机械工程材料及成型技术基础

时间:2019-05-13 06:03:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《机械工程材料及成型技术基础》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《机械工程材料及成型技术基础》。

第一篇:机械工程材料及成型技术基础

《机械工程材料及成型技术基础》

班级:机自144 姓名:董

浩 学号:201406024407

金属材料在机械行业中的应用

一、金属材料的特性

1、机械性能

1.1强度

这是表征材料在外力作用下抵抗变形和破坏的最大能力,可分为抗拉强度极限(σb)、抗弯强度极限(σbb)、抗压强度极限(σbc)等。由于金属材料在外力作用下从变形到破坏有一定的规律可循,因而通常采用拉伸试验进行测定,即把金属材料制成一定规格的试样,在拉伸试验机上进行拉伸,直至试样断裂。

1.2塑性

金属材料在外力作用下产生永久变形而不破坏的最大能力称为塑性,通常以拉伸试验时的试样标距长度延伸率δ(%)和试样断面收缩率ψ(%)表示。

1.3硬度

金属材料抵抗其他更硬物体压入表面的能力成为硬度,或者说是材料对局部塑性变形的抵抗力。根据硬度的测定方法,主要可以分为:布氏硬度和洛氏硬度。

1.4韧性

金属材料在冲击载荷作用下抵抗破坏的能力成为韧性。

2、化学性能

金属与其他物质引起化学反应的特性称为金属的化学性能。在实际应用中主要考虑金属的抗蚀性、抗氧化性(又称作氧化抗力,这是特别指金属在高温时对氧化作用的抵抗能力或者说稳定性),以及不同金属之间、金属与非金属之间形成的化合物对机械性能的影响等等。在金属的化学性能中,特别是抗蚀性对金属的腐蚀疲劳损伤有着重大的意义。

3、物理性能

3.1密度

ρ=P/V 单位克/立方厘米或吨/立方米,式中P为重量,V为体积。在实际应用中,除了根据密度计算金属零件的重量外,很重要的一点是考虑金属的比强度(强度σb与密度ρ之比)来帮助选材,以及与无损检测相关的声学检测中的声阻抗(密度ρ与声速C的乘积)和射线检测中密度不同的物质对射线能量有不同的吸收能力等等。3.2熔点

金属由固态转变成液态时的温度,对金属材料的熔炼、热加工有直接影响,并与材料的高温性能有很大关系。3.3热膨胀性

随着温度变化,材料的体积也发生变化(膨胀或收缩)的现象称为热膨胀,多用线膨胀系数衡量,亦即温度变化1℃时,材料长度的增减量与其0℃时的长度之比。热膨胀性与材料的比热有关。

在实际应用中还要考虑比容材料受温度等外界影响时,单位重量的(材料其容积的增减,即容积与质量之比),特别是对于在高温环境下工作,或者在冷、热交替环境中工作的金属零件,必须考虑其膨胀性能的影响。

3.4磁性

能吸引铁磁性物体的性质即为磁性,它反映在导磁率、磁滞损耗、剩余磁感应强度、矫顽磁力等参数上,从而可以把金属材料分成顺磁与逆磁、软磁与硬磁材料。3.5电学性能

主要考虑其电导率,在电磁无损检测中对其电阻率和涡流损耗等都有影响。

4、工艺性能

4.1切削加工性能:

反映用切削工具(例如车削、铣削、刨削、磨削等)对金属材料进行切削加工的难易程度。

4.2可锻性:

反映金属材料在压力加工过程中成型的难易程度,例如将材料加热到一定温度时其塑性的高低(表现为塑性变形抗力的大小),允许热压力加工的温度范围大小,热胀冷缩特性以及与显微组织、机械性能有关的临界变形的界限、热变形时金属的流动性、导热性能等。

4.3可铸性:

反应金属材料融化浇铸成为铸件的难易程度,表现为熔化状态时的流动性吸气性、氧化性、熔点,铸件显微组织的均匀性、致密性,以及冷缩率等等。

4.4可焊性:

反映金属材料在局部快速加热,使结合部位迅速熔化或半熔化(需加压),从而使结合部位牢固地结合在一起而成为整体的难易程度,表现为熔点、熔化时的吸气性、氧化性、导热性、热胀冷缩特性、塑性以及与接缝部位和附近用材显微组织的相关性、对机械性能的影响等。

二、金属材料的发展前景

金属制品行业包括结构性金属制品制造、金属工具制造、集装箱及金属包装容器制造、不锈钢及类似日用金属制品制造,船舶及海洋工程制造等。随着社会的进步和科技的发展,金属制品在工业、农业以及人们的生活各个领域的运用越来越广泛,也给社会创造越来越大的价值。

金属制品行业在发展过程中也遇到一些困难,例如技术单一,技术水平偏低,缺乏先进的设备,人才短缺等,制约了金属制品行业的发展。为此,可以采取提高企业技术水平,引进先进技术设备,培养适用人才等提高中国金属制品业的发展。

三、学习体会

老师将同学们分成十组,让每个同学动手制作PPT,上台演讲,使每个人都融入到课堂中。采用学生先讲,老师再补充的方法,让我们更加清楚的认识这门课。

多媒体教学打破了传统的教学格局,极大地调动了教师与学生的双边积极性。因其具有声音、图像和动画等功能,课堂教学气氛活跃,学生容易按老师的教学思维去回答问题,教师也容易按正常的规律从事教学活动,师生双方的潜能都得到应有的发挥,特别是调动了学生的内在学习动力,学生学习兴趣得到培养,同时也有利于素质教育的开展。但需要注意的是,在机械工程材料教学中,不是每堂课都需要在多媒体教室讲解,在确定教学内容时应注意一个问题,就是如何最大限度地发挥多媒体优势,就是说要让多媒体为教学内容雪中送炭,而不能画蛇添足。

教师要运用自己的知识和经验,理解和把握教材,有计划地组织学生走出校园,走进社会,下车间参观锻炼,多接触各种材料,了解金属材料加工工艺,掌握改善材料的力学性能的方法等,让学生在各个实践环节训练,通过这些实训,充分调动学生的主动性,提高学生运用知识和基本技能分析、解决实际问题的能力,开阔学生的视野,掌握更多的操作技能,使他们认识到机械工程材料知识的价值。

机械工程材料是一门实用型学科,其中每个理论都与生产实际密切相关,每种材料也都有特定的应用范围。因此,在教学过程中,教师针对学生的工种和状况,深入挖掘教材内容,将抽象的理论有意识地与生产实践相结合,有目的地设计兴奋点,让课本内容更贴近生产,并通过工作中的实例加以说明。

通过学习机械工程材料及成型技术基础这门课,让我们对金属材料、高分子材料、新型材料陶瓷材料、有色金属有了更深的认识,初步掌握了金属热处理技术、焊接技术、铸造技术、金属材料成型基本原理、金属材料的力学性能。

由于我们组的大课题是金属材料成型基本原理,所以我对这节的印象更加深刻。自己动手找材料制作课件,让我对其中的每个问题都有了深刻理解。如利用机械外力使构件产生与焊接变形方向相反的塑性变形,使两者互相抵消,称为机械矫正法;利用火焰对焊件局部进行加热。高温处的金属材料受热膨胀后,受到构件本身的刚性制约,产生局部的压缩塑性变形,当焊件冷却后发生收缩抵消了焊后在该部位的伸长变形,从而达到矫正目的称为火焰矫正法:常用的金属加工机器有车床、铣床、刨床、冲床、等等。

虽然课程结束了,但是身为机械专业学生的我们应该在接下来的时间里不断补充自己有关机械材料方面的知识。

第二篇:材料成型技术基础复习提纲整理

第一章绪论

1、现代制造过程的分类(质量增加、质量不变、质量减少)。

2、那几种机械制造过程属于质量增加(不变、减少)过程。

(1)质量不变的基本过程主要包括加热、熔化、凝固、铸造、锻压(弹性变形、塑性变形、塑性流动)、浇灌、运输等。

(2)质量减少过程材料的4种基本去除方法:切削过程;磨料切割、喷液切割、热力切割与激光切割、化学腐蚀等;超声波加工、电火花加工和电解加工;落料、冲孔、剪切等金属成形过程。

(3)材料经过渗碳、渗氮、氰化处理、气相沉积、喷涂、电镀、刷镀等表面处理及快速原型制造方法属于质量增加过程。

第二章液态金属材料铸造成形技术过程

1、液态金属冲型能力和流动性的定义及其衡量方法

液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力。

液态金属的充型能力通常用铸件的最小壁厚来表示。液态金属自身的流动能力称为“流动性”。液态金属流动性用浇注流动性试样的方法来衡量。在生产和科学研究中应用最多的是螺旋形试样。

