 合金。另外, PM 方法解决了IM 方法生产铝锂合金的困难, 还可细化晶粒和第二相粒子, 消除偏析, 提高合金的塑性和韧性。
在热强铝合金方面, 研究较多的是Al-Fe 系合金。已商品化的CV78 比现有的IN2219 的使用温度提高50~ 90 , 用它代替钛合金制造喷气式发动机涡轮, 成本可降低65%, 重量减轻15%。正在研究并已开始使用的有8009 和FVS1212。8009 高温强度高,断裂韧性好, 已用于锻造各种航宇零件和汽车部件, 以及薄、厚板和挤压型材;FVS1212 具有高的刚性和优异的高温性能。
功能铝合金分为两组: 一组为耐磨和尺寸稳定铝合金。它广泛用于光学机械仪表和其他仪表。另一组是低膨胀系数铝合金。这类合金一般为Al-Si 合金,含Si 量为10%~ 30% , 另外再加石墨强化, 还有增加N i, Mg, Fe, Zr 等, 以改善其抗热性。它们具有低的膨胀系数和高的弹性模量, 可用于仪表、发动机等行业。2.2 高合金材料
高合金材料如高速钢采用PM 方法生产, 可得到碳化分布均匀的细晶粒组织, 具有较高的抗弯强度和冲击强度, 韧性可提高50% , 热处理变形约为IM 高速钢的1/ 10。还大大提高了耐磨削性能, 用它制造的刀具寿命可提高3~ 5 倍。此外, 粉末冶金制品的工序较少, 材料利用率可由50%~ 60% 提高到95%。2.3 高温合金
采用先进的粉末冶金技术可以制得纯净的合金粉末, 并且合金组织均匀, 无偏析。采用PM 技术, 可使现有的高温合金的工作温度提高100 , 疲劳寿命提高100 倍, 蠕变强度大约提高20%。2.4 磁性材料
与熔铸方法相比, PM 磁性材料有如下优点: 可以生产出具有特殊性能的磁性材料, 如铁氧体、磁介质等;能用单畴粉末制造出优质永磁材料;材料晶粒细、强度大、无缩孔及偏析等弊病。用PM 方法制造体积小、形状复杂的小型磁体具有极大的竞争力。采用PM 方法生产材料最显著的一个特点是材料设计的自由度高, 通过改变材料的 成分或工艺方法以改变材料的晶体结构, 可获得不同功能的材料。3、应用于新型材料的研制 3.1 金属基复合材料
用于制造金属基复合材料的工艺方法有: PM 法、压铸法和搅拌铸造法。与搅拌铸造法相比, PM 法制取复合材料的温度低, 减轻了基体与增强体之间的界面反应, 减少了界面上硬质化合物的生成, 从而得到较好力学性能的材料;PM 法可以制造用搅拌铸造法不能制取的材料, 如用搅拌铸造法制造碳化硅钛基复合材料时, 碳化硅晶须溶于钛合金基体, 采用PM 法可避免这一现象发生。与压铸法相比, PM 法增强体的体积分数可以任意调节, 成分比较准确, 制取的材料力学性能好, 用PM 法生产的材料无比重偏析。因此, PM法已成为开发金属基复合材料的主要工艺方法之一。3.2 弥散强化高温材料
弥散强化类高温材料最早用于铁基材料的研究,近年来扩展到铝基材料。ODM751 是新近研究的氧化物弥散强化的铁基材料, 这种材料有优良的抗蠕变和抗腐蚀综合性能, 耐温可达1350 , 它主要用于温度高于900 , 要求高强度、高腐蚀性的场合, 如热交换器、蓄热器、热电偶外壳等。已生产的弥散强化铝基材料有原苏联的 我国的LT71,LT72 和西方国家的SAP930, SAP895, SAP865 等。这类材料靠Al2O3 弥散强化。它的热强性在200~ 500
范围内比任何铝合金都高, 500 的高温瞬时强度可达80~ 90 MPa, 热稳定性好, 长时间加热后力学性能损失小, 在500
及其以下任何温度长时间加热, 对其室温性能无明显影响, 抗蚀性与纯铝相近。它可用于飞机的防火板、航空及化学工业用的热交换器及制造原子堆汽轮导管支持元件。
另外,近年来弥散强化铝合金研究的有: Al-C,Al-TiC,Al-ZrC, Al-NbC, Al-Cr2O3, Al-MoC, Al-WC 等, 其中Al-C 材料已用于内燃机活塞, 它的强化相是Al4C。金属间化合物的研究主要采用机械合金化方法, 已有初步成果的有NiAl, TiAl 和MoSi2。这类材料的单体和复合材料具有密度低, 模量、高温强度及高温蠕变强度高的特点。高压涡轮叶片用NiAl 高的导热系数使制成的部件温度均匀, 且其热点温度至少可降低50 , 另外, 它的抗高温氧化性也好。MoSi2 的熔点高, 抗氧化性好, 但要在实际中应用, 其室温塑性和韧性还有待进一步提高。3.4 梯度功能材料
目前, 梯度功能材料的开发仅有热功能梯度材料。它是基于航宇结构、核聚变反应堆和未来高速飞行的需要而研制的。它的一面是高强度的金属材料, 另一面为耐高温粉末材料(如高温结构陶瓷、金属间化合物), 中间层为高强度的纤维(如氧化锆、碳化硅纤维等)和微粒(如陶瓷或金属间化合物粉末, 碳粒或玻璃微粒等)。这种结构既保证了高强度和高耐热性, 又保证了材料的组织与工作的温度梯度相适应, 减小了在高温下受热表面和金属材料层间的热膨胀失配而引起的应力。4、其他方法的应用 4.1 超塑性材料
采用PM 法可获得极细的晶粒, 合金界面上的氧化物质点和析出相均能起钉扎晶界的作用, 使材料具有高的组织稳定性。另外, PM 法制备的超塑性材料还可实现高应变速率的超塑性, 高的应变速率能提高超塑性成形效率。因此, 在材料的超塑性研究中, PM技术受到了极大的关注并取得了可喜的成果。4.2 高抗蚀性材料
高的抗腐蚀和抗应力腐蚀能力是粉末冶金的主要特性, 洛克希德-乔治亚公司已用PM 铝合金设计和制造了3 个试验性飞机零件, 其中两个是挤压梁, 一个是锻造襟翼滑轨加强缘条。这些零件安装在3 架洛克希德C-141 运输机上进行试验。它的寿命比用IM法加工的零件长得多, 使更换费用大大减少。
四、粉末冶金技术国内与国外差距
1、产品水平低
在产品精度方面,少数企业尺寸精度可达IS07—8级,形位公差可达8—9级,与国外水平相比低1—2级,但一般企业约相差2—3级。产品质量不够稳定,产品内在重量和外观质量均有较大的差距
2、工艺装备落后
多数企业仍采用性能较差的设备、能耗大、效率低、炉温均匀性差,质量不稳定;国内还没有形成一个专业生产粉末冶金模具、模架的企业
五、粉末冶金材料和制品的今后发展方向:
粉末冶金制品的应用范围十分广泛,从普通机械制造到精密仪器;从五金工具到大型机械;从电子工业到电机制造;从民用工业到军事工业;从一般技术到尖端高技术,均能见到粉末冶金工艺的身影。粉末冶金材料和制品的今后发展方向:
1、有代表性的铁基合金,将向大体积的精密制品,高质量的结构零部件发展。
2、制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金。
3、用增强致密化过程来制造一般含有混合相组成的特殊合金。
4、制造非均匀材料、非晶态、微晶或者亚稳合金。
5、加工独特的和非一般形态或成分的复合零部件。
六、国内粉末冶金技术面临的问题及机遇
随着我国汽车工业快速发展,高附加值的零部件需求将加速增长。与此同时,汽车产业链全球化的采购系已经形成,带给国内零部件企业商机显而易见。然而,我们是否能够握当前机遇,不仅是我国汽车零部行业突破当前困局的机遇,更是产业升级的契机。因此,充分利用自身势,扬长补短是产业突破困局的必手段。
虽然,当前我国的粉末冶金技术水平相对国外发达国家依然有着不小的距离。但由于我国拥有原料供给的区域优势,作为产业竞争力提升的基础,依然有较强的竞争力。
与此同时,自上世纪90年代开始,我国粉末冶金制品行业也呈加速发展(主要集中在东部及沿海地区),东部和沿海地区的年产量增长幅度均在10%以上。以山东为例,该省的生产企业由于引进了国外先进设备技术,生产高强度、高精度粉末冶金零件,把粉末冶金制品的质量、技术提高到一个新的水平;粉末注射成型、粉末锻造、纳米技术、精细陶瓷等新技术的开发应用提高了行业整体技术水平,构成了一个完整的行业体系。据不完全统计,目前全省已有各类粉末冶金企业40多家,产品应用各个领域。
