专题08
动量定理以及动量守恒定律
(2010-2019)
题型一、动量及动量定理的综合应用
题型二、动量守恒定律与能量的综合应用模型一(碰撞类)
题型三、动量守恒定律与能量的综合应用模型一(碰撞、弹簧类)
题型四、动量守恒定律与能量的综合应用模型(碰撞、反冲类)
题型五、动量守恒定律与能量的综合应用模型三(碰撞、子弹木块、板块类)
题型六、动量守恒定律与能量的综合应用模型三(碰撞、轨道类)
题型七、实验:验证动量守恒定律
题型一、动量及动量定理的综合应用
1.(2019全国2)一质量为m=2000
kg的汽车以某一速度在平直公路上匀速行驶。行驶过程中,司机突然发现前方100
m处有一警示牌。立即刹车。刹车过程中,汽车所受阻力大小随时间变化可简化为图(a)中的图线。图(a)中,0~t1时间段为从司机发现警示牌到采取措施的反应时间(这段时间内汽车所受阻力已忽略,汽车仍保持匀速行驶),t1=0.8
s;t1~t2时间段为刹车系统的启动时间,t2=1.3
s;从t2时刻开始汽车的刹车系统稳定工作,直至汽车停止,已知从t2时刻开始,汽车第1
s内的位移为24
m,第4
s内的位移为1
m。
(1)在图(b)中定性画出从司机发现警示牌到刹车系统稳定工作后汽车运动的v-t图线;
(2)求t2时刻汽车的速度大小及此后的加速度大小;
(3)求刹车前汽车匀速行驶时的速度大小及t1~t2时间内汽车克服阻力做的功;从司机发现警示牌到汽车停止,汽车行驶的距离约为多少(以t1~t2时间段始末速度的算术平均值替代这段时间内汽车的平均速度)?
2.(2018全国2)高空坠物极易对行人造成伤害.若一个50
g的鸡蛋从一居民楼的25层坠下,与地面的撞击时间约为2
ms,则该鸡蛋对地面产生的冲击力约为()
A.10
N
B.102
N
C.103
N
D.104
N
3.(2018北京)2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB与弯曲滑道BC平滑衔接,滑道BC高h=10
m,C是半径R=20
m圆弧的最低点,质量m=60
kg的运动员从A处由静止开始匀加速下滑,加速度a=4.5
m/s2,到达B点时速度vB=30
m/s.取重力加速度g=10
m/s2.(1)求长直助滑道AB的长度L;
(2)求运动员在AB段所受合外力的冲量的I大小;
(3)若不计BC段的阻力,画出运动员经过C点时的受力图,并求其所受支持力FN的大小.4.(2018江苏)如图所示,悬挂于竖直弹簧下端的小球质量为m,运动速度的大小为v,方向向下.经过时间t,小球的速度大小为v,方向变为向上.忽略空气阻力,重力加速度为g,求该运动过程中,小球所受弹簧弹力冲量的大小.