2、影响液态金属冲型能力的因素(金属性质、铸型性质、浇注条件、铸件结构)

(1)金属的流动性:流动性好的液态金属,充型能力强,易于充满薄而复杂的型腔,有利于金属液中气体、杂质的上浮并排除,有利于对铸件凝固时的收缩进行补缩。

流动性不好的液态金属,充型能力弱,铸件易产生浇不足、冷隔、气孔、夹杂、缩孔、热裂等缺陷。

(2)铸型性质:铸型的蓄热系数b(表示铸型从其中的金属液吸取并储存在本身中热量的能力)愈大,铸型的激冷能力就愈强,金属液于其中保持液态的时间就愈短,充型能力下降。(3)浇注条件:浇注温度对液态金属的充型能力有决定性的影响。浇注温度越高,充型能力越好。在一定温度范围内,充型能力随浇注温度的提高而直线上升,超过某界限后,由于吸气,氧化严重,充型能力的提高幅度减小。液态金属在流动方向上所受压力(充型压头)越大,充型能力就越好。但金属液的静压头过大或充型速度过高时,不仅发生喷射和飞溅现象,使金属氧化和产生”铁豆”缺陷,而且型腔中气体来不及排出,反压力增加,造成“浇不足”或“冷隔”缺陷。浇注系统结构越复杂,流动阻力越大,液态金属充型能力越低。

(4)铸件结构:衡量铸件结构的因素是铸件的折算厚度R(R=铸件体积/铸件散热表面积=V/S)和复杂程度,它们决定着铸型型腔的结构特点。R大的铸件,则充型能力较高。R越小,则充型能力较弱。

铸件结构复杂,厚薄部分过渡面多,则型腔结构复杂,流动阻力大,充型能力弱。铸件壁厚相同时,铸型中的垂直壁比水平壁更容易充满。

3、收缩的定义及铸造合金收缩过程(液态、凝固、固态)铸件在液态、凝固和固态冷却过程中所产生的体积减小现象称为收缩,是液态金属自身的物理性质。液态收缩阶段(Ⅰ)表现为型腔内液面的降低。

凝固收缩阶段(Ⅱ)由状态改变和温度下降两部分产生。一般用体收缩率表示。固态收缩阶段(Ⅲ)通常表现为铸件外形尺寸的减少,故一般用线收缩率表示。

4、缩孔、缩松的定义,形成条件、产生的基本原因,形成部位及防止方法。液态金属在凝固过程中,由于液态收缩和凝固收缩,往往在铸件最后凝固的部位出现大而集中的孔洞,称缩孔;细小而分散的孔洞称为缩松。

1)金属的成分

结晶温度范围越小的金属,产生缩孔的倾向越大;结晶温度范围越大的金属,产生缩松的倾向越大。

(2)浇注条件和铸型性质

提高浇注温度时,金属的总体积收缩和缩孔倾向大,浇注速度很慢缩孔容积减少,铸型材料对铸件冷却速度影响很大。

缩松:金属型<湿型<干型。(3)补缩压力和铸件结构 在凝固过程中增加补缩压力,可增大缩孔而减小缩松的容积。若金属在很高的压力下浇注和凝固,则可以得到无缩孔和缩松的致密铸件。缩孔和缩松的防止方法

(1)针对金属的收缩和凝固特点制定正确的技术方法控制铸件的凝固方向使之符合顺序凝固方式或同时凝固方式;

(2)合理确定内浇口位置及浇注方法;

(3)合理应用冒口、冷铁和补贴等技术措施。

5、铸造应力的定义及分类,产生的缺陷(热裂、冷裂、变形),防止和减少的措施。铸件在凝固和随后的冷却过程中,收缩受到阻碍而引起的内应力,称为铸造应力。分类

按形成的原因不同铸造应力分为热应力、相变应力和机械阻碍应力。按应力存在的状况可分为临时应力和残余应力

临时应力是暂时的,当引起应力的原因消除以后,应力随之消失。残余应力是长期存在的,当引起应力的原因消除后,仍存在铸件中。当铸造应力的总合超过金属的强度极限时,铸件便产生裂纹。按裂纹形成的温度范围可分为热裂和冷裂。

热裂是在凝固末期高温下形成的裂纹。裂纹沿晶粒边界产生和发展,外观形状曲折而不规则,表面与空气接触而被氧化并呈氧化色。

冷裂是铸件在低温时形成的裂纹。冷裂纹常穿过晶粒,外形规则,呈圆滑曲线或直线状,表面光滑而具有金属光泽或显微氧化色。

防止和减小铸造应力的措施 :

在零件能满足工作条件的前提下,选据弹性模量和收缩系数小的材料; 采用同时凝固方式;

合理设置浇冒口,缓慢冷却,以减小铸件各部分温差; 采用退让性好的型、芯砂。

若铸件已存在残余应力,可采用人工时效、自然时效或振动时效等方法消除。

6、金属的吸气性及金属吸收气体的过程,主要气体(H2、N2、O2)

金属在熔炼过程中溶解气体;在浇注过程中因浇包未烘干、铸型浇注系统设计不当、铸型透气性差以及浇注速度控制不当、或型腔内气体不能及时排出,都会使气体进入金属液,增加金属中气体的含量。这就构成了金属的吸气性。(氢、氮、氧)。(1)气体分子撞击到金属液表面;

(2)在高温金属液表面上气体分于离解为原子状态;

(3)气体原子根据与金属元素之间的亲和力大小,以物理吸附方式或化学吸附方式吸附在金属表面;

(4)气体原子扩散进入金属液内部。

7、偏析、宏观偏析、微观偏析、正偏析、逆偏析的定义及其消除方法。

铸件凝固后,截面上不同部位,以至晶粒内部,产生化学成分不均匀的现象,称为偏析。微观偏析是指微小(晶粒)尺寸范围内各部分的化学成分不均匀现象。

在铸件较大尺寸范围内化学成分不均匀的现象叫宏观偏析。主要包括正偏析和逆偏析。正偏析:k>1,杂质的分布从外部到中心逐渐增多; 逆偏析:k<1,易熔物质富集在铸件表面上。

8、铸件可能出现那几种气孔(析出性、反应性、侵入性)及其定义

(1)析出性气孔 当金属液冷却速度较快时,由于铸件凝固,气泡来不及排出而保留在铸件中形成的气孔,称为析出性气孔。(2)反应性气孔 金属液与铸型、熔渣之间相互作用或金属液内部某些组元发生化学反应产生的气体所形成的气孔,则称为反应性气孔。

(3)侵入性气孔 砂型铸造时,由于砂型透气率低或排气通道不畅,砂型受热产生的气体,在界面上超过一定临界值时,气体就会侵入金属液而未上浮排出,则产生侵入性气孔。

9、熔炼的分类(按合金和熔炼特点)及熔炼的基本要求

根据所熔炼合金的特点,熔炼大概可分为铸铁熔炼、铸钢熔炼和有色金属熔炼。根据熔炉的特点又可分为冲天炉熔炼、电弧炉熔炼、感应电炉熔炼和坩锅熔炼等。依据炉衬的种类,熔化技术可分为酸性或碱性。

10、浇注系统的组成及主要功能 浇口杯、直浇道、横浇道、内浇道 浇注系统的主要功能

连接铸型与浇包,导入液态金属; 挡渣及排气;

调节铸型与铸件各部分的温度分布,控制铸件的凝固顺序;

保证液态金属在最合适的时间范围内充满铸型,不使金属过度氧化,有足够的压力头,并保证金属液面在铸型型腔内有必要的上升速度。

11、铸件冒口的定义、作用及设计必须满足的基本要求(P51)

铸型中能储存一定金属液(同铸件相连接在一起的液态金属熔池)补偿铸件收缩,以防止产生缩孔和缩松缺陷的专门技术“空腔”,被称为冒口。冒口的作用:

主要是“补缩铸件”、集渣和通、排气。设置冒口必须满足的基本条件:

凝固时间应大于或等于铸件(或铸件上被补缩部分)的凝固时间; 有足够的金属液补充铸件(或铸件上被补缩部分)的收缩; 与铸件上被补缩部位之间必须存在补缩通道。

12、冷铁的作用

放入铸型内,用以加快铸件某一部分的冷却速度,调节铸件的凝固顺序,与冒口相配合,可扩大冒口的有效补缩距离。

13、常用的机器造型和制芯方法有哪些?