最后在拥有区域优势的同时,建立产业基地,形成基地集群效应,从而实现市场和效益最大化、成本最小化。同时,在行业内部合理分工,逐步形成分工明确的纵向多层次有机整体,依托国内市场发展制造能力,再通过国际合作迅速提升竞争力、获取竞争优势,并且通过国际合作所获得的企业在未来发展中的资本、技术、产品和管理的支撑,进入国际合作伙
伴的配套体系和融人全球采购体系,突破当前产业困局。
参考文献:
【1】粉末冶金新技术与新装备
刘文胜 马运柱...矿冶工程 2007 5 【2】现代粉末冶金材料和技术发展现状
(一)黄伯云 易健宏 上海金属 2007 3 【3】现代粉末冶金材料和技术发展现状
(二)黄伯云 易健宏 上海金属 2007 4 【4】钛及钛合金的粉末冶金新技术
周洪强 陈志强 材料导报:网络版 2006 1 【5】世界粉末冶金的发展现状
刘咏 黄伯云 中国有色金属2006 1 【6】粉末冶金多孔材料性能研究
孙纪国 王浩...导弹与航天运载技术 2006 4 【7】粉末冶金文摘
亓家钟(摘择)粉末冶金技术 2006 2 【8】German R M.Powder Inject ion Molding [ M].MPIF: Princeton,1990.61~ 95.【9】Capus J, Pickering S, Weaver A.Hoeganaes offers higher density atlower cost [ J].Metal Powder Report, 1994, 49(78): 22~ 24.【10】 Rutz H G, Hanejko F G.High density processing of high performance ferrous mat erials [ J ].The Internat ional of PowderMetallurgy, 1995, 31(1): 9~ 17.11
第二篇:粉末冶金材料学
1.粉末冶金技术的特点(优越性)能制造熔铸法无法获得的材料和制品
1、难熔金属及其碳化物、硼化物和硅化物;
2、孔隙可控的多孔材料
3、假合金
4、复合材料;5 微、细晶(准晶)和过饱和固溶的块体金属和制品; 能制造性能优于同成分熔铸金属的粉末冶金材料
1、制造细晶粒、均匀组织和加工性能好的稀有金属坯锭;
2、制造成分偏析小、细晶、过饱和固熔的高性能合金;
具有高的经济效益
1、少无切削;
2、工序短,效率高;
3、设备通用性好,适合于大批量生产; 2.粉末冶金材料的分类
1、机械材料和零件;
2、多孔材料及制品;
3、硬质工具材料
4、电接触材料;
5、粉末磁性材料;
6、耐热材料;
7、原子能工程材料;
3.粉末冶金材料的孔隙产生过程及其存在形态
产生过程: 颗粒间隙(松装粉末聚集体或粉末成形素坯)烧结形成孔隙。存在形态:开孔:与外表面连通的孔隙,半开孔:孔隙只有一端与外表面连通的孔隙,闭孔:与外表面不连通的孔隙,连通孔:互相连通的孔隙
4.孔隙对材料性能影响的基本理论;
减小承载面积;应力集中剂(减小孔隙尺寸、孔隙球化、孔隙内表面圆滑处理能有效降低应力集中,从而提高强度和韧性)应力松弛剂:裂纹遇到孔隙后被磨钝,提高断裂水平
5.哪些力学性能对孔隙形状敏感:强度、弹性模量、延伸率、断裂韧性、冲击韧性、硬度
7.固溶强化机理 :晶体中有合金元素,固溶原子与晶体中缺陷的交互作用,溶质元素使基体(溶剂)金属的塑性变形抗力、强度、硬度增大,延性和韧性降低
8.影响固溶度(合金溶解度)的因素:晶格因素,相对尺寸因素,化学亲和力,电子浓度因素
9.什么是金属材料热处理? 将固态金属或合金采用适当的方式进行加热、保温和冷却,以改变金属或合金的内部组织结构,使材料满足使用性能要求。
10.加热奥氏体化时影响粒度的因素:加热温度和保温时间,加热速度,合金元素,原始组织 11.刚冷却时等温转变的基本类型及对应组织结构的名称
共析钢等温转变:珠光体,贝氏体,马氏体;亚共析钢等温转变:奥氏体,铁素体,珠光体;过共析钢等温转变:奥氏体,渗碳体,珠光体 12.烧结钢热处理的工艺特点及注意事项
工艺特点:奥氏体化温度高:致密钢为AC+30~50℃,烧结钢为AC+100~200℃,密度的要求:烧结钢密度过低(<6.0g/cm3)淬火无任何效果,淬透性比致密钢差
注意事项:(1)孔隙率>10%易腐蚀,不能在盐浴中加热(2)表面热处理前应进行封孔处理:滚压、精整、或氮化、硫化处理(3)加热时应气氛保护或添加保护性填料(4)淬火介质不能用水。13.烧结钢淬透性的影响因素:孔隙度,合金元素,氧、碳含量
14.身高结钢合金化的特点:
1、孔隙的影响: 密度低于6.5g/cm3,合金的强化作用很弱;
2、某些强化效果好合金元素,如Cr、Mn易氧化,常以中间合金粉或预合金粉引入;
3、铜和磷常用,4、烧结钢中常用的合金元素除碳外,主要有Cu、Ni、Mo、Cr、P等 15.C含量对烧结Fe-C系结构与性能的影响
珠光体随C含量而增大而增大,渗碳体随C含量而增大而增大强度有极大值,塑性(延伸率、断面收缩率)单调下降;由于碳分布不均匀,一般烧结钢显微组织为:珠光体+铁素体+少量渗碳体+孔隙+夹杂 16.常见烧结碳钢显微组织:铁素体,珠光体,渗碳体
17.影响烧结碳钢化合碳含量的因素:
1、石墨加入量,2、烧结气氛
3、烧结温度
4、烧结时间
5、氧含量 6.提高粉末冶金材料密度的方法 : 复压复烧,溶浸、粉末冶金热锻 18.烧结钢牌号的标准及识别:
1、烧结铁:FTG10—
10、FTG10—
15、FTG10—20;
2、烧结低碳钢FTG30—
10、FTG30—
15、FTG30—20;
3、烧结中碳钢:FTG60—
15、FTG60—20、FTG60—25;烧结高碳钢:FTG90—20、FTG90—
25、FTG90--30 19.20.Fe-Cu系烧结时Cu、C含量对铜钢尺寸的影响
1、与Fe-Cu二元系烧结尺寸变化区别较大;
2、碳降低Fe-Cu的熔点、降低Cu在γ–Fe中的溶解度,增加液相含量,促进收缩;
3、C加入可显著改变Fe-Cu-C系烧结尺寸变化
4、有一个尺寸稳定区:C<1%;1% < Cu <3%;
21.22.23.24.钼、镍、锰、铬在烧结钢中的作用及工艺注意事项
Mo的作用:固溶强化、主要是细化晶粒,提高淬透性和防止回火脆性 引入Mo应注意的事项:Mo在铁中的扩散系数远低于C,选用共还原Fe-Mo合金粉或Mo-Fe中间合金粉替代Mo粉 镍是扩互溶产生固溶强化,在一定添加量内镍可提高强度而不降低韧性。注意事项:镍在奥氏体铁中的扩散系数低于碳和铜,选用细镍粉并在较高温度下烧结(1200℃);当镍含量超过2 ~3%时,镍和碳对收缩同时起作用,温度越高收缩也越大;引入少量的铜可控制这种过大的收缩。Mn的作用:固溶强化;提高钢的淬透性 引入Mn应注意:锰与氧亲合力强,在一般烧结气氛下易氧化且难以还原,应以含碳的母合金形式引入Cr的作用
:提高钢的强度,还可以改善钢的抗氧化性和抗腐蚀性。当含量较少时,Cr主要是通过稳定过冷奥氏体改善组织而其强化作用 引入Cr应注意:易氧化,采用混合粉烧结时Cr以Fe-Cr中间合金或σ相粉形式加入到配料中;烧结时严格控制气氛的露点或真空烧结 25.磷钢的烧结机制
烧结钢中加入P可改善和提高强度和韧性1)固溶强化;2)与Fe在1050℃共晶反应,形成液相,促进致密化;3)铁在铁素体中的扩散系数比在奥氏体中的扩散系数大100倍左右。而P有缩小奥氏体相区的作用,使铁在铁素体相区或铁素体+奥氏体双相区烧结,故P能促进铁的扩散,加速铁的致密化和孔隙球化4)加P可使Fe-P合金收缩明显,可分别或同时加入Cu和石墨来抑制收缩 26.采用铜,锡元素混合粉为原料制备锡青铜合金,烧结时应注意的事项
1、低密度制品(<7g/cm3)用混合粉;高密度制品(>7g/cm3)用合金粉;
2、为改善锡青铜的性能,一般会引入其它合金元素如P、Zn、Ni等
27.锌黄铜烧结为什么优先采用合金粉,合金粉烧结时的注意事项
1、锌在烧结时易挥发,故常用雾化合金粉,但仍存在烧损。注意事项:1)气氛干燥;2)采用含锌的填料密封;3)提高升温和降温速度
4、烧结温度一般控制在固相线以下100℃左右,5、通过复压复烧将孔隙率降至3~6%,冷锻和热锻都可降至密度提高至97~98%; 28.什么是镍银合金?