5.(2017全国3)一质量为2
kg的物块在合外力F的作用下从静止开始沿直线运动。F随时间t变化的图线如图所示,则()
A.t=1
s时物块的速率为1
m/s
B.t=2
s时物块的动量大小为4
kg·m/s
C.t=3
s时物块的动量大小为5
kg·m/s
D.t=4
s时物块的速度为零
6.(2015重庆)高空作业须系安全带.如果质量为的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为(可视为自由落体运动).此后经历时间安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为()
A.B.C.D.7.(2015北京)“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下。将蹦极过程简化为人沿竖直方向的运动。从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是()
A.绳对人的冲量始终向上,人的动量先增大后减小
B.绳对人的拉力始终做负功,人的动能一直减小
C.绳恰好伸直时,绳的弹性势能为零,人的动能最大
D.人在最低点时,绳对人的拉力等于人所受的重力
8.(2015安徽)一质量为0.5
kg的小物块放在水平地面上的A点,距离A点5
m的位置B处是一面墙,如图所示。长物块以vo=9
m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7
m/s,碰后以6
m/s的速度把向运动直至静止。g取10
m/s2。
(1)求物块与地面间的动摩擦因数;
(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F;
(3)求物物块在反向运动过程中克服摩擦力所做的功W。
9.(2015全国1)某游乐园入口旁有一喷泉,喷出的水柱将一质量为的卡通玩具稳定地悬停在空中。为计算方便起见,假设水柱从横截面积为的喷口持续以速度竖直向上喷出;玩具底部为平板(面积略大于);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开。忽略空气阻力。已知水的密度为,重力加速度大小为,求:
(i)喷泉单位时间内喷出的水的质量;
(ii)玩具在空中悬停时,其底面相对于喷口的高度。
题型二、动量守恒定律与能量的综合应用模型一(碰撞类)
10.(2019全国1)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B静止于水平轨道的最左端,如图(a)所示。t=0时刻,小物块A在倾斜轨道上从静止开始下滑,一段时间后与B发生弹性碰撞(碰撞时间极短);当A返回到倾斜轨道上的P点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止。物块A运动的v-t图像如图(b)所示,图中的v1和t1均为未知量。已知A的质量为m,初始时A与B的高度差为H,重力加速度大小为g,不计空气阻力。
(1)求物块B的质量;
(2)在图(b)所描述的整个运动过程中,求物块A克服摩擦力所做的功;
(3)已知两物块与轨道间的动摩擦因数均相等,在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B再次碰上。求改变前面动摩擦因数的比值。
11.(2017·江苏)甲、乙两运动员在做花样滑冰表演,沿同一直线相向运动,速度大小都是1
m/s,甲、乙相遇时用力推对方,此后都沿各自原方向的反方向运动,速度大小分别为1
m/s和2
m/s.求甲、乙两运动员的质量之比.
12.(2018全国2)汽车A在水平冰雪路面上行驶,驾驶员发现其正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5
m,A车向前滑动了2.0
m,已知A和B的质量分别为kg和kg,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小.求
(1)碰撞后的瞬间B车速度的大小;
(2)碰撞前的瞬间A车速度的大小.13.(2014上海)动能相等的两物体A、B在光滑水平面上沿同一直线相向而行,它们的速度大小之比,则动量之比
;两者碰后粘在一起运动,其总动量与A原来动量大小之比。
14.(2011福建)在光滑水平面上,一质量为m,速度大小为的A球与质量为2m静止的B球碰撞后,A球的速度方向与碰撞前相反。则碰撞后B球的速度大小可呢个是__________。(题选项前的字母)
A.0.6
B.0.4
C.0.3
D.0.2
15.(2014·全国卷1)如图所示,质量分别为mA、mB的两个弹性小球A、B静止在地面上,B球距地面的高度h=0.8
m,A球在B球的正上方,先将B球释放,经过一段时间后再将A球释放,当A球下落t=0.3
s时,刚好与B球在地面上方的P点处相碰,碰撞时间极短,碰后瞬间A球的速度恰为零,已知mB=3mA,重力加速度大小g取10
m/s2,忽略空气阻力及碰撞中的动能损失.求:
(1)B球第一次到过地面时的速度;
(2)P点距离地面的高度.
16.(2010全国2)小球A和B的质量分别为mA
和
mB
且mA>>mB
在某高度处将A和B先后从静止释放。小球A与水平地面碰撞后向上弹回,在释放处的下方与释放出距离为H的地方恰好与正在下落的小球B发生正幢,设所有碰撞都是弹性的,碰撞事件极短。求小球A、B碰撞后B上升的最大高度。
17.(2011山东)如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线同一方向运动,速度分别为2v0、v0。为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度。(不计水的阻力)
18.(2014·北京卷)如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A和B分别静止在圆弧轨道的最高点和最低点.现将A无初速释放,A与B碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R=0.2
m;A和B的质量相等;A和B整体与桌面之间的动摩擦因数μ=0.2.重力加速度g取10
m/s2.求:
(1)
碰撞前瞬间A的速率v;
(2)
碰撞后瞬间A和B整体的速率v′;
(3)
A和B整体在桌面上滑动的距离l.19.(2014·全国)冰球运动员甲的质量为80.0
kg.当他以5.0
m/s的速度向前运动时,与另一质量为100
kg、速度为3.0
m/s的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:
(1)碰后乙的速度的大小;
(2)碰撞中总机械能的损失.