震实造型、微震实造型、高压造型、抛砂造型、气冲造型等。

14、液态金属的凝固过程,顺序凝固、同时凝固的定义

15、砂型铸造和特种铸造的技术特点(P52)砂型铸造的特点是:

适应性广,技术灵活性大,不受零件的形状、大小、复杂程度及金属合金种类的限制。生产准备较简单。

生产的铸件其尺寸精度较差及表面粗极度高;铸件的内部品质也较低; 在生产一些特殊零件(如管件、薄壁件)时,技术经济指标较低。特种铸造的技术特点:

铸件的尺寸精度较高,表面粗糙度低。

在生产一些结构特殊的铸件时,具有较高的技术经济指标,不用砂或少用砂,降低了材料消耗,改善了劳动条件; 使生产过程易于实现机械化、自动化。

但特种铸造适应性差,生产准备工作量大,需要复杂的技术装备。因此,特种铸造技术(陶瓷型铸造除外)一般适用于大批大量生产。

16、常用的特种铸造方法有哪些?其基本原理和特点是什么? 熔模铸造、金属型铸造、压力铸造、离心铸造、低压铸造等。

17、何谓金属的铸造性能,铸造性能不好会引起哪些铸造缺陷?

铸造部分复习题

1、影响液态金属冲型能力的因素有哪些?

2、简述砂型铸造和特种铸造的技术特点。(15)

3、简述铸件上冒口的作用和冒口设计必须满足的基本原则。冒口的作用:

主要是“补缩铸件”、集渣和通、排气。设置冒口必须满足的基本条件:

凝固时间应大于或等于铸件(或铸件上被补缩部分)的凝固时间; 有足够的金属液补充铸件(或铸件上被补缩部分)的收缩; 与铸件上被补缩部位之间必须存在补缩通道。

4、铸造成形的浇注系统由哪几部分组成,其功能是什么?(10)

5、熔炼铸造合金应满足的主要要求有哪些?

熔炼出符合材质性能要求的金属液,而且化学成分的波动范围应尽量小; 熔化并过热金属所需的高温; 有充足和适时的金属液供应; 低的能耗和熔炼费用;

噪声和排放的污染物严格控制在法定的范围内。

6、试比较灰铸铁、铸造碳钢和铸造铝合金的铸造性能特点,哪种金属的铸造性能好?哪种金属的铸造性能差?为什么?(P46)

第三章 复习及复习题

一、名词解释:

1、金属塑性变形、加工硬化

金属塑性变形是利用金属材料塑性变形规律,施加外力使之产生塑性变形而获得所需形状、尺寸和力学性能的零件或毛坯的加工工艺。

塑性:材料在外力作用下,产生永久残余变形而不断裂的能力

加工硬化:在塑型变形过程中,随着变形程度的增加,金属的强度、硬度提高,塑型、韧性下降,这一现象称为加工硬。(工程材料)金属在室温下塑性变形,由于内部晶粒沿变形最大方向伸长并转动、晶格扭曲畸变以及晶内、晶间产生碎晶的综合影响,增加了进一步滑移变形的阻力,从而引起金属的强度、硬度上升,塑性、韧性下降的现象称为加工硬化。亦称为冷作硬化。

2、自由锻: 自由锻造(又称自由锻)是利用冲击力或压力使金属材料在上下两个砧铁之间或锤头与砧铁之间产生变形,从而获得所需形状、尺寸和力学性能的锻件的成形过程。模锻:模型锻造包括模锻和镦锻,是将加热或不加热的坯料置于锻模模膛内,然后施加冲击力或压力使坯料发生塑性变形而获得锻件的成形过程。胎模锻:胎模锻造是在自由锻造设备上使用不固定在设备上的各种称为胎模的单膛模具,将已加热的坯料用自由锻方法预锻成接近锻件形状,然后用胎模终锻成形的锻造方法。

3、落料、冲孔

落料和冲孔又统称为冲裁。落料和冲孔是使坯料按封闭轮廓分离。落料是被分离的部分为所需要的工件,而留下的周边部分是废料;冲孔则相反。

4、固态金属的冷变形和热变形

冷变形是指金属在进行塑性变形时的温度低于该金属的再结晶温度。热变形是指金属在进行塑性变形时的温度高于该金属的再结晶温度。

5、板料分离和成形 分离过程是使坯料一部分相对于另一部分产生分离而得到工件或者料坯。成形过程是使坯料发生塑性变形而成一定形状和尺寸的工件。

6、金属的可锻性

金属塑性变形的能力又称为金属的可锻性,它指金属材料在塑性成形加工时获得优质毛坯或零件的难易程度。

三、简答题

1、简述自由锻成形过程的流程及绘制自由锻件图要考虑的主要因素。

计算坯料质量和尺寸、下料零件图→绘制锻件图 →确定工序、加热温度、设备等→加热坯料、锻打→检验→锻件

敷料、加工余量、锻件公差

2、在金属的模锻过程中,影响金属充填模腔的因素有哪些?

①金属的塑性和变形抗力。显然,塑性高、变形抗力低的金属较易充满模膛。②金属模锻时的温度。金属的温度高,则其塑性好、抗力低,易于充满模膛。

③飞边槽的形状和位置。飞边槽部宽度与高度之比(b/h)及槽部高度h是主要因素。(b/h)越大,h越小,则金属在飞边流动阻力越大。强迫充填作用越大,但变形抗力也增大。④锻件的形状和尺寸。具有空心、薄壁或凸起部分的锻件难于锻造。锻件尺寸越大,形状越复杂,则越难锻造。

⑤设备的工作速度。一般而言,工作速度较大的设备其充填性较好。⑥充填模膛方式。镦粗比挤压易充型。⑦其他如锻模有无润滑、有无预热等。

3、请阐述金属在模锻模膛内的变形过程及特点。(1)充型阶段

在最初的几次锻击时,金属在外力的作用下发生塑性变形,坯料高度减小,水平尺寸增大,并有部分金属压入模膛深处。这一阶段直到金属与模膛侧壁接触达到飞边槽桥口为止。特点:模锻所需的变形力不大。(2)形成飞边和充满阶段

继续锻造时,由于金属充满模膛圆角和深处的阻力较大,金属向阻力较小的飞边槽内流动,形成飞边。此时,模锻所需的变形力开始增大。随后,金属流入飞边槽的阻力因飞边变冷而急速增大,当这个阻力一旦大于金属充满模膛圆角和深处的阻力时,金属便改向模膛圆角和深处流动,直到模膛各个角落都被充满为止。

这一阶段的特点是飞边进行强迫充填,变形力迅速增大。锻足阶段

如果坯料的形状、体积及飞边槽的尺寸等工艺参数都设计得恰当,当整个模膛被充满时,也正好锻到锻件所需高度。但是,由于坯料体积总是不够准确且往往都偏多,或者飞边槽阻力偏大,导致模膛已经充满,但上、下模还未合拢,需进一步锻足。

这一阶段的特点是变形仅发生在分模面附近区域,以便向飞边槽挤出多余的金属。

4、简述模锻技术过程中确定分模面位置的原则。

①要保证模锻件易于从模膛中取出。故通常分模面选在模锻件最大截面上。②所选定的分模面应能使模膛的深度最浅。这样有利于金属充满模膛,便于锻件的取出和锻模的制造。

③选定的分模面应能使上下两模沿分模面的模膛轮廓一致,这样在安装锻模和生产中发现错模现象时,便于及时调整锻模位置。④分模面最好是平面,且上下锻模的模膛深度尽可能一致。便于锻模制造。⑤所选分模面尽可能使锻件上所加的敷料最少。这样既可提高材料的利用率,又减少了切削加工的工作量。

5、落料和冲孔用凹、凸模刃口尺寸是如何确定的?