将黄铜中的锌用镍替代10%~20%就得到镍黄铜,Cu-NI-Zn三元合金呈银白色,故又称镍银合金。29.什么是烧结铝,烧结铝的基本工艺过程
铝合金 包括两个大类:铸造铝合金和变形铝合金,工艺过程:制粉、混料、压制、烧结和后处理等 30.粉末冶金热锻对粉末冶金原料的要求
1)优先雾化预合金粉,保证成分均匀,有利于合金化和热处理强化。2)合金元素的选择要考虑其与氧的亲和力。如Cr、Mn、V、Ti、Al等合金元素不宜,当Cr、Mn含量小于1%,进行防氧化处理措施后也可应用;常用的合金元素为Cu、Mo和Ni等。3)原料粉的纯度要高,氧含量和非金属夹杂物含量低。31.铁基粉末冶金结构材料烧结工艺及各工艺环节的气氛控制
铁基粉末冶金零件(主要是烧结钢)通常是采用铁、石墨和合金元素的混合粉经压制和烧结制成。在烧结过程中的完成烧结体与气氛的反应以及合金化,并决定最终的组织结构。只有制定合理的烧结工艺,才能获得合格的烧结钢产品。气氛控制:1.预热区Ⅰ段:为了有利于润滑剂的烧除,此区需要氧化性气氛。通常采用的是放热型气氛或混有空气的氮、空气混合气体。2.预热区Ⅱ段:预热区Ⅱ段是氧化物还原区,此段需要还原性气氛。通常采用吸热性气氛或还原性氮基气氛。3.烧结区:烧结区是高温区。两个以上组元的压坯在此区域将发生合金化反应。因此这一区的气氛必须要有维持烧结零件成分的作用。对烧结钢而言,需要维持一定的碳势,通常采用可控碳势气氛,如吸热性气氛或添加有甲烷的氮基气氛,并通过调节气氛中CO2、H2O或CH4的含量来维持一定的碳势。4.预冷区:对烧结钢而言,这一区为重新渗碳区。在烧结区产生脱碳的烧结零件,可在这—区域采用渗碳性气氛.如CO、CH4含量较高的吸热性气氛或含甲烷的氮基气氛,恢复或增加烧结钢零件的碳含量。5.冷却区:这一区的气氛主要起保护作用,防止烧结零件氧化(变黑或变蓝),以便获得正常的显微结构、性能稳定、再现性好的烧结零件。通常采用氮气和有轻度还原的烧结气氛。
32.铁基粉末冶金零件的水蒸气表面处理的热力学和动力学原理:
3FeO+H2O=Fe3O4+H2;Fe+H2O=FeO+H2;3Fe+4H2O=Fe3O4+4H2(低于570℃)根据热力学原理△Z=RTlnKp,Kp=pH2O/pH2反应取决于蒸汽压与氢的气压比和温度。在570℃下,只要不断地通入水蒸气,反应便会连续地朝生成Fe3O4的方向进行,因为水蒸气中不存在氢。动力学:水蒸汽首先吸附于铁的表面,发生氧和氢的分解反应,氧原子具有很强的活性,与铁反应生成Fe3O4的速度很快。由于Fe3O4膜比较致密.在铁的表面形成连续的氧化膜。33.烧结减磨材料常用的润滑剂
石墨,硫和硫化物,硒化物和碲化物,氟化物,六方氮化硼,一些有机物 34.烧结含油轴承自润滑的原理
1)热的作用:轴旋转时,因摩擦使轴承升温,导致润滑油粘度降低并同时受热膨胀,油便从孔隙中渗出渗出形成油膜、维持润滑。轴停止工作,轴承温度降低,油因冷却而收缩,在毛细管吸力下进入轴承内的孔隙内储存起来2)泵的作用:轴旋转时,把润滑油从一个方向压入孔隙,油通过轴承内的孔隙通道渗至较远处后又益处到工作面,使润滑油不断循环使用、35.钢背轴瓦复合减摩材料的种类:
1)铜铅合金(铅青铜);2)多孔铜镍合金,孔隙中浸渍巴氏合金;3)多孔锡青铜浸渍易熔减摩合金(或浸渍氟塑料、浸油);
36.钢背-烧结铜铅合金双金属带材生产工艺:粉末冶金+压力加工+机械加工
1)制粉:雾化法制取铅青铜粉。铅含量可达50%以上,粉末粒度控制在0.40mm左右;2)钢带去锈,调平,根据需要可以电镀铜或锡;3)布粉,布粉厚度在0.4至1.5mm之间,可预先在钢带上涂胶以稳定粉末;4)还原气氛下预烧,温度780~850℃,保温时间15~20分钟;5)轧制,精确控制压下量,以保证全致密,但压下量过大会导致二次烧结出汗;6)二次烧结,工艺同预烧;7)二次精轧制至预定尺寸;8)后加工成轴瓦、轴套:下料、打弯、成形、整形和机械加工;9)电镀Cu-Sn、Pb-Sn-Cu或Pb-In合金保护膜,膜厚0.05mm。
37.DU和DX复合减摩材料的性能
DU:1)可在干燥条件下工作,2)在-200~280℃范围内减摩性能和耐蚀性基本不变,3)强度高,可承受高的动负荷和静负荷;4)滑动平稳,5)对绝大多数溶剂和和许多工业液体(包括水和油)与气体都是稳定的,6)可用于粉尘浓度高的场所,7)适用于转动、摆动、往复运动和滑动等,8)也可在液体润滑条件下使用
DX:1)不适用于干摩擦,2)涂润滑脂后寿命比DU长,3)适用范围不及DU广,3)在聚甲醛减摩层加入固体润滑剂,如Pb、PbI2,以改进减摩性能; 38.摩擦材料的分类:
1)石棉摩擦材料2)半金属摩擦材料3)粉末冶金摩擦材料4)碳-碳摩擦材料 39.粉末冶金摩擦材料的组成及各组元的作用
1.基体组元:其成分、结构决定了摩擦材料的强度、耐热性和耐磨性
2、润滑组元:其成分、结构决定了摩擦材料的强度、耐热性和耐磨性
3、摩擦组元:提高摩擦系数,消除摩擦对偶件表面从烧结摩擦片转移过来的金属,减少对偶表面的擦伤和磨损。摩擦组元不是对配偶件的磨料磨损,而是保证与对偶件达到最佳啮合,并使对偶表面保持良好的性能。40.低熔点金属用作润滑组元的自调节原理 在无润滑摩擦状态下,铅由于摩擦温升而融化,形成润滑膜,降低摩擦系数,同时降低摩擦面的温度,降温后铅又凝固,使摩擦系数回升至原有水平。称之为低熔点金属用作润滑组元的自调节原理。41.粉末冶金摩擦材料的制造工艺
1)钢背的加工:铜基20钢,铁基合金钢。2)钢背涂覆:铜基镀铜(10~15微米)+镀锡(3~5微米);铁基镀铜+镀镍或直接镀铜,钝化处理,使用时再酸洗。3)混料:一次混入或逐级混(铜基:Sn→SiO2→Pb→Fe→Cu→石墨;铁基: 石棉粉→SiO2→BaSO4→Cu→Fe→石墨)、4)压制:(1)将粉末直接压在钢背上(薄离合器片):铁基300~600MPa,铜基150~300MPa;(2)先将粉料压型后再与钢背叠合(制动片)5)烧结:压力:铜基逐步加压至1MPa。烧结温度750~850℃ ;铁基逐步加压至1.5~1.8MPa,烧结温度1030~1100℃;6)烧结后处理与检测 42.粉末冶金多孔材料的主要用途
冶金和化学工业的高温、高压过滤和分离材料,催化反应的催化剂的载体,航空与液压系统的油类的过滤与净化,液态金属如钠、锂和铋的过滤;航空发动机和火箭高温部件的冷却部件等。43.金属粉末多孔材料粉末常见的固结工艺
1、模压成型与烧结
2、等静压制
3、松装烧结
4、粉末增塑挤压
5、粉浆浇注 44.泡沫金属材料制备方法及用途
1、化学镀和电镀
2、液态金属发泡法
3、熔盐浇铸法
4、粉末冶金法
用途:泡沫金属主要用于:催化剂载体、多孔电极、阻火器、过滤器、消音减震器和热交换器等。45.多孔材料汞压入法孔径测定的基本原理 润湿现象
46.过滤精度及影响过滤精度的因素
1、过滤精度又称净化精度,可用过滤时透过多孔体的最大固体微粒的尺寸表示,也可用过滤时过滤元件所能截留的最小固体微粒的尺寸表示。过滤精度取决于过滤元件的孔径大小。
2、过滤精度受原料粉末粒度、生产工艺(成形压力、添加剂含量、烧结温度等)和过滤过程等影响 47.影响多孔材料透过性能的因素
1、粉末性能
2、孔隙度
3、材料厚度
4、工作条件
5、制造工艺参数 48.常见粉末冶金多孔材料的种类
金属粉末多孔材料,金属纤维多孔材料,泡沫金属材料
49.粉末冶金多孔材料用作热交换材料进行冷却的方式有哪些
1、发散冷却
2、发汗冷却
3、自发汗冷却
50.接触电阻:接触电阻是指两接触元件在接触部位产生的电阻。R=E/I接触电阻包括两部分:收缩电阻Rc和膜电阻Rf R=Rc+Rf 51.解释触头材料熔焊现象
熔焊是指触头闭合后出现熔化而使开关不再断开的现象,必须用外力才能拉开触头。触头熔焊分静熔焊和动熔焊两种。静熔焊:触头闭合时,由于触头本身的电阻和接触电阻的存在,使触头表面局部熔融而发生的熔焊。动熔焊:触头接通时,由于动触头打击静触头产生弹跳而引起电弧所产生的熔焊。52.电触头的破坏形式
1、起弧
2、氧化
3、熔焊
4、桥接 53.电触头材料的分类及实例
1、按电流、电压等级分类:1)高、中压触头材料:主要用于各类高压重负载断路器(如空气断路器、油断路器、SF6断路器及真空断路器)的触头材料 2)低压触头材料:分两类:保护电器触头,控制电器触头3)弱电触头材料
2、按制造方法分类:1)熔炼加工触头材料:包括铜及其合金,银及其合金,金基合金,铂族合金;2)烧结触头材料:包括各类假合金、金属-氧化物触头材料以及难熔金属钨、钼触头。
3、按材料组合类型分类
1)金属-金属 2)金属-金属氧化物 3)金属-无氧难熔化合物 4)金属-减磨材料 54.压制烧结法制备电触头材料常用工艺技术
固相烧结材料:Ag-Ni,Ag-Fe,Ag(Cu)-石墨,低W的Ag-W和Cu-W,活化烧结材料:W、Mo触头;液相烧结材料:高W的Cu-W、Ag-W或高WC的Ag-WC触头
55.采用压制-烧结-复压-复烧或退火工艺制备银基触点的注意事项
银基触点不能仅依靠提高压力来提高密度,因为烧结时银粉会释放气体,当素坯致密度过高时,孔隙通透性差会影响气体排放而产生张力使坯体膨胀。必须选择适当的成形压力和烧结温度,以保证足够的烧结收缩以便于用同一模具复压,该工艺获得的触点仍有一定的孔隙度,性能不高。56.压制-烧结-挤压工艺的优点