20.(2014·广东)图的水平轨道中,AC段的中点B的正上方有一探测器,C处有一竖直挡板,物体P1沿轨道向右以速度v1与静止在A点的物体P2碰撞,并接合成复合体P,以此碰撞时刻为计时零点,探测器只在t1=2
s至t2=4
s内工作.已知P1、P2的质量都为m=1
kg,P与AC间的动摩擦因数为μ=0.1,AB段长L=4
m,g取10
m/s2,P1、P2和P均视为质点,P与挡板的碰撞为弹性碰撞.
(1)若v1=6
m/s,求P1、P2碰后瞬间的速度大小v和碰撞损失的动能ΔE;
(2)若P与挡板碰后,能在探测器的工作时间内通过B点,求v1的取值范围和P向左经过A
点时的最大动能E.21.(2014·江苏卷)牛顿的《自然哲学的数学原理》中记载,A、B两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B对A的速度,接近速度是指碰撞前A对B的速度.若上述过程是质量为2m的玻璃球A以速度v0碰撞质量为m的静止玻璃球B,且为对心碰撞,求碰撞后A、B的速度大小.
22.(2014·山东卷)如图所示,光滑水平直轨道上两滑块A、B用橡皮筋连接,A的质量为m.开始时橡皮筋松弛,B静止,给A向左的初速度v0.一段时间后,B与A同向运动发生碰撞并粘在一起.碰撞后的共同速度是碰撞前瞬间A的速度的两倍,也是碰撞前瞬间B的速度的一半.求:
(ⅰ)B的质量;
(ⅱ)碰撞过程中A、B系统机械能的损失.
23.(2014·天津)如图所示,水平地面上静止放置一辆小车A,质量mA=4
kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块
B置于A的最右端,B的质量mB=2
kg.现对A施加一个水平向右的恒力F=10
N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6
s,二者的速度达到vt=2
m/s.求:
(1)A开始运动时加速度a的大小;
(2)A、B碰撞后瞬间的共同速度v的大小;
(3)A的上表面长度l.24.(2015全国1).如图,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间。A的质量为m,B、C的质量都为M,三者都处于静止状态,现使A以某一速度向右运动,求m和M之间满足什么条件才能使A只与B、C各发生一次碰撞。设物体间的碰撞都是弹性的。
25.(2015全国2)滑块a、b沿水平面上同一条直线发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段。两者的位置x随时间t变化的图像如图所示。求:
(ⅰ)滑块a、b的质量之比;
(ⅱ)整个运动过程中,两滑块克服摩擦力做的功与因碰撞而损失的机械能之比。
26.(2015山东)如图,三个质量相同的滑块A、B、C,间隔相等地静置于同一水平轨道上。现给滑块A向右的初速度v0,一段时间后A与B发生碰撞,碰后AB分别以、;的速度向右运动,B再与C发生碰撞,碰后B、C粘在一起向右运动。滑块A、B与轨道间的动摩擦因数为同一恒定值。两次碰撞时间极短。求B、C碰后瞬间共同速度的大小。
27.(2015天津)如图所示,在光滑水平面的左侧固定一竖直挡板,A球在水平面上静止放置.B球向左运动与A球发生正碰,B球碰撞前、后的速率之比为3:1,A球垂直撞向挡板,碰后原速率返回。两球刚好不发生第二次碰撞。A、B两球的质量之比为____________,A、B碰撞前、后两球总动能之比为_________。
28.(2015广东)如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R=0.5m,物块A以v0=6m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨道上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L=0.1m,物块与各粗糙段间的动摩擦因数都为μ=0.1,A、B的质量均为m=1kg(重力加速度g取10m/s2;A、B视为质点,碰撞时间极短)。
(1)求A滑过Q点时的速度大小v和受到的弹力大小F;
(2)碰后AB最终停止在第k个粗糙段上,求k的数值;
(3)碰后AB滑至第n个(n<k)光滑段上的速度vn与n的关系式。
29.(2010山东)如图所示,滑块A、C质量均为m,滑块B质量为m。开始时A、B分别以的速度沿光滑水平轨道向固定在右侧的挡板运动,现将C无初速地放在A上,并与A粘合不再分开,此时A与B相距较近,B与挡板相距足够远。若B与挡板碰撞将以原速率反弹,A与B碰撞将粘合在一起。为使B能与挡板碰撞两次,应满足什么关系?