设计落料时,凹模刃口尺寸即为落料件尺寸,然后用缩小凸模刃口尺寸来保证间隙值。设计冲孔模时,凸模刃口尺寸为孔的尺寸,然后用扩大凹模刃口尺寸来保证间隙值。为保证零件的尺寸要求,提高模具的使用寿命,落料时取凹模刃口的尺寸应靠近落料件公差范围的最小尺寸;而冲孔时则取凸模刃口的尺寸靠近孔的公差范围内的最大尺寸。

第四章 粉末压制和常用复合材料成形过程

练习题

一、名词解释: 粉末冶金:粉末压制(这里主要指粉末冶金)是用金属粉末(或者金属和非金属粉末的混合物)做原料,经压制成形后烧结而制造各种类型的零件和产品的方法。

电解法:电解法是采用金属盐的水溶液电解析出或熔盐电解析出金属颗粒或海绵状金属块,再用机械法进行粉碎。雾化法金属粉末制备方法:雾化法是将熔化的金属液通过喷射气流(空气或惰性气体)、水蒸汽或水的机械力和急冷作用使金属熔液雾化,而得到金属粉末。

三、简答

1、硬质合金的分类情况及其主要用途是什么? 钨钴类(YG)主要组成为碳化钨(WC)和钴(Co)。常用牌号有YG3、YG6、YG8等。

钨钴类硬质合金有较好的强度和韧度,适宜制作切削脆性材料的刀具。如切削铸铁、脆性有色合金、电木等。且含钴愈高,强度和韧度愈好,而硬度、耐磨性降低,因此,含钴量较多的牌号一般多用作粗加工,而含钴量较少的牌号多用于作精加工。钨钴钛类(YT)主要组成为碳化钨、碳化钛(TiC)和钴。常用牌号有YT5、YT10、YTl5等。

钨钴钛类硬质合金含有比碳化钨更硬的碳化钛,因而硬度高,热硬性也较好,加工钢材时刀具表面会形成一层氧化钛薄膜,使切屑不易粘附,故适宜制作切削高韧度钢材的刀具。同样含钴量较高(如YT5.含钴9%)的牌号用作粗加工。钨钽类(YW)主要组成为碳化钨、碳化钛、碳化钽(TaC)和钴。其特点是抗弯强度高。牌号主要有YWl(84%WC、6%TiC、4%TaC、6%Co),YW2(82%WC、6%TiC、4%TaC、8%Co)两种。这类硬质合金制作的刀具用于加工不锈钢、耐热钢、高锰钢等难加工的材料。

2、请简要介绍粉末压制结构零件设计的原则

一、压制件应能顺利地从压模中取出

二、应避免压制件出现窄尖部分

窄尖部分会出现装粉不足,使压制成形因难。窄尖部分还会影响压模的强度和寿命。

三、零件的壁厚应尽量均匀,台肩尽可能的少,高(长)宽(直径)比不超过2.5(厚壁零件不超过4)零件的高度太高,压制方向上的台肩多,各部分壁厚相差过大等,都会造成压制件的密度分布不均匀。

四、制品的尺寸精度及表面粗糙度 压制烧结零件的尺寸精度,应以能满足零件的技术要求为准;既不要盲目地追求过高的尺寸精度,这样不仅大大增加生产成本;又不要不必要地降低尺寸精度,从而抹煞粉末压制的技术特点。

制品的表面粗糙度取决压模的表面粗糙度。烧结后一般在10~15μm,若想进一步降低表面粗糙度,则需要进行复压校形或精压。

3、请简要介绍金属粉末的制备方法

1、矿物还原法制取粉末

矿物还原法是金属矿石在一定冶金条件下被还原后,得到一定形状和大小的金属料,然后将金属料经粉碎等处理以获得粉末。

矿物还原法主要适用于铁粉生产,也能生产钴、钼、钙、难熔的金属化合物粉末(如碳化物、硼化物、硅化物粉末)等。

2、电解法

电解法是采用金属盐的水溶液电解析出或熔盐电解析出金属颗粒或海绵状金属块,再用机械法进行粉碎。

电解法生产的金属品种多,纯度高,粉末颗粒呈树枝状或针状,其压制性和烧结性都较好。

3、雾化法制取粉末

雾化法是将熔化的金属液通过喷射气流(空气或惰性气体)、水蒸汽或水的机械力和急冷作用使金属熔液雾化,而得到金属粉末。

由于雾化法制得的粉末纯度较高,又可合金化,粉末有其特点,且产量高、成本较低,故其应用发展很快。可用来生产铁、钢、铅、铝、锌、铜及其合金等的粉末。

4、机械粉碎法

机械破碎法中最常用的是钢球或硬质合金球对金属块或粒原料进行球磨。

适宜于制备一些脆性的金属粉末,或者经过脆性化处理的金属粉末(如经过氢化处理变脆的钛粉)。

第五章 固态材料的连接过程 练习题

一、名词解释: 焊接:将分离的金属用局部加热或加压等手段,借助于金属内部原子的结合与扩散作用牢固地连接起来,形成永久性接头的过程称为焊接。

熔化焊接:利用热源局部加热的方法,将两工件接合处加热到熔化状态,形成共同的熔池,凝固冷却后,使分离的工件牢固结合起来的焊接称为熔化焊。压力焊接:在焊接过程中,对焊件施加一定压力(加热或不加热),以完成焊接的方法。钎焊:钎焊是采用熔点比母材低的金属作钎料,将焊件加热到高于钎料熔点、低于母材熔点的温度,使钎料填充接头间隙,与母材产生相互扩散,冷却后实现连接焊件的方法。

摩擦焊:摩擦焊是利用工件接触面摩擦产生的热量为热源,将工件端面加热到塑性状态,然后在压力下使金属连接在一起的焊接方法。

电阻焊:电阻焊是利用电流通过焊件时产生的电阻热,作为热源,加热焊件,在压力下进行焊接的。

直流正接和直流反接:直流正接:工件接阳极,焊条接阴极。直流反接:工件接阴极,焊条接阳极。

三、简答题

1、焊接用焊条药皮的作用是什么,由哪几部分组成? 药皮的作用

A 改焊接工艺性能:易引弧、稳弧,减小飞溅,使焊缝成形美观; B 机械保护作用:气体、熔渣隔离空气,保护熔液和熔池金属;

C 冶金处理作用:药皮中的某些元素可起到渗合金、脱氧、脱硫、去氢作用。药皮的组成

主要有稳弧剂、造气剂、造渣剂、脱氧剂、合金剂、粘结剂、稀渣剂、增塑剂等。主要原料有矿石、铁合金、有机物和化工产品等四类。

2、简述碱性焊条和酸性焊条的性能和用途。熔渣以酸性氧化物为主的焊条,称为酸性焊条。

酸性焊条的氧化性强,焊接时具有优良的焊接性能,如稳弧性好,脱渣力强,飞溅小,焊缝成形美观等,对铁锈、油污和水分等容易导致气孔的有害物质敏感性较低。熔渣以碱性氧化物为主的焊条,称为碱性焊条。

碱性焊条有较强的脱氧、去氧、除硫和抗裂纹的能力,焊缝力学性能好,但焊接技术性能不如酸性焊条,如引弧较困难,电弧稳定性较差等,一般要求用直流电源。而且药皮熔点较高,还应采用直流反接法。

3、手工电弧焊用焊条的选用原则是什么?

首先根据焊件化学成分、力学性能、抗裂性、耐蚀性及高温性能等要求,选用相应的焊条种类。再考虑焊接结构形状、受力情况、焊接设备条件和焊条售价来选定具体型号。①根据母材的化学成分和力学性能

若焊件为结构钢时,则焊条的选用应满足焊缝和母材“等强度”,且成分相近的焊条; 异种钢焊接时,应按其中强度较低的钢材选用焊条;

若焊件为特殊钢,如不锈钢、耐热钢等时,一般根据母材的化学成分类型按“等成分原则”选用与母材成分类型相同的焊条。

若母材中碳、琉、磷含且较高,则选用抗裂性能好的碱性焊条。②根据焊件的工作条件与结构特点

对于承受交变载荷、冲击载荷的焊接结构,或者形状复杂、厚度大,刚性大的焊件,应选用碱性低氢型焊条。

③根据焊接设备、施工条件和焊接技术性能

无法清理或在焊件坡口处有较多油污、铁锈、水分等赃物时,应选用酸性焊条。在保证焊缝品质的前提下,应尽量选用成本低、劳动条件好的焊条。无特殊要求时应尽量选用焊接技术性能好的酸性焊条。

4、什么是焊接热影响区?它由哪几部分组成,分别对焊接接头有何影响? 在电弧热的作用下,焊缝两侧处于固态的母材发生组织或性能变化的区域,称为焊接热影响区。

热影响区可分为过热区、正火区和部分相变区。过热区的塑性和冲击韧度很低。焊接刚度大的结构或碳的质量分数较高的易淬火钢材时,易在此区产生裂纹。

一般情况下,焊接热影响区内的正火区的力学性能高于未经热处理的母材金属。已相变组织和未相变组织在冷却后晶粒大小不均匀对力学性能有不利影响。

5、焊接应力产生的根本原因是什么?减少和消除焊接应力的措施有哪些?