1)挤压后致密度高达99%,材料的物理机械性能和耐电弧烧损等电性能大为提高;2)材料成分及质量较其它方法(如合金内氧化法和共沉淀法)易于控制,产品性能的稳定性和一致性好;3)复合体系中的第二组元,如石墨、镍、氧化物等成纤维状排布,且纤维排列方向垂直于触点使用面,耐电弧烧蚀性大大提高。57.Ag-C触点为什么要进行表面脱碳处理
由于Ag-C触头抗熔焊性好,难焊接,在用压制-烧结法制取时,均覆以纯银焊接层。烧结挤压法没有纯银覆层,所以要采用脱碳处理,使焊接表面烧出而获得纯银覆层。58.溶浸法适合制造哪些触点
该工艺可制备几乎无孔的触点,适用于高钨或钼的W-Ag、W-Cu、Mo-Cu及高碳化钨的WC-Ag、WC-Cu等高压触点。
59.CdO在银基触点中的作用和机理
CdO使触头抗熔焊、耐电弧烧损;原因:(1)受热分解而吸收大量的热,靠Cd的挥发去冷却基体并熄灭电弧;(2)CdO的存在提高了表面熔融物的粘度,防止融化的银被电弧吹离(3)CdO相当于夹杂聚集在固-液界面,使形成的熔焊物变脆,减少熔焊的危险; 60.与W-Cu触头材料相比,Cu-Cr合金有哪些优点
既保留了难熔组元-良导电金属类材料的某些优点,又使电流分段能力大为提高;由于Cu和Cr蒸气压相当,起弧时二者熔化与蒸发的量也大致相等,凝固后触头材料表面较为光滑平整,成分与熔化前相同,能保持开断能力不下降;由于Cr与氧的亲和力大,吸氧作用好,能使真空度维持在较低的恒定值,有利于触点介质具有较高的介电强度。
61.高性能粉末冶金材料及技术的特点
1、粉末冶金技术获得高性能的基本方法是全致密化:热压、热等静压、热挤压、粉末热锻以及各种粉末坯锭的热加工;
2、在全致密化的过程中同时实现近终成形(近净成形),节省贵重金属用量,减少能耗
3、化学成分设计上的灵活性和微观组织结构的完整性方面优于熔铸合金。62.雾化粉末成分偏析现象及原因
a)温度过冷:形成枝晶,枝晶间距与冷却速度有关;b)成分过冷:凝固部分的成分不同于残留的液相,液相内含有过剩的溶质,形成微偏析,典型的微偏析是晶内偏析。
过冷层深形成枝晶凝固,过冷层薄形成胞状组织 63.粉末冶金热致密化的流动工艺模型
流动模工艺:比HIP经济的固结工艺,利用金属内膜在热压温度下软化,将压力均匀传递到粉末上,达到近似HIP的效果。(1)可采用普通压机,压力比HIP高6~10倍;(2)热压温度比HIP低(约1000℃左右),致密化时间可缩至1秒以内;(3)合金晶粒极为细小,特别适合RSP粉;(4)流动模采用NI-Cr连续固溶体,其熔点和软化温度可调,模具可多次使用且能回收利用; 64.什么是氧化物弥散强化型高温合金
氧化物弥散强化(ODS)高温合金是一类由热稳定性好的超细氧化物质点(大小为几十个纳米以内、间距约100纳米)均匀弥散在普通高温合金基体中起补充强化作用的合金,该合金兼有沉淀强化和弥散强化两种机制,合金经热加工后晶粒具有与定向凝固合金相似的织构特征。65.ODS高温合金的制造工艺过程
(1)粉末原料制备:a、选择还原法 b、预合金粉末部分氧化法 c、机械合金化法(2)固结-热机械加工
66.高速钢中合金元素及作用
钨 钨是造成高速钢红硬性的主要元素,而且是强碳化物形成元素。钨部分固溶于基体,而且与碳原子的亲和力强,能提高回火马氏体的分解温度;同时钨的原子半径大,能提高铁的自扩散激活能,改善钢的回火稳定性。钨的碳化物在淬火加热时很难溶解,对晶粒长大起阻碍作用,能提高淬火加热温度以提高奥氏体的合金度;回火时从奥氏体中析出碳化物,弥散分部在马氏体基体内,与碳化钒一起造成钢的二次硬化效应。部分碳化物留在回火α相中,提高钢的红硬性和抗回火性。钨的不利影响是大幅降低钢的导热性和增加碳化物的不均匀分布。
钼 钼与钨同族,晶体结构与原子半径相近,化学性质相同,在钢中的作用也一样。钼也是强碳化物形成元素,能提高钢的硬度和红硬性,造成二次硬化。可取替代钨。含钼钢的特点是碳化物偏析程度轻,热塑性好。由于碳化物(Fe,Mo)6C溶于奥氏体温度比(Fe,W)6C低,淬火加热时易出现晶粒长大,过热敏感型高;同时钼高速钢的氧化脱碳倾向也大。
铬 铬的主要作用是提高淬透性,含量都在4%左右,铬主要生成Cr23C6型碳化物,而且与钨钼形成复式碳化物,防止钨钼的碳化物转变成稳定的WC和MoC使其以M6C型碳化物存在于钢中。M6C在淬火加热时易溶于奥氏体,提高钢的合金度,增强二次硬化效应和钢的红硬性。铬几乎全部溶于奥氏体,提高其稳定性和淬透性。铬还能提高钢的抗氧化、脱碳和抗腐蚀性。当铬的含量超过4%,将增加残余奥氏体的量,使淬火后硬度降低。高铬钢的残余奥氏体回火稳定性好,增加回火工序的困难。
钒 钒是造成钢的红硬性好的主要元素之一,因为它形成稳定的VC,回火后以细弥散质点析出,硬化作用比钨更强。钨靠溶于固溶体中来提高马氏体回火稳定性的。VC的显微硬度高,对提高耐磨性作用显著,但钒能降低钢的被磨削性能。超硬型高速钢含有较多的钒,如W12Cr4V4Mo 钴 钴不形成碳化物,绝大部分溶于固溶体中。钴能提高莱氏体熔化温度,是形成碳化物元素更多地溶入奥氏体,增大合金度,从而显著提高钢的硬度和红硬性。钴还能促进钢在回火过程中析出弥散度高的碳化物,提高回火硬度。但是,钴降低钢的淬透性,而且增加钢的脆性,脱碳倾向也大。
碳 碳不仅与合金元素形成碳化物,同时还对钢起固溶强化和提高淬透性的作用。高速钢的碳含量必须严格控制:碳低,不能形成足够数量的碳化物,降低淬火加热时溶于奥氏体的碳与合金元素的含量,导致硬度和红硬性不足;碳高,增加碳化物的不均匀性,降低钢的塑性。67.不锈钢中合金元素的种类及作用
(1)铬 铬对耐腐性起主要作用。一是使钢在氧化性介质中钝化,形成致密的氧化薄膜,防止氧向深层扩散;二是提高Fe的电极电位使其由负变正,提高抗电化学腐蚀能力。11.7%r是不锈钢的最低Cr含量,电极电位随Cr含量增加按n/8规律跳跃式增大;Cr含量超过12.7%,钢为单一的铁素体组织。
(2)镍 镍是形成稳定奥氏体的主要元素。不含Cr时,Ni含量需超过24%才能获得低碳的奥氏体组织。Ni与Cr配合使用来提高耐蚀性,加入镍是为了得到单一的奥氏体组织,从而提高其耐腐蚀性和工艺性;控制Ni的含量也可得到奥氏体-铁素体双相组织,可通过热处理强化;
第三篇:粉末冶金材料学
粉末冶金材料学
一、填空题
1、液相沉淀法在粉末冶金中的应用主要有以下四种:金属置换法、溶液气体还原法、从熔盐中沉淀法、辅助金属浴法。
2、多相反应一个突出特点就是反应中反应物间具有界面。按界面的特点,多相反应一般包括五种类型:固气反应、固液反应、固固反应、液气反应、液液反应。
3、雾化法制粉过程中,根据雾化介质对金属液流作用的方式不同,雾化具有多种形式:平行喷射、垂直喷射、互成角度的喷射。从液态金属制取快速冷凝粉末有传导传热和对流传热两种机制,其中基于传导传热的方法有:熔体喷纺法、熔体沾出法;基于对流传热机制有:超声气体雾化法、离心雾化法、气体雾化与旋转盘雾化相结合的雾化法。
粉体颗粒粒度测定方法中的比表面粒径包括以下三种:吸附法、透过法、润湿热法。
钢的合金化基本原则是
多元适量、复合加入
。细化晶粒对钢性能的贡献是
既提高强度又提高塑韧性。
7、在钢中,常见碳化物形成元素有
Ti、Nb、V、W、Mo、Cr 按强弱顺序排列,列举5个以上)。钢中二元碳化物分为两类:rc/rM ≤ 0.59为简单点阵结构,有 MC 和 M2C 型,其性能特点是 硬度高、熔点高、稳定性好 ;
rc/rM > 0.59为 复杂点阵结构,有 M3C、M7C3
和
M23C7
型。
8、选择零件材料的一般原则是
力学性能、工艺性能
、经济性
和环境协调性等其它因素。
9、奥氏体不锈钢1Cr18Ni9晶界腐蚀倾向比较大,产生晶界腐蚀的主要原因是
在晶界上析出了Cr23C6,为防止或减轻晶界腐蚀,在合金化方面主要措施有
加入Ti、Nb 等强碳化物形成元素
、降低钢中的含C量。
10、影响铸铁石墨化的主要因素有
化学成分、冷却速度
。球墨铸铁在浇注时要经过
孕育
处理和
球化
处理。QT600-3是 球墨铸铁。
11、对耐热钢最基本的性能要求是
热强性
、抗氧化性。
12、铁基固溶体的形成有一定规律,影响组元在置换固溶体中溶解情况的因素有:
点阵结构
、电子因素、原子半径。
13、提高钢淬透性的主要作用是
获得均匀的组织,满足力学性能要求、能采取比较缓慢的冷却方式以减少变形、开裂倾向。
14、钢的强化机制主要有 固溶强化、位错强化、细晶强化、沉淀强化。其中
细晶强化
对钢性能的贡献是既提高强度又改善塑、韧性。
15、提高钢淬透性的作用是 获得均匀的组织,满足力学性能要求、能采取比较缓慢的冷却方式以减少变形、开裂倾向。
16、滚动轴承钢GCr15的Cr质量分数含量为
1.5%左右。滚动轴承钢中
碳化物不均匀性主要是指
碳化物液析、碳化物带状、碳化物网状。
17、选择零件材料的一般原则是 满足力学性能要求
、良好的工艺性能、经济性
和环境协调性等其它因素。
18、凡是扩大γ区的元素均使Fe-C相图中S、E点向
左下
方移动,例