30.(2010北京卷)雨滴在穿过云层的过程中,不断与漂浮在云层中的小水珠相遇并结合为一体,其质量逐渐增大。现将上述过程简化为沿竖直方向的一系列碰撞。已知雨滴的初始质量为,初速度为,下降距离后于静止的小水珠碰撞且合并,质量变为。此后每经过同样的距离后,雨滴均与静止的小水珠碰撞且合并,质量依次为、……(设各质量为已知量)。不计空气阻力。
(1)若不计重力,求第次碰撞后雨滴的速度;
(2)若考虑重力的影响,a.求第1次碰撞前、后雨滴的速度和;
b.求第n次碰撞后雨滴的动能。
31.(2011全国2)质量为M、内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m的小物块,小物块与箱子底板间的动摩擦因数为μ。初始时小物块停在箱子正中间,如图所示。现给小物块一水平向右的初速度v,小物块与箱壁碰撞N次后恰又回到箱子正中间,井与箱子保持相对静止。设碰撞都是弹性的,则整个过程中,系统损失的动能为
()
A.
B.
C.
D.
32.(2011全国2)装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击。通过对一下简化模型的计算可以粗略说明其原因。
质量为2m、厚度为2d的钢板静止在水平光滑桌面上。质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿。现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示。若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度。设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响。
题型三、动量守恒定律与能量的综合应用模型一(碰撞、弹簧类)
34.(2019全国3)静止在水平地面上的两小物块A、B,质量分别为mA=l.0kg,mB=4.0kg;两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离l=1.0m,如图所示。某时刻,将压缩的微型弹簧释放,使A、B瞬间分离,两物块获得的动能之和为Ek=10.0J。释放后,A沿着与墙壁垂直的方向向右运动。A、B与地面之间的动摩擦因数均为u=0.20。重力加速度取g=10m/s²。A、B运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短。
(1)求弹簧释放后瞬间A、B速度的大小;
(2)物块A、B中的哪一个先停止?该物块刚停止时A与B之间的距离是多少?
(3)A和B都停止后,A与B之间的距离是多少?
35.(2013年全国2)如图,光滑水平直轨道上有三个质童均为m的物块A、B、C。
B的左侧固定一轻弹簧(弹簧左侧的挡板质最不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动。假设B和C碰撞过程时间极短。
求:(1)从A开始压缩弹簧直至与弹黄分离的过程中,整个系统拐失的机械能;
(2)弹簧被压缩到最短时的弹性势能。
36.(2014·浙江卷)如图所示,甲木块的质量为m1,以速度v沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后()
A.甲木块的动量守恒
B.乙木块的动量守恒
C.甲、乙两木块所组成的系统的动量守恒
D.甲、乙两木块所组成系统的动能守恒
37.(2011全国1)如图,ABC三个木块的质量均为m。置于光滑的水平面上,BC之间有一轻质弹簧,弹簧的两端与木块接触可不固连,将弹簧压紧到不能再压缩时用细线把BC紧连,使弹簧不能伸展,以至于BC可视为一个整体,现A以初速沿BC的连线方向朝B运动,与B相碰并粘合在一起,以后细线突然断开,弹簧伸展,从而使C与A,B分离,已知C离开弹簧后的速度恰为,求弹簧释放的势能。
题型四、动量守恒定律与能量的综合应用模型(碰撞、反冲类)
38.(2019全国1)最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展。若某次实验中该发动机向后喷射的气体速度约为3
km/s,产生的推力约为4.8×106
N,则它在1
s时间内喷射的气体质量约为()
A.1.6×102
kg
B.1.6×103
kg
C.1.6×105
kg
D.1.6×106
kg