焊接过程中对焊件进行了局部的不均匀的加热,是产生生焊接应力和变形的根本原因。(1)选择合理的焊接顺序(2)焊前预热

焊前将焊件预热到350-400℃,然后再进行焊接。预热可使焊缝部分金属和周围金属的温差减小,焊后又可比较均匀地同时冷却收缩,因此可显著减少焊接应力,同时可减少焊接变形。(3)加热“减应区”

在焊接结构上选择合适的部位加热后再焊接,可大大减少焊接应力。(4)焊后热处理

去应力退火过程可以消除焊接应力。

即将工件均匀加热到600-650℃,保温一定时间,然后缓慢冷却。整体高温回火消除焊接应力的效果最好,一般可将80%—90%以上的残余应力消除掉。

6、简述金属材料焊接性的概念。指在一定的焊接工艺条件下,获得优质焊接接头的难易程度。即金属材料对焊接加工的适应性称为金属材料的焊接性。

7、简述埋弧自动焊的特点及应用。

①生产率高 生产率比手工电弧焊高5-10倍。②焊接品质高而且稳定 ③节省金属材料 ④劳动条件好

但是埋弧自动焊的灵活性差,只能焊接长而规则的水平焊缝,不能焊短的、不规则焊缝和空间焊缝,也不能焊薄的工件。焊接过程中,无法观察焊缝成形情况,因而对坡口的加工、清理和接头的装配要求较高。埋弧自动焊设备较复杂,价格高,投资大。应用

埋弧自动焊通常用于碳钢、低合金钢、不锈钢和耐热钢等中厚板(6-60mm)结构的长焊缝及直径大于250mm环缝的平焊,生产批量越大,经济效果越佳。

8、铸铁焊补的主要困难及采取的主要措施有哪些?

焊接接头易产生白口组织,硬度很高,焊后很难进行机械加工。焊接接头易产生裂纹,铸铁焊补时,其危害性比白口组织大。在焊缝易出现气孔。

第三篇:中南林机械工程测量技术基础实验报告(模版)