Mn、Ni 等元素(写出2个);凡封闭γ区的元素使S、E点向
左上
方移动,例 Cr、Mo 等元素(写出2个)。S点左移意味着
共析碳含量降低。
19、QT600-3是
球墨铸铁
,“600”表示
抗拉强度不小于600MPa,“3”表示
延伸率不小于3%
20、H68是
黄铜,LY12是
硬铝,QSn4-3是
锡青铜。
21、在非调质钢中常用微合金化元素有 Ti、V
等(写出2个),这些元素的主要作用是
细晶强化
和
沉淀强化。
22、铝合金热处理包括固溶处理和
时效硬化
两过程,和钢的热处理最大的区别是
没有同素异构转变。
23、影响球磨的因素为:球磨筒的转速、装球量、球料比、球的大小、研磨介质、被研磨物料的性质。
24、钢的电化学腐蚀的主要形式有:均匀腐蚀、晶间腐蚀、点腐蚀、应力腐蚀、腐蚀磨损。
25、影响熔盐电解过程和电流效率的主要因素有: 电解质成分、电介质温度、电流密度和 极间距离。
1、当量球直径:是指用与颗粒具有相同特征参量的球体直径来表征单颗粒的尺寸大小。
2、圆形度:与颗粒具有相等投影面积的圆的周长对颗粒投影像的实际周长之比。
3、电能效率:在电解过程中,一定质量的物质,在理论上所需的电能量与实际消耗的电能量之比。
4、球形度:与颗粒相同体积的相当球体的表面积对颗粒的实际表面积之比。
5、淬硬性:指在理想的淬火条件下,以超过临界冷却速度所形成的马氏体组织能够达到的最高硬度,也称可硬性。
6、纤维强化材料:将具有高强度的纤维或晶须加到金属基体中,使金属得到强化,这样的材料称为纤维强化材料。
7、二次颗粒:由多个一次颗粒在没有冶金键合而结合成粉末颗粒称为二次颗粒。
8、二流雾化法:由雾化介质流体与金属液流构成的雾化体系称为二流雾化。
9、蠕变极限: 是试样在一定温度下和在规定的持续时间内产生的蠕变变形量或第二阶段的蠕变速率等于某规定值时的最大应力。
10、n/8规律:是固溶体电极电位随铬量的变化规律。固溶体中的铬量达到12.5%原子比(即1/8)时,铁固溶体电极电位有一个突然升高,当铬量提高到25%原子比(2/8)时,电位有一次突然升高,这现象称为二元合金固溶体电位的n/8规律。
11、淬透性:指在规定条件下,决定钢材淬硬深度和硬
度分布的特性,也就是钢在淬火时能获得马氏体的能力。
12、极化:在实际电解过程中,分解电压比理论分解电压大,而且,电流密度愈高,超越的数值就愈大,就每一个电极来说,其偏离平衡电位值也愈多,这种偏离平衡电位的现象称为极化。
13、临界转速:机械研磨时,使球磨筒内小球沿筒壁运动能够正好经过顶点位置而不发生抛落
14、颗粒分布:
15、硬质合金:是以高硬度难熔金属的碳化物(WC、TiC)微米级粉末为主要成分,以钴(Co)或镍(Ni)、钼(Mo)为粘结剂,在真空炉或氢气还原炉中烧结而成的粉末冶金制品,具有高强度和高耐磨性的特点。
16、松装密度:粉末自由充满规定的容积内所具有的粉末重量成为松装密度。
17、均相反应:在同一个相中进行的反应,即反应物和生成物或者是气相的,或者是均匀液相的。、还原法制取钨粉的过程机理是什么?影响钨粉粒度的因素有哪些。氢还原。总的反应式:WO3+3H2====W+3H2O。钨具有4种比较稳定的氧化物
WO3+0.1H2====WO2.9+0.1H2O
WO2.9+0.18H2?====?WO2.72+0.18H2O WO2.72+0.72H2?====WO2+0.72H2O??? WO2+2H2?====W+2H2O? 影响因素:⑴原料:三氧化钨粒度、含水量、杂质⑵氢气:氢气的湿度、流量、通气方向;⑶还原工艺条件:还原温度、推舟速度、舟中料层厚度;⑷添加剂
弥散强化的机理及其影响因素是什么?它在金属基复合材料中有何意义。
机理:弥散强化机构的代表理论是位错理论。在弥散强化材料中,弥散相是位错线运动的障碍,位错线需要较大的应力才能克服障碍向前移动,所以弥散强化材料的强度高。位错理论有多种模型用以讨论屈服强度、硬化和蠕变。影响因素:
1、弥散相和基体的性质;
2、弥散相的几何因素和形态;
3、弥散相与基体之间的作用;
4、压力加工;
5、生产方法。意义:
1、再结晶温度高,组织稳定;
2、屈服强度和抗拉强度高;
3、随温度提高硬度下降得少;
4、高温蠕变性能好;
5、疲劳强度高;
6、高的传导性。
3、简述提高耐热钢热强性的途径。
提高钢热强性的途径:强化基体(固溶体强化)、强化晶界(晶界强度增加)、弥散强化(碳化物弥散硬化)。?固溶体强化是耐热钢高温强化的重要方法之一,加入合金元素,以增加原子之间的结合力,可使固溶体强化,外来原子溶入固溶体使晶格畸变,能提高强度;耐热钢中加入微量的硼或锆或稀土元素后,可以净化晶界,提高晶界的强度;碳化物相沉淀在位错上,能阻碍位错的移动,稳定的碳化物弥散分布在固溶体内,就能显著地提高钢的强度和硬度。
4、球墨铸铁的强度和塑韧性都要比灰口
铸铁好。
答案要点:灰铁:G形态为片状,易应力集中,产生裂纹,且G割裂基体严重,使材料有效承载面积大为减小。而球铁:G形态为球状,基体是连续的,相对而言,割裂基体的作用小,基体可利用率可达70~90%;且球状G应力集中倾向也大为减小。因此钢的热处理强化手段在球铁中基本都能采用,所以其强度和塑韧性都要比灰口铸铁好。铝合金的晶粒粗大,不能靠重新加热热处理来细化。答案要点:
由于铝合金不象钢基体在加热或冷却时可以发生同素异构转变,因此不能像钢一样可以通过加热和冷却发生重结晶而细化晶粒。
6、在一般钢中,应严格控制杂质元素S、P的含量。答案要点:
S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。
7、试总结Ni元素在合金钢中的作用,并简要说明原因。答案要点:
1)↑基体韧度 → Ni↓位错运动阻力,使应力松弛; 2)稳定A,→ Ni↓A1,扩大γ区,量大时,室温为A组织; 3)↑淬透性→↓ΔG,使“C”线右移,Cr-Ni复合效果更好; 4)↑回火脆性 → Ni促进有害元素偏聚; 5)↓Ms,↑Ar → ↓马氏体相变驱动力。
8、试总结Si元素在合金中的作用,并简要说明原因。1)↑σ,↓可切削性 → 固溶强化效果显著; 2)↑低温回火稳定性 → 抑制ε-K形核长大及转变; 3)↑抗氧化性 → 形成致密的氧化物;
(2分)
4)↑淬透性 → 阻止K形核长大,使“C”线右移,高C时作用较大; 5)↑淬火温度 → F形成元素,↑A1 ;
6)↑脱C、石墨化倾向 → Si↑碳活度,含Si钢脱C倾向大。(2分)试从合金化原理角度分析9Mn2V钢的主要特点。1)Mn↑淬透性,D油 = ~30mm;
2)Mn↓↓ MS,淬火后AR较多,约20~22%,使工件变形较小; 3)V能克服Mn的缺点,↓过热敏感性,且能细化晶粒;
4)含0.9%C左右,K细小均匀,但钢的硬度稍低,回火稳定性较差,宜在200℃以下回火;
5)钢中的VC使钢的磨削性能变差。9Mn2V广泛用于各类轻载、中小型冷作模具。
从合金化角度考虑,提高钢的韧度主要有哪些途径。1)加入Ti、V、W、Mo等强碳化物形成元素,细化晶粒; 2)提高回火稳定性,加入Ti、V等强碳化物形成元素和Si元素; 3)改善基体韧性,主要是加入Ni元素;
4)细化碳化物,如加入Cr、V等元素使K小、匀、圆;
5)降低或消除钢的回火脆性,主要是Mo、W元素比较有效;(2分)
11、高锰钢(Z
GMn13)在Acm以上温度加热后空冷得到大量的马氏体,而水冷却可得到全部奥氏体组织。答案要点:高锰钢在Acm以上温度加热后得到了单一奥氏体组织,奥氏体中合金度高(高C、高Mn),使钢的Ms低于室温以下。如快冷,就获得了单一奥氏体组织,而慢冷由于中途析出了大量的K,使奥氏体的合金度降低,Ms上升,所以空冷时发生相变,得到了大量的马氏体。
12、简述高速钢中W、V、Cr合金元素的主要作用。高速钢在淬火加热时,如产生欠热、过热和过烧现象,在金相组织上各有什么特征。高速钢的铸态组织为:黑色组织(混合型)+白亮组织(M和AR)+莱氏体,高速钢铸态组织图(略)。
W:提高红硬性、耐磨性的主要元素;V:提高红硬性、耐磨性的重要元素,一般高速钢都含V,V能有效细化晶粒,且VC也细小;Cr:提高淬透性和抗氧化性,改善切削性,一般都含4%左右。欠热:晶粒很细小,K很多;过热:晶粒较大,K较少;过烧:晶界有熔化组织,即鱼骨状或黑色组织。
高速钢有很好的红硬性,但不宜制造热锤锻模。
答案要点:高速钢虽有高的耐磨性、红硬性,但韧性比较差、在较大冲击力下抗热疲劳性能比较差,高速钢没有能满足热锤锻模服役条件所需要高韧性和良好热疲劳性能的要求。
15、试定性比较40Cr、40CrNi、40CrNiMo钢的淬透性、回火脆性、韧度和回火稳定性,并简要说明原因。
淬透性:40Cr < 40CrNi < 40CrNiMo;Cr-Ni-Mo复合作用更大。回脆性:40CrNiMo <40Cr < 40CrNi;Cr、Ni↑脆性,Mo有效↓。韧
度:40Cr < 40CrNi < 40CrNiMo;Ni↑韧性,Mo细化晶粒。回稳性:40Cr、40CrNi < 40CrNiMo;Mo↑回稳性。Ni影响不大。
16、高速钢的热处理工艺比较复杂,试回答下列问题: 1)淬火加热时,为什么要预热?