39.(2018全国1)一质量为m的烟花弹获得动能E后,从地面竖直升空,当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E,且均沿竖直方向运动.爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量,求
(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间;
(2)爆炸后烟花弹向上运动的部分距地面的最大高度
40.(2017全国1)将质量为1.00
kg的模型火箭点火升空,50
g燃烧的燃气以大小为600
m/s的速度从火箭喷口在很短时间内喷出。在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)()
A.30
B.5.7×102
C.6.0×102
D.6.3×102
41.(2014·福建卷)
一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v1为________.(填选项前的字母)
A.v0-v2
B.v0+v2
C.v0-v2
D.v0+(v0-v2)
42.(2014·重庆卷)一弹丸在飞行到距离地面5
m高时仅有水平速度v=2
m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,重力加速度g取10
m/s2,则下列图中两块弹片飞行的轨迹可能正确的是
A
B
C
D
43.(2015广东)在同一匀强磁场中,a粒子()和质子()做匀速圆周运动,若它们的动量大小相等,则a粒子和质子()
A、运动半径之比是2:1
B、运动周期之比是2:1
C、运动速度大小之比是4:1
D.受到的洛伦兹力之比是2:1
44.(2015北京)实验观察到,静止在匀强磁场中
A
点的原子核发生β衰变,衰变产生的新核与电子恰在纸面内做匀速圆周运动,运动方向和轨迹示意如图。则()
A.轨迹
是电子的,磁场方向垂直纸面向外
B.轨迹
是电子的,磁场方向垂直纸面向外
C.轨迹
是新核的,磁场方向垂直纸面向里
D.轨迹
是新核的,磁场方向垂直纸面向里
45.(2015海南)运动的原子核放出粒子后变成静止的原子核Y。已知X、Y和粒子的质量分别是M、和,真空中的光速为c,粒子的速度远小于光速。求反应后与反应前的总动能之差以及粒子的动能。
题型五、动量守恒定律与能量的综合应用模型三(碰撞、子弹木块、板块类)
46.(2018天津)质量为0.45
kg的木块静止在光滑水平面上,一质量为0.05
kg的子弹以200
m/s的水平速度击中木块,并留在其中,整个木块沿子弹原方向运动,则木块最终速度的大小是______m/s若子弹在木块中运动时受到的平均阻力为4.5×103
N,则子弹射入木块的深度为____
47.(2017·天津卷)如图所示,物块A和B通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定滑轮两侧,质量分别为mA=2
kg、mB=1
kg。初始时A静止于水平地面上,B悬于空中。先将B竖直向上再举高h=1.8
m(未触及滑轮)然后由静止释放。一段时间后细绳绷直,A、B以大小相等的速度一起运动,之后B恰好可以和地面接触。取g=10
m/s2。空气阻力不计。求:
(1)B从释放到细绳刚绷直时的运动时间t;
(2)A的最大速度v的大小;
(3)初始时B离地面的高度H。
48.(2013年山东)如图所示,光滑水平轨道上放置长木板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为、、。开始时C静止,A、B一起以的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞。求A与C发生碰撞后瞬间A的速度大小。
49.(2014·安徽卷)在光滑水平地面上有一凹槽A,中央放一小物块B.物块与左右两边槽壁的距离如图所示,L为1.0
m,凹槽与物块的质量均为m,两者之间的动摩擦因数μ为0.05.开始时物块静止,凹槽以v0=5
m/s初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g取10
m/s2.求:
(1)物块与凹槽相对静止时的共同速度;
(2)从凹槽开始运动到两者相对静止物块与右侧槽壁碰撞的次数;
(3)从凹槽开始运动到两者刚相对静止所经历的时间及该时间内凹槽运动的位移大小.