一、电阻应娈式传感器全桥测量实验

实验报告要求

全桥测试糸统的工作原理.电阻应娈式传感器的工作过程.电阻应娈式传感器灵敏度是否是全桥测试糸统的灵敏度.二、测试糸统实验

实验报告要求

测试糸统的基本组成和要求.举例说明有弹性元件传感器的变换(应变、位移)过程和工作过程.三、振动测试系统的基本组成实验报告要求

一般振动测试系统应该包括下述三个主要部分。1)激励部分,2)拾振部分,3)分析记录部分。

1通过振动实验台简述每部分的作用。

2电动式激振器、电磁式激振器、磁电式速度传感器、压电式加速度(计)传感器的工作过程。

第四篇:工程材料与成型技术基础复习总结

工程材料与成型技术基础 1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大应力。2.工程上常用的强度指标有屈服强度和抗拉强度。3.弹性模量即引起单位弹性变形所需的应力。4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留一部分残余成形,这种不恢复的参与变形,成为塑性变形。5.产生塑性变形而不断裂的性能称为塑性。6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断前的最大承载能力。7.发生塑性变形而力不增加时的应力称为屈服强度。8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材料软硬程度的指标。9.硬度是检验材料性能是否合格的基本依据之一。10.应用范围 具有粗大晶粒或组成相得金属材料的硬度 用于淬火钢、退火钢、铝合金等硬度稍软的金属 维氏硬度 测试原理 测量表面压痕,即测量面积,损害较大 测试件深度,即压痕深度增量 硬度分类 布氏硬度 洛氏硬度 测试小件,检验氧化、氮化、单个晶粒微粒 渗碳、镀层等工艺处理效果 11.12.13.14.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两种硬度。冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称为疲劳断裂。疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的最大应力。15.16.原子在空间呈规则排列的固体物质称为晶体,晶体具有固定的熔点。晶格:表示金属内部原子排列规律的抽象的空间格子。晶面:晶格中各种方位的原子面。晶胞:构成晶格的最基本几何单元。17.体心立方晶格:α-Fe、鉻(Cr)、钼(Mo)、钨(W)。面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间隙原子、置换原子、空位。19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸很小的缺陷,呈线状分布,其具体形式是各种类型的位错。20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很小的缺陷,如晶界和亚晶界。21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。结晶过程由形成晶核和晶核长大两个阶段组成。22.纯结晶是在恒温下进行的。23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其差值称为过冷度ΔT,即ΔT=Tm﹣Tn。24.同一液态金属,冷却速度愈大,过冷度也愈大。25.浇注时,向液态金属中加入一些高熔点、溶解度的金属或合金,当其结构与液态金属的晶体结构相似时使形核率大大提高,获得均匀细小的晶粒。这种方法称为变质处理。26.液态金属结晶后获得具有一定晶格结构的晶体,高温状态下的晶体,在冷却过程中晶格结构法发生改变的现象,称为同素异构转变,又称重结晶。27.一种金属具有两种或两种以上的晶体结构,称为同素异构性。28.当溶质原子溶入溶剂晶格,使溶剂晶格发生畸变,导致固溶体强度、硬度提高,塑性和韧性略有下降的下降,称为固溶强化。29.金属化合物呈细小颗粒均匀分布在固溶体基体上时,使合金的强度、硬度、耐热性和耐磨性明显提高,这一现象称为弥散强化。30.杠杆定律→大题(P26)。31.相图分析→大题(P32)。32.铁碳合金的分类 合金的种类 碳的质量分数 室温组织 碳钢 工业纯铁 亚共析钢 钢 共析过共析钢 亚共晶铸铁 铸铁 白口铸铁 亚共晶晶铸铁 0.0218-﹤0.77 0.0218 0.77 0.77-2.11 2.11-4.3 4.3 4,3-6.69 P 综合F P+F P+FeCⅡ P+FeCⅡ+Ld’ Ld FeCⅠ+Ld’ 力学性能 软 塑性、韧性好 力学性能好 硬度大 硬而脆 33.碳钢是指碳的质量分数小于2.11%的铁碳合金。34.碳钢的分类 分类方法 钢种 低碳钢 质量分数 wc≦0.25% 特点 强度低、塑性和焊接性好 强度较高、但塑性和焊接性差 塑性和焊接性差,强度和硬度高 按碳的质量分数 中碳钢 wc=0.025%-0.6% 高碳钢 wc﹥0.6% 35.铸铁是应用广泛的一种铁碳合金,其wc﹥2.11%.36.按照石墨形貌的不同,这一类铸铁可以分为灰铸铁(片状石墨)、可锻铸铁(团絮状石墨)、球墨铸铁(球状石墨)和蠕墨铸铁(蠕虫状石墨)四种。37.钢的热处理是将固态钢采用适当的方式进行加热、保温、和冷却,以获得所需组织结构与性能的一种工艺。38.热处理的特点是改变零件内部组织,不改变其形状与尺寸,消除毛坯缺陷,改善毛坯切削性能,改善零件的力学性能。即改善工艺性能和力学性能。39.热处理分为普通热处理(退火、正火、淬火和回火)、表面热处理(表面淬火、渗碳、渗氮、碳氮共渗)及特殊热处理(形变热处理)。40.不是所有材料都能进行热处理强化,满足条件:①有固态相变②经冷加工使组织结构处于热力学不稳定状态③表面能被活性介质的原子渗入从而改变化学成分。41.退火作用是为了降低硬度,提高塑性改善切削性能。42.淬火的作用:获得高硬度的马氏体。43.奥氏体化:将钢加热至临界点以上使形成奥氏体的金属热处理过程,珠光体向奥氏体转变。44.奥氏体化是钢组织转变的基本条件。45.应用等温转变曲线分析奥氏体化在连续冷却中的转变(P53)46.球化退火是使钢中碳化物球化而进行的退火,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。热处理后的组织为珠状珠光体,应用于共析钢、过共析钢和合金工具钢。目的:降低硬度、改善切削加工性,改善热处理工艺性能,为淬火做组织准备。47.正火,又称常化,是将工件加热至727到912摄氏度之间以上40~60min,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。应用于亚共析钢,铁素体和索氏体、亚共析钢,索氏体、过共析钢,索氏体和二次渗碳体。目的:对于低碳钢、低碳低合金钢,细化晶粒,提高硬度,改善切削加工性,对于共析钢,消除二次网状渗碳体,有利于球化退火的进行。48.钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上温度,保温一段时间,使之全部或部分奥氏体化,再以大于临界冷却速度快速冷却,从而发生马氏体转变的热处理工艺。淬火钢得到的组织主要是马氏体(或下贝氏体),此外还有少残余奥氏体及未溶的第二相。目的:提高钢的硬度和耐磨性。49.回火是将淬火钢重新加热到A1以下某一温度,保温,然后冷却的热处理工艺。50.低温回火的组织为回火马氏体,它有饱和的α相和与其共格的ε-Fe2.4C组成,低温回火的目的是保持淬火马氏体的高硬度和高耐磨性,降低淬火应力和脆性,用于各种高碳钢的道具、量具、冷冲模具、滚动轴承和渗碳工件。51.中温回火后的组织为回火托氏体,它有尚未发生的再结晶的针状铁素体和弥散分布的极细小的片状或粒状渗碳体组成,目的是为了获得高的屈强比、高的弹性极限、高的韧性,用于各种弹簧、锻模。52.高温回火的组织为回火索氏体,它有已再结晶的铁素体和均匀分布的细粒状渗碳体组成,失去了原来淬火马氏体的片状或板条状形态,呈现多边形颗粒状,同时渗碳体聚集长大。目的:获得综合力学力学性能,在保持较高强度的同时,具有较好的塑性和韧性,适用于处理传递运动和力的重要零件,如:传动轴、齿轮。53.淬火后高温回火的热处理称为调质。54.产生回火脆性:淬火合金钢在某一温度范围内回火时,出现冲击韧性剧烈下降的现象,称为回火脆性。在350℃附近回火,碳钢的和合金钢都会出现冲击韧性下降,产生脆化现象,这种回火脆性称为第Ⅰ类回火脆性。它与回火的冷却方式无关,且无法消除,因此一般不在250-400℃温度范围内回火。淬火合金钢在450-650℃回火时出现的回火脆性,称为第Ⅱ类回火脆性。它与杂质在奥氏体晶界上的偏析有关,消除第Ⅱ类回火脆性的方法:回火后快速冷却,使杂质来不及在晶界上偏析。(简答题)55.液态金属充型铸造,获得尺寸精确,轮廓清晰的铸件,取决于充型能力。在液态金属充型过程中,一般伴随结晶现象,若充型能力不足,在型腔被填满之前形成晶粒将充型的通道堵塞,金属液态迫使停止流动,于是铸件将产生不足或冷隔等缺陷。56.充型能力取决于金属液本身的流动能力。57.影响充型能力的因素和原因 序号 影响因素 定义 液态金属本身的流动能力 1 合金的流动性 影响原因 流动性好,易于浇出轮廓清晰、薄而复杂的铸件,有利于非金属夹杂物和气体的上浮和排除;易于对铸件的收缩进行补缩。2 浇注温度 浇注时金属液的温度 金属液体在流动方向上所受的压力 3 充型压力 浇注温度愈高,充型能力俞强。压力愈大,充型能力俞强,但压力过大或充型速度过高会发生喷射、飞溅和冷隔现象。4 铸型中的气体 浇注时因铸型发气而形成在铸型内能在金属液与铸型间产生气的气体 膜,减小摩擦阻力,但发气太大,铸型的排气能力又小时,铸型中的压力增大,阻碍金属液的流动 铸型从其中的金属吸取并向外传输5 铸型的传热 热量的能力 传热系数愈大,铸型的激冷能力就俞强,金属液于其中保持液态的时间就愈短,充型能力下降。6 铸型系数温度 铸型在浇注时的温度 温度愈高,液态金属与铸型的温差就愈小,充型能力愈强。7 浇注系统结构 各浇道的结构复杂情况 结构愈复杂,流动阻力愈大,充型能力愈差。8 铸件的折算厚度 铸件体积与表面积之比 折算厚度大,散热慢,充型能力好。9 铸件的复杂程度 铸件结构复杂程度 结构复杂,流动阻力大,铸型充填困难。58.铸件的凝固方式分为三种类型:逐层凝固方式、体积凝固(糊状凝固)方式和中间凝固方式。59.铸件在凝固和冷却过程中,其体积和尺寸减小的现象称为收缩。收缩是铸件许多缺陷产生的基本原因。60.金属从浇注温度冷却到室温经过三个收缩阶段:⑴液态收缩:金属在液体状态时的收缩,其原因是由于气体排出,空穴减少,原子间间距减小。⑵凝固收缩:金属在凝固过程中的收缩,其原因是由于空穴减少,原子间间距减小。液态收缩和凝固收缩又称为体积收缩,是缩孔或缩松形成的基本原因。⑶固态收缩:金属在固态过程中的收缩,其原因在于空穴减少,原子间间距减少。固态收缩还引起铸件外部尺寸的变化,古称尺寸收缩线收缩。线收缩对铸件形状和尺寸精度影响很大,是铸造应力、变形和裂纹等缺陷产生的基本原因。61.在常用合金中,钢的收缩率最大,灰铸铁收缩率最小。62.铸件凝固结束后常常在某些部位出现孔洞,大而集中的称为缩孔,细小而分散的孔洞称为缩松。结晶间隔大的合金,易产生缩松,纯金属共晶成分的合金,易形成集中的缩孔。63.金属材料经冷塑性变形后,随变形度的增加,其强度、硬度提高,塑性和韧性下降,这种现象称为加工硬化。64.晶体只有在切应力的作用下才会发生塑性变形。65.金属在再结晶温度以下进行的塑性变形称为冷变形加工,此时产生加工硬化。金属在再结晶温度以上进行的塑性变形称为热变形加工。66.热变形加工可使金属中的气孔和疏松焊合,并改善夹杂物,碳化物的形态、大小和分布,提高钢的强度、塑性及冲击韧度。67.热变形时铸锭中的非金属夹杂物沿变形方向被拉长为纤维组织(热加工流线)。68.自由锻用于单件、小批量锻件的生产以及大型锻件的产生。69.自由锻相比模锻具有以下特点:模锻件形状和尺寸精度高,表面质量好,加工余量小,节省金属材料;生产率高;操作简单,易于实现自动化;模锻设备要求较高,吨位要求大,锻模结构复杂,成本高,生产准备周期较长。70.模锻适用于中、小型锻件的成批及大量生产。71.板料冲压是利用冲模在压力机上对材料施加压力,使材料产生分离或变形,从而获得一定形状、尺寸和性能的加工方法。板料冲压通常在室温下进行,故又称冷冲压。72.弯曲件在弯曲变形后,会伴随一些弹性恢复从而造成工件弯曲角度、弯曲半径与模具的形状、尺寸不一致的现象称为弯曲件的回弹现象。73.焊接方法:熔化焊、压力焊和钎焊。74.电阻焊是利用接触电阻热将接头加热到塑性或熔化状态,再通过电极施加压力,形成原子间结合的焊接方法。75.钎焊分为两类:硬钎焊和软钎焊。硬钎焊的特点是所用钎料的熔化温度高于450℃,接头的强度大,用于受力较大、温度较高的场合。所用的钎料多为铜基、银基。钎料熔化温度低于450℃的钎焊是软钎焊。软钎焊常用锡铅钎料,适用于受力不大,工作温度低的场合。76.焊接残余应力变形产生的原因:结构件在焊接以后2产生变形,内部易产生残余应力。焊接残余应力会增加结构工作的应力,降低结构的承载能力。焊接时,焊缝被加热,焊缝区应膨胀,但由于焊缝区域周围的金属未被加热和膨胀,所以该部分的金属制约了焊缝区受热的自由膨胀,焊缝产生塑性变形并缩短。焊缝冷却后,焊缝区域比周围区域短,但是焊缝周围区域并没有缩短,从而阻碍焊缝区域的自由收缩,产生焊接以后工件的变形与应力。77.低碳钢的焊接:焊接性良好,焊接时没有淬硬、冷裂倾向。78.铸铁的焊接:铸铁碳含量高,塑性低,焊接性差。铸铁焊接容易产生裂纹。79.焊接时,为什么对焊接区进行保护?有哪些保护措施? 答:防止空气进入熔池,减少焊缝金属中的氧、氮含量、氧含量增加,焊缝的强度、硬度、塑性、韧性下降。氮含量增加,会使焊缝中产生气孔。保护措施:⑴造气保护:焊条药皮或焊剂在高温下回产生气体,在焊接区周围形成一层保护气体,隔绝空气,使弧柱和熔池受到保护。如氩弧焊。⑵造渣保护,焊条药皮或焊剂熔化后产生熔渣,在熔池表面形成一层熔渣,与空气隔绝。如埋弧焊。⑶气-渣联合保护,在焊接区周围同时形成保护气体和熔渣,对焊接区进行保护。如焊条电弧焊。⑷渗合金,通过药皮、焊剂或焊条、焊丝向金属池渗合金,添加硅、锰等有益元素,以弥补其烧损,并进行脱氧、脱硫、脱磷,从而保证和调整焊缝的化学成分。80.热塑性塑料:其分子结构主要为线型或支链线型分子结构,工艺特点是受热软化、熔融、具有可塑性,冷却后坚硬;再受热又可软化,可重复使用而其基本性能不变;可溶解在一定的溶剂中。成形工艺简便、形式多种多样,生产效率高,可直接注射、挤压、吹塑成型,如聚乙烯、聚丙烯。81.热固性材料:具有体型分子结构,热固性塑料一次成形后,质地坚硬、性质稳定,不再溶于溶剂中,受热不变形,不软化,不能回收。成形工艺复杂,大多只能采用模压或层压法,生产效率低,如酚醛塑料、环氧塑料。82.陶瓷材料具有高强度、高模量、高硬度以及高耐温、耐腐蚀等优良性能。但特有的脆性、抗热振性能差等缺陷。83.碳/碳复合材料具有碳和石墨材料特有的优点如低密度,优异热性能如耐烧蚀性、抗热震性、高导热性和低膨胀系数。同时还具有复合材料的高强度、高弹性模量。84.纳米材料的特性:量子尺寸效应、表面效应、纳米材料的体积效应、量子隧道效应。85.毛坯选择的原则:⑴工艺性原则⑵适应性原则⑶生产条件兼顾原则⑷经济性原则⑸可持续性发展原则。制作人:罗爽 绝无雷同 翻者必究