2)高速钢W6Mo5Cr4V2的AC1在800℃左右,但淬火加热温度在1200~1240℃,淬火加热温度为什么这样高? 3)高速钢回火工艺一般为560℃左右,并且进行三次,为什么? 4)淬火冷却时常用分级淬火,分级淬火目的是什么? 1)高速钢合金量高,特别是W,钢导热性很差。预热可减少工件加热过
程中的变形开裂倾向;缩短高温保温时间,减少氧化脱碳;可准确地控制炉温稳定性。
2)因为高速钢中碳化物比较稳定,必须在高温下才能溶解。而高速钢淬火目的是获得高合金度的马氏体,在回火时才能产生有效的二次硬化效果。
3)由于高速钢中高合金度马氏体的回火稳定性非常好,在560℃左右回火,才能弥散析出特殊碳化物,产生硬化。同时在560℃左右回火,使材料的组织和性能达到了最佳状态。一次回火使大部分的残留奥氏体发生
了马氏体转变,二次回火使第一次回火时产生的淬火马氏体回火,并且使残留奥氏体更多地转变为马氏体,三次回火可将残留奥氏体控制在合适的量,并且使内应力消除得更彻底。4)分级淬火目的:降低热应力和组织应力,尽可能地减小工件的变形与开裂。
一、填空题
1、液相沉淀法在粉末冶金中的应用主要有以下四种:金属置换法、溶液气体还原法、从熔盐中沉淀法、辅助金属浴法。
2、多相反应一个突出特点就是反应中反应物间具有界面。按界面的特点,多相反应一般包括五种类型:固气反应、固液反应、固固反应、液气反应、液液反应。
3、雾化法制粉过程中,根据雾化介质对金属液流作用的方式不同,雾化具有多种形式:平行喷射、垂直喷射、互成角度的喷射。从液态金属制取快速冷凝粉末有传导传热和对流传热两种机制,其中基于传导传热的方法有:熔体喷纺法、熔体沾出法;基于对流传热机制有:超声气体雾化法、离心雾化法、气体雾化与旋转盘雾化相结合的雾化法。
粉体颗粒粒度测定方法中的比表面粒径包括以下三种:吸附法、透过法、润湿热法。
钢的合金化基本原则是
多元适量、复合加入
。细化晶粒对钢性能的贡献是
既提高强度又提高塑韧性。
7、在钢中,常见碳化物形成元素有
Ti、Nb、V、W、Mo、Cr 按强弱顺序排列,列举5个以上)。钢中二元碳化物分为两类:rc/rM ≤ 0.59为简单点阵结构,有 MC 和 M2C 型,其性能特点是 硬度高、熔点高、稳定性好 ;
rc/rM > 0.59为 复杂点阵结构,有 M3C、M7C3
和
M23C7
型。
8、选择零件材料的一般原则是
力学性能、工艺性能
、经济性
和环境协调性等其它因素。
9、奥氏体不锈钢1Cr18Ni9晶界腐蚀倾向比较大,产生晶界腐蚀的主要原因是
在晶界上析出了Cr23C6,为防止或减轻晶界腐蚀,在合金化方面主要措施有
加入Ti、Nb 等强碳化物形成元素
、降低钢中的含C量。
10、影响铸铁石墨化的主要因素有
化学成分、冷却速度
。球墨铸铁在浇注时要经过
孕育
处理和
球化
处理。QT600-3是 球墨铸铁。
11、对耐热钢最基本的性能要求是
热强性
、抗氧化性。
12、铁基固溶体的形成有一定规律,影响组元在置换固溶体中溶解情况的因素有:
点阵结构
、电子因素、原子半径。
13、提高钢淬透性的主要作用是
获得均匀的组织,满足力学性能要求、能采取比较缓慢的冷却方式以减少变形、开裂倾向。
14、钢的强化机制主要有 固溶强化、位错强化、细晶强化、沉淀强
化。其中
细晶强化
对钢性能的贡献是既提高强度又改善塑、韧性。
15、提高钢淬透性的作用是 获得均匀的组织,满足力学性能要求、能采取比较缓慢的冷却方式以减少变形、开裂倾向。
16、滚动轴承钢GCr15的Cr质量分数含量为
1.5%左右。滚动轴承钢中碳化物不均匀性主要是指
碳化物液析、碳化物带状、碳化物网状。
17、选择零件材料的一般原则是 满足力学性能要求
、良好的工艺性能、经济性
和环境协调性等其它因素。
18、凡是扩大γ区的元素均使Fe-C相图中S、E点向
左下
方移动,例
Mn、Ni 等元素(写出2个);凡封闭γ区的元素使S、E点向
左上
方移动,例 Cr、Mo 等元素(写出2个)。S点左移意味着
共析碳含量降低。
19、QT600-3是
球墨铸铁
,“600”表示
抗拉强度不小于600MPa,“3”表示
延伸率不小于3%
20、H68是
黄铜,LY12是
硬铝,QSn4-3是
锡青铜。
21、在非调质钢中常用微合金化元素有 Ti、V
等(写出2个),这些元素的主要作用是
细晶强化
和
沉淀强化。
22、铝合金热处理包括固溶处理和
时效硬化
两过程,和钢的热处理最大的区别是
没有同素异构转变。
23、影响球磨的因素为:球磨筒的转速、装球量、球料比、球的大小、研磨介质、被研磨物料的性质。
24、钢的电化学腐蚀的主要形式有:均匀腐蚀、晶间腐蚀、点腐蚀、应力腐蚀、腐蚀磨损。
25、影响熔盐电解过程和电流效率的主要因素有: 电解质成分、电介质温度、电流密度和 极间距离。
二、名词解释
1、当量球直径:是指用与颗粒具有相同特征参量的球体直径来表征单颗粒的尺寸大小。
2、圆形度:与颗粒具有相等投影面积的圆的周长对颗粒投影像的实际周长之比。
3、电能效率:在电解过程中,一定质量的物质,在理论上所需的电能量与实际消耗的电能量之比。
4、球形度:与颗粒相同体积的相当球体的表面积对颗粒的实际表面积之比。
5、淬硬性:指在理想的淬火条件下,以超过临界冷却速度所形成的马氏体组织能够达到的最高硬度,也称可硬性。
6、纤维强化材料:将具有高强度的纤维或晶须加到金属基体中,使金属得到强化,这样的材料称为纤维强化材料。
7、二次颗粒:由多个一次颗粒在没有冶金键合而结合成粉末颗粒称为二次颗粒。
8、二流雾化法:由雾化介质流体与金属液流构成的雾化体系称为二流雾化。
9、蠕变极限: 是试样在一定温度下和在规定的持续时间内产生的蠕变变形量或第二阶段的蠕变速率等于某规定值时的最大应力。
10、n/8
规律:是固溶体电极电位随铬量的变化规律。固溶体中的铬量达到12.5%原子比(即1/8)时,铁固溶体电极电位有一个突然升高,当铬量提高到25%原子比(2/8)时,电位有一次突然升高,这现象称为二元合金固溶体电位的n/8规律。
11、淬透性:指在规定条件下,决定钢材淬硬深度和硬度分布的特性,也就是钢在淬火时能获得马氏体的能力。
12、极化:在实际电解过程中,分解电压比理论分解电压大,而且,电流密度愈高,超越的数值就愈大,就每一个电极来说,其偏离平衡电位值也愈多,这种偏离平衡电位的现象称为极化。
13、临界转速:机械研磨时,使球磨筒内小球沿筒壁运动能够正好经过顶点位置而不发生抛落
14、颗粒分布:
15、硬质合金:是以高硬度难熔金属的碳化物(WC、TiC)微米级粉末为主要成分,以钴(Co)或镍(Ni)、钼(Mo)为粘结剂,在真空炉或氢气还原炉中烧结而成的粉末冶金制品,具有高强度和高耐磨性的特点。
16、松装密度:粉末自由充满规定的容积内所具有的粉末重量成为松装密度。
17、均相反应:在同一个相中进行的反应,即反应物和生成物或者是气相的,或者是均匀液相的。
三、简答题、还原法制取钨粉的过程机理是什么?影响钨粉粒度的因素有哪些。氢还原。总的反应式:WO3+3H2====W+3H2O。钨具有4种比较稳定的氧化物
WO3+0.1H2====WO2.9+0.1H2O
WO2.9+0.18H2?====?WO2.72+0.18H2O WO2.72+0.72H2?====WO2+0.72H2O??? WO2+2H2?====W+2H2O? 影响因素:⑴原料:三氧化钨粒度、含水量、杂质⑵氢气:氢气的湿度、流量、通气方向;⑶还原工艺条件:还原温度、推舟速度、舟中料层厚度;⑷添加剂
弥散强化的机理及其影响因素是什么?它在金属基复合材料中有何意义。
机理:弥散强化机构的代表理论是位错理论。在弥散强化材料中,弥散相是位错线运动的障碍,位错线需要较大的应力才能克服障碍向前移动,所以弥散强化材料的强度高。位错理论有多种模型用以讨论屈服强度、硬化和蠕变。
影响因素:
1、弥散相和基体的性质;
2、弥散相的几何因素和形态;
3、弥散相与基体之间的作用;
4、压力加工;
5、生产方法。意义:
1、再结晶温度高,组织稳定;
2、屈服强度和抗拉强度高;
3、随温度提高硬度下降得少;
4、高温蠕变性能好;
5、疲劳强度高;
6、高的传导性。
3、简述提高耐热钢热强性的途径。
提高钢热强性的途径:强化基体(固溶体强化)、强化晶界(晶界强度增加)、弥散强化(碳化物弥散硬化)。?固溶体强化是耐热钢高温强化的重要方法之一,加入合金元素,以增加原子之间的结合力,可使
固溶体强化,外来原子溶入固溶体使晶格畸变,能提高强度;耐热钢中加入微量的硼或锆或稀土元素后,可以净化晶界,提高晶界的强度;碳化物相沉淀在位错上,能阻碍位错的移动,稳定的碳化物弥散分布在固溶体内,就能显著地提高钢的强度和硬度。
4、球墨铸铁的强度和塑韧性都要比灰口铸铁好。