50.(2010全国1)如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为.使木板与重物以共同的速度向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短.求木板从第一次与墙碰撞到再次碰撞所经历的时间.设木板足够长,重物始终在木板上.重力加速度为g.51.(2010福建)如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。木箱和小木块都具有一定的质量。现使木箱获得一个向右的初速度,则
。(填选项前的字母)
A.小木块和木箱最终都将静止
B.小木块最终将相对木箱静止,二者一起向右运动
C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动
D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动
题型六、动量守恒定律与能量的综合应用模型三(碰撞、轨道类)
52.(2015福建)如图,质量为M的小车静止在光滑的水平面上,小车AB段是半径为R的四分之一圆弧光滑轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点,一质量为m的滑块在小车上从A点静止开始沿轨道滑下,重力加速度为g。
(1)若固定小车,求滑块运动过程中对小车的最大压力;
(2)若不固定小车,滑块仍从A点由静止下滑,然后滑入BC轨道,最后从C点滑出小车,已知滑块质量,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC间的动摩擦因数为μ,求:
滑块运动过程中,小车的最大速度vm;
滑块从B到C运动过程中,小车的位移大小s。
53.(2016年全国2)如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其前面的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为(h小于斜面体的高度).已知小孩与滑板的总质量为,冰块的质量为,小孩与滑板始终无相对运动.取重力加速度的大小.
(ⅰ)求斜面体的质量;
(ⅱ)通过计算判断,冰块与斜面体分离后能否追上小孩?
54.(2011海南)一质量为2m的物体P静止于光滑水平地面上,其截面如图所示。图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接。现有一质量为m的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静止。重力加速度为g。求
(i)木块在ab段受到的摩擦力f;
(ii)木块最后距a点的距离s。
题型七、实验:验证动量守恒定律
55.(2014·全国2)
现利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A、B两个滑块,滑块A右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.
图(a)
实验测得滑块A的质量m1=0.310
kg,滑块B的质量m2=0.108
kg,遮光片的宽度d=1.00
cm;打点计时器所用交流电的频率f=50.0
Hz.将光电门固定在滑块B的右侧,启动打点计时器,给滑块A一向右的初速度,使它与B相碰.碰后光电计时显示的时间为ΔtB=3.500
ms,碰撞前后打出的纸带如图(b)所示.
图(b)
若实验允许的相对误差绝对值(×100%)最大为5%,本实验是否在误差范围内验证了动量守恒定律?写出运算过程.
56.(2010北京)如图2用“碰撞实验器“可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系。
图2
①实验中,直接测定小球碰撞前后的速度是不容易的。但是,可以通过仅测量______
(填选项前的符号),间接地解决这个问题。
A.小球开始释放高度h
B.小球抛出点距地面的高度H
C.小球做平抛运动的射程
②图2中O点是小球抛出点在地面上的垂直投影。实验时,先让入射球ml多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP。然后,把被碰小球m2静置于轨道的水平部分,再将入射球ml从斜轨上S位置静止释放,与小球m2相碰,并多次重复。接下来要完成的必要步骤是_________。(填选项前的符号)
A.用天平测量两个小球的质量ml、m2
B.测量小球m1开始释放高度h
C.测量抛出点距地面的高度H
D.分别找到m1、m2相碰后平均落地点的位置M、N
E.测量平抛射程OM,ON
③若两球相碰前后的动量守恒,其表达式可表示为_________
(用②中测量的量表示);
若碰撞是弹性碰撞,那么还应满足的表达式为___________
(用②中测量的量表示)。
④经测定,m1=45.0g,m2=7.5g,小球落地点的平均位置距O点的距离如图3所示。碰撞前、后m1的动量分别为p1与p1´,则p1:p1´=__
__
:11;若碰撞结束时m2的动量为p2´,则p1´:
p2´=11:_______。
实验结果表明,碰撞前、后总动量的比值为____________。
⑤有同学认为,在上述实验中仅更换两个小球的材质,其它条件不变,可以使被碰小球做平抛运动的射程增大。请你用④中已知的数据,分析和计算出被碰小球m2平抛运动射程ON的最大值为________cm。