第五篇:热成型技术(定稿)

王辉:热成型技术可以帮助汽车节能减排http://auto.QQ.com

2009年10月20日18:31

腾讯汽车

我要评论(0)主持人:下面进行今天最后一个主题演讲。下面有请本特勒汽车工业亚太区车身技术总监王辉博士。他演讲的题目是汽车安全设计及车身轻量化——本特勒热成型技术的应用。

王辉:我叫王辉,我来自德国本特勒集团。

不管现在的汽车动力是混合型的动力,还是电池的电动力,汽车车身轻量化的问题是一个主要的问题,汽车越轻,同样的动力他跑得越快,在同样的动力下他跑得远。所以我们今天的题目主要是讲一下怎么样用现代的工业技术以及新材料把车身在满足一些技术条件,比如说碰撞条件、干路条件下能满足轻量化,在节能减排方面做一些贡献。节能减排是一个大趋势,本特勒作为全球最大的汽车零部件供应商之一,我们可以说本特勒也在行动以节能减排。

我今天题目主要有几个部分,在技术报告之前,我用几分钟给大家介绍一下本特勒。另外,我再介绍一下关于二氧化碳的减排,这个题目今天我们前面的报告人都已经介绍了,我再简单介绍一下。另外,在车身上面材料的使用,为什么使用这个材料,这个材料有什么好处。我以前在国内做报告的题目就是这样:对于不同的零件我们可以使用不同的材料,满足他的技术要求,根据这个设计来满足轻量化的要求。另外,我给大家介绍我们近一两年在市场上推广的三个技术。最后,我要介绍三个例子,通过这三个例子大家可以看出来,作为节能减排,我们车的轻量化怎么能够在车的设计过程中考虑到成本的要求、轻量化的要求、技术的要求。

首先,本特勒。本特勒是一个家族企业,它已经存在了130年的历史。他以前是一个铁匠出身的,在50年代的时候,他曾经生产过五千辆最小车。60年代,本特勒集团分成三个分支,有钢管、钢材、汽车技术、贸易。我们今天主要讲的是汽车贸易,在汽车贸易里面我们有三个产品部门,第一个是底盘部门,我是来自车身部门的。另外一套,我们还有发动机和排气管道部门,另外,我们还有工程技术公司。本特勒全球在汽车行业总共在二十多家,有52个工厂16个研发中心,去年在汽车行业的销售量是46亿欧元,全球18000名员工。它的主要产品提前已经提到了,主要是底盘,底盘部门有底盘零件和底盘模块。我们还有车身件,车身件在车身里面,主要是A铸、B铸、前面保险杠这些系统。这些系统在汽车轻量化里面可以做很多的文章,因为在车身里面,碰撞是一个主要的,现在国内汽车要打开国际的碰撞门,你必须考虑到你这个车的设计,怎么样才能设计出一个车在国外欧洲碰撞的时候能够达到它的五星、四星的要求。我们这里面主要的安全零部件就拆开了热成型技术。我们主要发动机的钢管和排气管道,我们公司还有一个钢管厂,它是高强度的钢管它的抗强度能够到1600兆发左右。

这是我们公司以后要创新发展的未来,现在主要有三个:去年我们在国内搞技术展览的时候,我们已经提到这三个模块:这三个模块一个是有效合理的利用资源。有效合理的利用资源主要是考虑加工,我们通过不同的创新、改革使我们的先进工艺技术应用到生产中去,使能源消耗降低。这样我们有效的使用资源。另外,我们考虑到安全性。因为汽车的安全性是一个主要的课题,我们生产出来的车必须要安全。另外,就是环境保护,我们主要是考虑到怎样使汽车轻量化以达到减排的效果。所以我们不但在汽车零部件里面使用热成型技术,还有碳纤维材料,我们也可以提供这些产品的设计和生产。

接下来简单介绍我们公司的情况,我们公司在中国的业务也开展得很好,目前中国有四家工厂,两家在上海,一家在长春,另外一家在福州,而且我们公司是第一家把热成型技术引入中国的公司。前面介绍了我们公司。

下面讲一下我们下一个课题,这个课题主要是二氧化碳的规则。这个规则主要是欧共体定的规则。02年65%的车二氧化碳的排放量必须不能超过130克,05年,55%的车必须达到这个要求,如果不能达到这个要求,有一个惩罚,就是惩罚我们汽车厂,如果汽车厂超过一克,罚款五欧元,如果超过四克,每一克要付费95欧元。从2019年以后,所有的车生产,如果超出了这个标准,每一克都要罚款95欧元。这对汽车轻量化起到了很大的作用。这里面我们做了一个市场调查,如果车身或者整车的总量减轻一公斤,它的油耗可以节省多少升每公里,但是二氧化碳的排放量减少0.06克。这个0.06克是一个很小的数字,我们可以忽略不计,但是如果你从北京开到上海,来回跑一趟,二氧化碳的排放量就是很大的数字。而且如果你超过一克,从2012年开始,如果减轻重量一公斤,我就可以节省成本5.7欧元。这5.7欧元人民币就是57块钱。我们通过这个可以看出来,汽车的轻量化是非常关键的。在满足节能减排的大趋势下,作为一个汽车工程技术人员,必须要考虑到汽车的轻量化。我们做过一个调查,车身重量占整个车的40%,如果我们把车身减轻,整个车的重量就能够减轻。现在一般的设计都是单一的车型,我可以用全钢板车身结构,豪华车或者是奥迪车,全部是铝合金材料。在将来我们要考虑的肯定是车身的多样化,或者是材料的多样化。你要用不同的材料到不同的零部件上面去。以满足他的技术要求。这些材料比如说我们这里面说的有超高强度钢,一般抗拉强度在800以上的我们叫它是超高强度钢。比如说热成型技术,它的抗拉程度可以到1500、1600。铝合金、碳纤维复合材料,镁合金,这些技术在我们公司里面都可以进行设计以及进行生产。而且我们有一些产品已经在用这些方面的技术。

这是在德国汽车学会,由大众汽车公司牵头进行的研究。它是超级轻量化的车。这个车身的设计是有180公斤。这个车型是一个高尔夫(图库 论坛)的车型,这个高尔夫车型现在是180公斤,跟高尔夫