答案要点:灰铁:G形态为片状,易应力集中,产生裂纹,且G割裂基体严重,使材料有效承载面积大为减小。而球铁:G形态为球状,基体是连续的,相对而言,割裂基体的作用小,基体可利用率可达70~90%;且球状G应力集中倾向也大为减小。因此钢的热处理强化手段在球铁中基本都能采用,所以其强度和塑韧性都要比灰口铸铁好。铝合金的晶粒粗大,不能靠重新加热热处理来细化。答案要点:
由于铝合金不象钢基体在加热或冷却时可以发生同素异构转变,因此不能像钢一样可以通过加热和冷却发生重结晶而细化晶粒。
6、在一般钢中,应严格控制杂质元素S、P的含量。答案要点:
S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。
7、试总结Ni元素在合金钢中的作用,并简要说明原因。答案要点: 1)↑基体韧度 → Ni↓位错运动阻力,使应力松弛; 2)稳定A,→ Ni↓A1,扩大γ区,量大时,室温为A组织; 3)↑淬透性→↓ΔG,使“C”线右移,Cr-Ni复合效果更好; 4)↑回火脆性 → Ni促进有害元素偏聚; 5)↓Ms,↑Ar → ↓马氏体相变驱动力。
8、试总结Si元素在合金中的作用,并简要说明原因。答案要点:
1)↑σ,↓可切削性 → 固溶强化效果显著; 2)↑低温回火稳定性 → 抑制ε-K形核长大及转变; 3)↑抗氧化性 → 形成致密的氧化物;
(2分)
4)↑淬透性 → 阻止K形核长大,使“C”线右移,高C时作用较大; 5)↑淬火温度 → F形成元素,↑A1 ;
6)↑脱C、石墨化倾向 → Si↑碳活度,含Si钢脱C倾向大。(2分)试从合金化原理角度分析9Mn2V钢的主要特点。1)Mn↑淬透性,D油 = ~30mm;
2)Mn↓↓ MS,淬火后AR较多,约20~22%,使工件变形较小; 3)V能克服Mn的缺点,↓过热敏感性,且能细化晶粒;
4)含0.9%C左右,K细小均匀,但钢的硬度稍低,回火稳定性较差,宜在200℃以下回火;
5)钢中的VC使钢的磨削性能变差。9Mn2V广泛用于各类轻载、中小型冷作模具。
从合金化角度考虑,提高钢的韧度主要有
哪些途径。
1)加入Ti、V、W、Mo等强碳化物形成元素,细化晶粒; 2)提高回火稳定性,加入Ti、V等强碳化物形成元素和Si元素; 3)改善基体韧性,主要是加入Ni元素;
4)细化碳化物,如加入Cr、V等元素使K小、匀、圆;
5)降低或消除钢的回火脆性,主要是Mo、W元素比较有效;(2分)
11、高锰钢(ZGMn13)在Acm以上温度加热后空冷得到大量的马氏体,而水冷却可得到全部奥氏体组织。
答案要点:高锰钢在Acm以上温度加热后得到了单一奥氏体组织,奥氏体中合金度高(高C、高Mn),使钢的Ms低于室温以下。如快冷,就获得了单一奥氏体组织,而慢冷由于中途析出了大量的K,使奥氏体的合金度降低,Ms上升,所以空冷时发生相变,得到了大量的马氏体。
12、简述高速钢中W、V、Cr合金元素的主要作用。高速钢在淬火加热时,如产生欠热、过热和过烧现象,在金相组织上各有什么特征。高速钢的铸态组织为:黑色组织(混合型)+白亮组织(M和AR)+莱氏体,高速钢铸态组织图(略)。
W:提高红硬性、耐磨性的主要元素;V:提高红硬性、耐磨性的重要元素,一般高速钢都含V,V能有效细化晶粒,且VC也细小;Cr:提高淬透性和抗氧化性,改善切削性,一般都含4%左右。欠热:晶粒很细小,K很多;过热:晶粒较大,K较少;过烧:晶界有熔化组织,即鱼骨状或黑色组织。
高速钢有很好的红硬性,但不宜制造热锤锻模。
高速钢虽有高的耐磨性、红硬性,但韧性比较差、在较大冲击力下抗热疲劳性能比较差,高速钢没有能满足热锤锻模服役条件所需要高韧性和良好热疲劳性能的要求。
15、试定性比较40Cr、40CrNi、40CrNiMo钢的淬透性、回火脆性、韧度和回火稳定性,并简要说明原因。
淬透性:40Cr < 40CrNi < 40CrNiMo;Cr-Ni-Mo复合作用更大。回脆性:40CrNiMo <40Cr < 40CrNi;Cr、Ni↑脆性,Mo有效↓。韧
度:40Cr < 40CrNi < 40CrNiMo;Ni↑韧性,Mo细化晶粒。回稳性:40Cr、40CrNi < 40CrNiMo;Mo↑回稳性。Ni影响不大。
16、高速钢的热处理工艺比较复杂,试回答下列问题: 1)淬火加热时,为什么要预热?
2)高速钢W6Mo5Cr4V2的AC1在800℃左右,但淬火加热温度在1200~1240℃,淬火加热温度为什么这样高? 3)高速钢回火工艺一般为560℃左右,并且进行三次,为什么? 4)淬火冷却时常用分级淬火,分级淬火目的是什么? 1)高速钢合金量高,特别是W,钢导热性很差。预热可减少工件加热过
程中的变形开裂倾向;缩短高温保温时间,减少氧化脱碳;可准确地控制炉温稳定性。
2)因为高速钢中碳化物比较稳定,必须在高温下才能溶解
。而高速钢淬火目的是获得高合金度的马氏体,在回火时才能产生有效的二次硬化效果。
3)由于高速钢中高合金度马氏体的回火稳定性非常好,在560℃左右回火,才能弥散析出特殊碳化物,产生硬化。同时在560℃左右回火,使材料的组织和性能达到了最佳状态。一次回火使大部分的残留奥氏体发生了马氏体转变,二次回火使第一次回火时产生的淬火马氏体回火,并且使残留奥氏体更多地转变为马氏体,三次回火可将残留奥氏体控制在合适的量,并且使内应力消除得更彻底。
4)分级淬火目的:降低热应力和组织应力,尽可能地减小工件的变形与开裂。
第四篇:粉末冶金材料的应用与发展
粉末冶金材料的应用与发展
粉末冶金材料(powder metallurgy material)是指用粉末冶金工艺制得的多孔、半致密或全致密材料(包括制品)。粉末冶金材料具有传统熔铸工艺所无法获得的独特的化学组成和物理、力学性能,如材料的孔隙度可控,材料组织均匀、无宏观偏析(合金凝固后其截面上不同部位没有因液态合金宏观流动而造成的化学成分不均匀现象),可一次成型等。
通常,粉末冶金材料按用途可分为7类:
①粉末冶金减摩材料,又称烧结减摩材料。通过在材料孔隙中浸润滑油或在材料成分中加减摩剂或固体润滑剂制得。材料表面间的摩擦系数小,在有限润滑油条件下,使用寿命长、可靠性高;在干摩擦条件下,依靠自身或表层含有的润滑剂,即具有自润滑效果。广泛用于制造轴承、支承衬套或作端面密封等。
②粉末冶金多孔材料。又称多孔烧结材料。由球状或不规则形状的金属或合金粉末经成型、烧结制成。材料内部孔道纵横交错、互相贯通,一般有30%~60%的体积孔隙度,孔径1~100微米。透过性能和导热、导电性能好,耐高温、低温,抗热震,抗介质腐蚀。用于制造过滤器、多孔电极、灭火装置、防冻装置等。
③粉末冶金结构材料。又称烧结结构材料。能承受拉伸、压缩、扭曲等载荷,并能在摩擦磨损条件下工作。由于材料内部有残余孔隙存在,其延展性和冲击值比化学成分相同的铸锻件低,从而使其应用范围受限。
④粉末冶金摩擦材料。又称烧结摩擦材料。由基体金属(铜、铁或其他合金)、润滑组元(铅、石墨、二硫化钼等)、摩擦组元(二氧化硅、石棉等)3部分组成。其摩擦系数高,能很快吸收动能,制动、传动速度快、磨损小;强度高,耐高温,导热性好;抗咬合性好,耐腐蚀,受油脂、潮湿影响小。主要用于制造离合器和制动器。
⑤粉末冶金工模具材料。包括 硬质合金、粉末冶金高速钢等。后者组织均匀,晶粒细小,没有偏析,比熔铸高速钢韧性和耐磨性好,热处理变形小,使用寿命长。可用于制造切削刀具、模具和零件的坯件。
⑥粉末冶金电磁材料。包括电工材料和磁性材料。电工材料中,用作电能头材料的有金、银、铂等贵金属的粉末冶金材料和以银、铜为基体添加钨、镍、铁、碳化钨、石墨等制成的粉末冶金材料;用作电极的有钨铜、钨镍铜等粉末冶金材料;用作电刷的有金属-石墨粉末冶金材料;用作电热合金和热电偶的有钼、钽、钨等粉末冶金材料。磁性材料分为软磁材料和硬磁材料。软磁材料有磁性粉末、磁粉芯、软磁铁氧体、矩磁铁氧体、压磁铁氧体、微波铁氧体、正铁氧体和粉末硅钢等;硬磁材料有硬磁铁氧体、稀土钴硬磁、磁记录材料、微粉硬磁、磁性塑料等。用于制造各种转换、传递、储存能量和信息的磁性器件。
⑦粉末冶金高温材料。包括粉末冶金高温合金、难熔金属和合金、金属陶瓷、弥散强化和纤维强化材料等。用于制造高温下使用的涡轮盘、喷嘴、叶片及其他耐高温零部件。其中,典型的弥散强化材料有:(1)烧结铝粉(SAP):用表面氧化法制造。SAP有很高的高温强度和抗蠕变性能,使用温度达500℃,远优于一般铝合金。它主要用于:反应堆中的核燃料包套,飞机机翼和机身,压气机叶轮,高温活塞等。(2)弥散强化铜:弥散质点一般为Al2O3,常用内氧化法制造。经弥散强化后,铜的强度、硬度得到很大的提高,导电性降低不多。它常用作电阻焊的电极,白炽灯灯丝引线,电子管零件和电子工业中的其他材料。(3)弥散强化高温合金:最早的弥散强化镍基合金是ThO2(2%)强化镍(TD-Ni)。一般用共沉淀法制得。机械合金化法出现之后,又发展了一系列镍基、铁基和钴基合金。已经使用的有10多种。MA754的性质优于ThO2-Ni-Cr,已成功地用作喷气发动机叶片。MA956E是以Fe-Cr-Al为基的材料,有优越的抗氧化性和抗腐蚀性。
MA6000E合金,1000h的断裂应力在800OC以上远优于TD-Ni和IN792。1100℃时,TD-Ni和IN792的1000h断裂应力只有20~30MPa,而
MA6000E还有160MPa。因此MA6000E是一种好的叶片材料。(4)其他:弥散强化铅(DS-Pb),是惟一类似于SAP的例子,弥散相为PbO,主要用于声音衰减、化工器具、放射屏蔽和电池;含铝、锆的镁合金(铝和锆均溶于镁,但溶解后析出A1Zr4弥散相);金属间化合物FeAl3、FeNiAl9强化的Al-Fe合金等。
总的来说,飞机和发动机上的刹车片、离合器摩擦片、松孔过滤器、多孔发汗材料、含油轴承、磁铁芯、电触点、高比重合金、硬质合金和超硬耐磨零件等因含有大量非金属成分或含有连通孔隙,都不能用普通铸、锻工艺制造,只能以粉末为原料经冷压、烧结等粉末冶金工艺来制造。航空航天工业中使用的粉末冶金材料比较重要的有刹车片材料、松孔材料和高强度粉末合金三类。刹车片材料,刹车片是飞机机轮刹车装置的核心。绝大多数军用飞机和民用机都采用粉末冶金刹车片。因为每次刹车都会发生磨损,100~500次后就需要更换刹车片,所以它是飞机上用量最大的粉末冶金材料制件。松孔材料,即多孔渗透性粉末冶金材料。涡轮发动机润滑系统和飞行器液压操纵系统中使用的青铜或不锈钢过滤器,是防止微粒堵塞和卡滞的重要部件。金属纤维松孔材料的强度和塑性较好,可用于高温部位,如涡轮喷气发动机叶尖密封环用的高温合金毡带和火箭发动机喷注器面板、燃烧室内壁和喉部用的发汗冷却松孔材料。高强度粉末合金,是经粉末热成形的完全致密的高温合金、铝合金和钛合金。一些现代飞机的发动机已使用了锻造的粉末高温合金涡轮盘和压气机盘。粉末铝合金主要用作飞行器和发动机结构材料。
汽车行业仍然是粉末冶金工业发展的最大动力和最大用户。一方面汽车的产量在不断增加,另一方面粉末冶金零件在单辆汽车上的用量也在不段增加。粉末冶金铁基零件在汽车上主要应用于发动机、传送系统、ABS系统、点火装置等。汽车发展的两大趋势分别为降低能耗和环保;主要技术手段则是采用先进发动机系统和轻量化。欧洲对汽车尾气过滤为粉末冶金多孔材料又提供了很大的市场。在目前的发动机工作条件下,粉末冶金金属多孔材料比陶瓷材料具有更好的性能优势和成本优势。
工具材料是粉末冶金工业另一类重要产品,其中特别重要的是硬质合金。加工作业要求加工工具本身更锋利、刚性更好、韧性更高;加工材料的范围扩大到吕合、镁合金、钛合金以及陶瓷等;尺寸精度要求更高;加工成本要求更低;环境影响要减到最小,干式加工比例更大。这些新要求加快了粉末冶金工具材料的发展。
另外,信息行业的发展也为粉末冶金工业提供了新的契机。日本电子行业用的粉末冶金产品已经达到了每年4.3美元。
粉末冶金既是制造高新材料的重要工艺,有时还是惟一的方法,同时也是多、快、好、省地制造形状复杂、高精度金属零件的先进金属成形技术。因此,粉末冶金产业相继开发了三大领域,一为难熔金属与硬质合金工具材料,二为永磁材料,特别是稀土永磁材料。这两大类材料基本上都只能用粉末冶金工艺生产。第三大领域是将材料制造与金属成形相结合,逐渐形成的特种金属成形技术。以满足装备制造业对高性能钢铁粉末冶金产品的需求为重点发展粉末冶金。
粉末冶金是一种先进的金属成型技术,是金属及其它粉末通过加工压制成型、烧结和必要的后续处理制成机械零部件和金属制品的高新技术。由于其具有节能、省材、高效、环保等诸多优点,已受到广泛采用,并具有很大的市场潜力和发展前景。近年来,粉末冶金行业发展很快,特别是汽车行业、机械制造、金属行业、航空航天、仪器仪表、五金工具、工程机械、电子家电及高科技产业等迅猛发展,为粉末冶金行业带来了不可多得的发展机遇和巨大的市场空间。同时对该行业的技术水平也提出了更高的要求。纵观国际新材料研究发展的现状,西方主要工业发达国家正集中人力、物力,寻求突破,美国、欧共体、日本和韩国等在他们的最新国家科技计划中,都把新材料及其制备技术列为国家关键技术之一加以重点支持。而随着中国的“入世”及经济全球一体化进程的不断加快,粉末冶金行业面临着新的挑战。我国粉末冶金行业必须加速发展,才能在激烈的市场竞争中立于不败之地。
粉末冶金材料和制品的今后发展方向主要有:有代表性的铁基合金,将向大体积的精密制品,高质量的结构零部件发展;制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金;用增强致密化过程来制造一般含有混合相组成的特殊合金;制造非均匀材料、非晶态、微晶或者亚稳合金;加工独特的和非一般形态或成分的复合零部件。
谁掌握了新材料,谁就掌握了21世纪高新技术竞争的主动权!作为新材料的粉末冶金材料也将会发挥越来越显著的作用,影响社会发展的进程。
参考文献:
中国材料工程大典第14卷粉末冶金 材料工程韩凤麟、马福康、曹勇家 中国数控信息网采编部信息
我国热喷涂粉末材料的应用与发展现状(新闻)
2006第七届中国国际磁性材料及粉末冶金生产技术设备和应用展览会粉末合金材料技术粉末冶金世界粉末冶金的技术现状
上海勃曼工业控制技术有限公司公司新闻
兰州工业高等专科学校学报
百度词条
百度知道知识掌门人mfkdkthh2008
《粉末冶金技术特点及材料的发展方向》
第五篇:铁基粉末冶金行业发展
铁基粉末冶金行业发展(2010年)
现在使用的合金化材料如:钼、镍和铜等的价格近年来曾大幅增长,迫使粉末冶金生产企业寻找其他可以替代的材料。钼、镍和铜与氧的亲和力较弱,添加钼对铁基粉末的压缩性几乎没有什么影响,铜在铁基合金的烧结温度呈液相,因而铜在铁基合金中容易合金化。添加钼、镍和铜后均可增加钢的硬度,都可以形成烧结硬化。根据对欧洲市场使用钼、镍和铜作为合金化元素材料的研究,Hoeganaes有限公司的Bruce Lindlsey先生认为:从平衡材料的机械性能和生产成本方面考虑,合金可烧结硬化是考虑选择的一个重要因素。
高密度粉末冶金材料
当前高密度粉末冶金材料仍然是铁基粉末冶金研究领域的热门技术开发方向之一。
探讨未来铁基粉末冶金领域的经济技术交流方式
现在多数发达国家铁基粉末冶金生产领域的发展较为缓慢,其发展主要是依靠技术进步,铁基粉末冶金制品的生产有从发达国家向发展中国家转移的趋势。铁基粉末冶金领域的从业人员不多,一个国家或地区内的从业人员更少,难以同时具备科技创新的各要素(人材、资金、仪器设备和市场等)。在发达国家相对容易具备较多的科技创新方面所需的要素,对技术创新的组织管理较为完善,因此铁基粉末冶金领域的新技术主要产生于欧、美和日本等发达国家和地区。金融危机后,发达国家尤其是北美地区的铁基粉末冶金生产出现了严重的衰退,铁基粉末冶金领域的新技术开发必然会受到影响。根据产业布局出现的变化,我国应采取措施促进铁基粉末冶金行业的经济技术交流,催化铁基粉末冶金行业的技术创新。
首先,应认识到铁基粉末冶金领域科技创新所需要的知识和技术是跨学科、跨行业的,需要与其他行业的工作人员进行交流与合作。尤其是铁基粉末冶金零件设计与汽车制造行业存在交流沟通的需要,经过长期的探索和实践,欧美和日本等发达国家已经形成了一个铁基粉末冶金领域经济技术交流的机制。我国可适当参照欧美地区的先进经验,采取多种措施扩大铁基粉末冶金制品的应用,可以效仿的措施包括:出版发行宣传粉末冶金技术和应用的小册子,举办粉末冶金技术培训班,建立有关粉末冶金技术的中文网站和数据库等。虽然与欧美和日本等发达地区相比中国还很落后,不过随着科技交流的增加,这种差距会逐渐减少。在铁基粉末冶金领域我国的科技人员已经建立了与其他行业进行经济技术交流的一些渠道,例如:2007年我国粉末冶金工作者在中国汽车工程学会年会期间建立了一个分论坛一2007粉末冶金与汽车产业发展国际研讨会,共有100多人参加了这次会议。EIa]同时还应看到:随着互联网技术的普及和应用,以及发达国家的铁基粉末冶金制品的生产正在向发展中国家转移,以往的科技开发体制将会出现一些变化,现在对科技交流的范围和时空有了更高的要求,传统的午餐会等交流方式可以利用新技术进行延伸,在这一领域如果再建立一个粉末冶金技术在汽车制造中的应用的研究网络,可能效果会更好。密切关注铁基粉末冶金领域新技术和产业的变化,建立有效的沟通、交流与合作的途径,可确保我国在铁基粉末冶金领域保持活力,会聚相关人材和资源,增强科技创新和企业的竞争力,紧跟甚至引领世界铁基粉末冶金技术创新的潮流。