3、高尔夫4对比,它的材料减轻30%多。铝合金占了53%,有96公斤左右。钢板、钢材66公斤,镁合金11公斤,还有一些塑料件,这里面可能还有碳纤维复合材料。大家如果看一看的话,这里面的技术用了很多,比如说灰色的是热成型零部件,这里面表示,前面中央通道及以及底盘,底部通道,都是用高强度钢。为了满足侧面碰撞,A如和门底下的踏板,都是用热成型技术。再看这个车,这个车在欧洲碰撞已经拿到五个星,如果我们对它进行分析,看看哪些零部件我们可以改。看看在大的零部件能不能减轻它的重量。通过我们对前后保热成型材料,对顶部、底部,我们整个可以做一下估算。在满足这个技术要求情况下,碰撞要求、钢度要求等等要求情况下,我们可以减轻重量66公斤,这个66公斤是什么概念?成本我们现在不要考虑。因为铝合金和镁合金的材料成本肯定是很高的。我们现在根据技术进一步的创新,我估计成本肯定会降下来。我们考虑到二氧化碳的排放。这个排放我们可以考虑它在生产中,比如说复合材料或者是铝合金,它在生产中产生的二氧化碳提高了。但是,如果在使用期间它就降低了。而且在回收方面,因为复合材料等等的回收产生的二氧化碳也提高了。所以我们把整个考虑一下,如果一个车的使用寿命是20万公里,我们可以计算一下,它的二氧化碳的排放量可以减排670公斤。这670公斤我们除20万公里,等于是我们每公里减排4克二氧化碳。你一公斤,或者是一克,如果没有达标,你必须罚款95欧元,4克相当于400欧元左右,通过我们的分析,我们认为有可能根据我们的技术,尤其是热成型技术,我们能满足节能减排的要求。前面谈到了很多的热成型技术,热成型到底是什么样的技术?热成型其实是很简单的一个技术。大家可以看出来,这个工艺过程很简单,首先是开点、下料,进行炉子的加温,这个温度一般是在950度左右加温。加温以后,一次冲压成形,然后再进行冷却。这个技术和一般的冲压技术的区别多了一个模子。模具里面有一套冷却系统。它减轻重量,因为它强度提高了,所以重量可以减轻。而且可以减少它里面加强板的数量,比如说我们可以看出来,这里面的中央通道是大众车的一个通道,我们可以通过热成型技术可以用到中央通道里面去,加强板等一些零部件就可以省掉了。因为我们是一次成型,所以我们就需要一套模具。同时,它的成型的精度非常高。另外,它的碰撞的能力非常优秀。

这是我们一般用在汽车材料上面的图,我们也称它为香蕉图,因为它的形状像香蕉。一般我们国内在车身的材料是在这个范围之内,它的强度是200兆帕,它的强度是40%,因为它比较软,比较容易成型。它的原始材料没有加温之前强度已经很高了,延伸率15%。通过加热,它的材料里面,晶体发生变化,然后变到这个程度情况下,我们进行冲压成形,这个材料一加热950度以后,钢板肯定还是软的,在这个情况下加热成型。成型的同时进行冷却。冷却是轧果处理了,它的强度就提高了。热成型技术和我们老祖宗以前造剑的技术是一样的。王麻子菜刀很快,它的刀的成型也是经过炉子里面烧,进行锤打,到炉子里面冷却。这个工艺的好处是它的成型在25秒到30秒这么很短的时间内来完成。这个技术是很关键的。这个材料是1600兆帕,跟200兆帕相比,我们强了8倍。国内的这些厂家经常提这个问题,你这个材料技术好,哪个零部件我是第一优选,比如说要热成型技术。这里面是我们在市场调查,上面这些图形,所有这些零部件标志,在06年以前都可以采用热车型技术进行生产的。现在我们已经拓宽了,比如说这个中央通道,在06年如果这个曲线进行对比,本特勒每年可以生产八百万件,而且BERU是在汽车零部件里面首选的零部件。

热成型我们公司是全球领先的,我们不光停留在以前的热成型技术上面,我们这几年在热成型技术开发获得了很大的成功。比如说我们最里面一个技术,这个技术我们通过分析计算,我们发现这些零部件BERU的厚度,到底不部不要那么厚,中间厚一点,根据不同的厚度,我们可以在材料开展的过程中进行汞压,使得板的厚度根据我们的要求来调整轧汞的参数来满足他不同的厚度。冲压以后下料,下料以后进行热成型,最后冲压成形。这里面的好处,我哪个地方厚就可以进行热成型加工,一套模具就可以满足他的要求。这个技术我们已经成功的用到了宝马X5(图库 论坛)上面去。

另外一个,打补丁技术,在碰撞的时候,有机的部位会加强,加强需要加强板和加强金。我们在BERU的技术里面,两个料同时进行下,下完了以后点焊连接起来,一起送到炉子里面加温,一次成形,这个技术解决了:第一,省一套工序费用。第二,如果你单独进行加工,最后技术组装焊接的话,它的强度很高,焊接不在一起。这种技术它解决了撞碰带来的困难。这里面大家要问了,你在加温之前焊在一起了,再加热以后再成型,这两个点会不会脱落?我们可以解决这个问题。另外,局部进行加热,尤其在侧面碰撞,它里面的要求特别高,最高的要求你顶部材料强一点,底部弱一点,所以碰撞的时候,底部吸收能量多一点。我们这个技术现在已经成功的运用到了奥迪Q5(图库 论坛)的技术上面去了,奥迪Q5去年在欧洲获得车身展的最优秀奖。一般碰撞的时候顶部变形小一点,底部变形大一点。如果我们以热成型,不同材料局部加热,底部变形很小,顶部变形很大,可以满足碰撞的要求,使得底部能量吸收多一点,因为底部的空间比较大。在优化的过程中我们发现,这里面有一个轻量化的对比。如果用冷成型,它的重量是8.7公斤,如果我们用这个技术,4.5公斤。整车的重量减轻4.3公斤。我们不断的提高,还可以把重量减轻。

下面讲三个例子。我们经过分析、计算,完全可以做到把外面这个板热成型,如果我们采用热成型技术,连成的三件我们可以连件进行组成,重量可以减轻八公斤,性能可以提高,成本上面少了一个零件,总量减轻了,装配成本减少了。所以我们这个零件在葡萄牙进行量产。另外,我们这里面做了一个例子,这个车已经碰撞无形,但是由于车底很重,我们通过进行比较可以看出来,这里面有五层板连接起来的,大家看这个照片,这个照片是这个车子的切割照片,这个车子是帕萨车车子的切面,这里面就是用热成型技术,我们可以在保证它的性能的情况下,减轻车底的重量7%,这个7%的数字很小,但是这个车420公斤,7%的概念相当于是30公斤左右。最后一个例子,我们把20年以前的车进行分析,看这个车能不能满足现在的欧洲碰撞要求。大家可以看出来,如果20年前的车与我们在做碰撞,全面的碰和侧面的碰,整个车压缩得很大,我们对它进行分析,以前用的车身材料没有用高强度钢,用600兆帕的钢也是占8%左右。我们进行优化、分析,采用高强度钢,我们可以发现,最里面优化前和优化后,我们可以减少它的变形将近800毫米,800毫米可以把里面的驾驶员的生命进行保护,碰撞以后他没有进行压缩。车内碰撞可以减少500毫米。

这就是我今天要做的报告,谢谢大家!

下载机械工程材料及成型技术基础word格式文档
下载机械工程材料及成型技术基础.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《成型技术基础》作业(参考答案) 华工网络教育

    《成型技术基础》作业答案 一、判断题 1. 缩松是铸件的气孔。 (× ) 2. 自由锻是一种不用任何辅助工具的可以锻造任何形状的零件的锻造方法。 (×) 3. 铸造是指将液态合金浇注到......

    机械工程控制基础教学大纲

    《机械工程控制基础》课程教学大纲一、本课程性质、地位和任务性质:《机械工程控制基础》是机电一体化专业本科段计划规定必考的一门专业基础课。其目的在于使考生能以动态的......

    机械工程控制基础教案

    第一章 绪论 [教学内容] 1.控制理论学科的发展概况2.控制理论的研究对象 3.控制系统的工作原理及基本要求4.学习目的和学习方法[教学安排] 安排的教学时数:4学时[知识点及基本......

    材料成型基础课程设计教学大纲

    材料成型基础课程设计教学大纲 课程名称:材料成型基础课程设计 学 分:2 总 学 时:2 周 适用专业:机械工程及自动化 先修课程:材料成型基础 一、课程的性质、目的与任务: 课程设计......

    机械工程副高技术工作总结-2013

    专业技术工作总结作为科普作家、工程师及数控技师的我,2001年6月毕业于济南大学机械电子工程专业,先后在济南轨道交通装备有限责任公司(下称济南装备公司)的转向架车间和北车风......

    上海大学材料成型技术

    绪论 “材料成形技术基础”是机械工程专业和相关工程专业学生的一门重要的技术基础课程,主要研究机器零件的常用材料和材料成形方法,即从选择材料到毛坯或零件成形的综合性课......

    【技术】浅谈整体成型工艺

    【技术】浅谈整体成型工艺 背景 复合材料由于具有高比强度、高比刚度、性能可设计、抗疲劳性和耐腐蚀性好等优点,因此越来越广泛地应用于各类航空飞行器,大大地促进了飞行器......

    褐煤成型技术分析

    褐煤成型技术 1褐煤多联产技术 褐煤多联产是以褐煤为原料,集褐煤预处理,气化,化工合成,发电,供热,废弃物资源循环利用等单元工艺构成的褐煤综合利用系统,其整个核心工艺是褐煤预处......